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Abstract In this lesson we consider discrete time dynamical systems with coexisting
attractors, and we analyze the problem of the structure of the boundaries that sep-
arate their basins of attraction. This problem may become particularly challenging
when the discrete dynamical system is represented by the iteration of a noninvertible
map, because in this case nonconnected basins can be obtained, formed by several
(even infinitely many) disjoint portions. Measure theoretic attractors, known as
Milnor attractors, are also described, together with riddled basins, an extreme form
of complex basin’s structure that can be observed in the presence of such attractors.
Some tools for the study of global bifurcations that lead to the creation of complex
structures of the basins are described, as well as some applications in discrete time
models taken from economic dynamics.

1 Introduction

Many mathematical models of social, economic and financial systems are characterized
by the interaction among boundedly rational agents, that try to obtain their goals by
adaptive processes, based on ”trial and error” or ”learning by doing” methods. This
implies that the mathematical modelling of these processes, where decisions are repeat-
edly taken over time, are formulated as deterministic discrete time dynamical systems,
i.e. their time evolution is expressed by the repeated application (iteration) of a map
T : S → S, where S ⊆ Rn. If the state of the economic system is described by a vector
x ∈ S, starting from an initial condition x0 ∈ S the time evolution of the system is
expressed by a sequence of states x (t), t ∈ N, obtained inductively by the iteration of a
map defined by x′ = T (x), where the right hand side represents the state at the time
period t, and the left hand side represents the state at the time (t + 1).

It is worth to notice that discrete time dynamical systems are sometimes obtained
through some discretization procedure applied to continuous time models, as often hap-
pens in physics or biology. Instead, economic time is often intrinsically discrete, because
decisions in economics cannot be continuously revised. As trivial example to illustrate
this point, let us consider a farmer that decides how much wheat has to be sowed: such
a decision cannot be revised until next sowing season.

The dynamic models in economics are generally nonlinear, and it is now well known
that even one-dimensional discrete nonlinear dynamical systems may exhibit complex
asymptotic behaviors, due to the existence of chaotic attractors.
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Moreover, nonlinearity may also imply that several equilibria may coexist. For ex-
ample, dynamic games often have several equilibria (see, among others, Binmore, 1992,
Weibull, 1995) and in many models with expectations and learning several rational ex-
pectations equilibria are present, or rational equilibria coexist with non rational ones
(Guesnerie and Woodford, 1993). In these cases, an adaptive process may become an
equilibrium selection device, as it allows one to distinguish between stable and unstable
equilibria. However, in many models with evolutive (or learning) mechanism, a situation
denoted as ”multistability” is present, i.e. several attractors exist, each with its own
basin of attraction. Consequently, selection criteria based on local stability are not suffi-
cient to identify the long run evolution of the system, and the dynamic process becomes
path-dependent: the long run dynamics depend on the starting condition, and a thor-
ough knowledge of the basins and their structure becomes crucial for the researcher to
be able to predict which one of the multiple equilibria is more likely to be observed (see
e.g. Lorenz, 1992, Soliman, 1999, Barucci et al., 1999, Bischi and Kopel, 2001, Bischi et
al., 2003a,b, Agliari et al., 2002, Bischi et al., 2004).

This leads to the question of the delimitation of the basins of attraction and their
changes as the parameters of the model vary. This issue cannot be studied by local
methods (i.e. based on linear approximations around the attractors) but through a global
study of the map, often requiring an interplay among analytical, geometric and numerical
methods (see e.g. Brock and Hommes, 1997, Bischi et al., 2000a, Puu, 2000, Agliari et al.,
2002). The existence of complex topological structure of the basins becomes particularly
intriguing when dealing with discrete dynamical systems represented by the iteration of
noninvertible maps (see Mira et al., 1996, Abraham et al., 1997, and references therein).
Moreover the complexity related to the structure of the basins is not related, in general,
to the existence of chaotic attracting sets, in the sense that simple attractors (e.g. stable
steady states) may have basins with a complicated topological structure whereas complex
attractors, e.g. strange attractors, may exist whose basins have simple boundaries.

In the last two decades, the literature on economic dynamics has mainly been devoted
to the study of the attractors and their qualitative changes (bifurcations) leading to more
and more complex kinds of asymptotic dynamics (fixed points, cycles, quasi-periodic
orbits, chaotic attractors). Such routes to more and more complex behaviors, as some
parameters are varied, have been characterized by sequences of local bifurcations (such
as the well known period doubling route to chaos) and by global bifurcations, typically
homoclinic bifurcations. Instead, the complexity related to the structure of basins leads
to a different kind of sensitivity with respect to slight changes of initial conditions. In
fact, if a point is far from the basin boundaries, a slight perturbation has no effect on the
long run behavior, whereas if a point is very close to a basin boundary (and many point
are in such a situation in the presence of complex basin boundaries) a small perturbation
has a high probability to cause a crossing of the boundary and consequently the long
run evolution will be very different, i.e. the trajectory may go to a completely different
region of the phase space (it may even diverge). This kind of sensitivity is different from
the sensitive dependence on initial conditions which characterizes a chaotic attractor. In
fact, in this case, even if two initially very close chaotic trajectories quickly depart as
time increases (at an exponential rate), such trajectories are finally trapped inside the
same compact invariant set (the chaotic attractor).
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Both the questions outlined above require an analysis of the global dynamical prop-
erties of the dynamical system, that is, an analysis which is not based on the linear ap-
proximation of the map. When the map is noninvertible the global dynamical properties
can be usefully characterized by the method of critical sets, a powerful tool introduced
in the seventies (see Gumovski and Mira, 1980, Mira et al. 1996, Abraham et al. 1997)
but only recently employed in the study of dynamic modelling of economic and financial
systems (see e.g. Bischi et al., 1999a, Kopel et al., 2000, Puu 2000, Bischi and Kopel,
2001, Bischi et al., 2003a,b, Dieci et al., 2001, Chiarella et al., 2001, 2002). Indeed,
several discrete time models of economic systems are represented by the iteration of a
noninvertible map, i.e. a point transformation T which maps distinct points into the
same point. Loosely speaking, this can be expressed by saying that the map “folds and
pleats” the state space. As we shall describe in the following, the folding action associated
with the application of a noninvertible map, as well as the “unfolding” associated with
the geometric action of the inverses, can be described by using the formalism of critical
sets. The repeated application of a noninvertible map repeatedly folds the state space
along the critical sets and their images, and often this allows one to define a bounded
region where asymptotic dynamics are trapped. Instead, the repeated application of the
inverses “repeatedly unfolds” the state space, so that a neighborhood of an attractor may
have preimages far from it. This may give rise to complicated topological structures of
the basins, whose detection can be explained on the basis of the global properties of the
dynamical system, as explained below.

The lesson is organized as follows. In section 2 we recall some definitions and proper-
ties concerning discrete dynamical systems represented by noninvertible maps. In section
3 we consider the problem of the delimitation of the basins in one-dimensional discrete
dynamical systems, and we give some examples of global bifurcations that cause the
creation of nonconnected basins. In section 4 we consider two-dimensional discrete dy-
namical systems, recalling some recent examples of two-dimensional dynamic models
taken from the economic literature. In section 5 we consider the case of dynamical sys-
tems that have invariant submanifolds of lower dimension with respect to the state space,
where chaotic Milnor attractors are embedded, and we analyze the related phenomena
of chaos synchronization and riddled basins. We also show how such particular dynamic
situations arise in competition models.

2 Some basic definitions and properties

In this section we give some basic definitions and properties, and a minimal vocabulary,
about discrete dynamical systems, with a particular emphasis on the ones represented by
the iteration of noninvertible maps. A map T : S → S, S ⊆ Rn, defined by x′ = T (x),
transforms a point x ∈ S into a unique point x′ ∈ S. The point x′ is called the rank-1
image of x, and a point x such that T (x) = x′ is a rank-1 preimage of x′. A discrete-time
dynamical system is defined inductively by the difference equation

x (t + 1) = T (x (t)) (2.1)

where x represents the state of a system, and T can be seen as a “unit time advancement
operator” T : x (t) → x (t + 1). Starting from an initial condition x0 ∈ S, the repeated
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application (iteration) of T uniquely defines a trajectory

τ(x0) =
{
x(t) = T t(x0), t = 0, 1, 2, ...

}
, (2.2)

where T 0 is the identity map and T t = T (T t−1).
A set A ⊂ Rn is trapping if it is mapped into itself, T (A) ⊆ A, i.e. if x ∈ A then

T (x) ∈ A. A trapping set is invariant if it is mapped onto itself: T (A) = A, i.e. all the
points of A are images of points of A.

A closed invariant set A is an attractor if it is asymptotically stable, that is
(i) it is Lyapunov stable, i.e. for every neighborhood W of A there exists a neighbor-

hood V of A such that T t(V ) ⊂ W ∀t ≥ 0
(ii) a neighborhood U of A exists such that T t(x) → A as t → +∞ for each x ∈ U .
The basin of an attractor A is the set of all points that generate trajectories converging

to A
B (A) =

{
x |T t(x) → A as t → +∞

}
(2.3)

Let U(A) be a neighborhood of an attractor A whose points converge to A. Of course
U(A) ⊆ B (A), and also the points that are mapped into U after a finite number of
iterations belong to B (A). Hence, the basin of A is given by

B (A) =
∞⋃

n=0

T−n(U(A)) (2.4)

where T−1(x) represents the set of the rank-1 preimages of x (i.e. the points mapped
into x by T ), and T−n(x) represents the set of the rank-n preimages of x (i.e. the points
mapped into x after n applications of T ).

Let B be a basin of attraction and ∂B its boundary. From the definition it follows
that B is trapping with respect to the forward iteration of the map T and invariant
with respect to the backward iteration of all the inverses T−1, that is, T (B) ⊆ B and
T−1 (B) = B. The same relations hold for the points located along the boundary, i.e.

T (∂B) ⊆ ∂B , T−1 (∂B) = ∂B. (2.5)

This implies that if an unstable fixed point or cycle belongs to ∂B then ∂B must also
contain all its preimages of any rank. Moreover, if a saddle-point, or a saddle-cycle,
belongs to ∂B, then ∂B must also contain the whole stable set (see Gumowski and Mira
1980, Mira et al. 1996).

From (2.4) and (2.5) follows that in order to study the extension of a basin and
structure of its boundaries one has to consider the backward iteration of T . So, the
invertibility of T and the properties of the inverse relation T−1 must be considered. We
recall that if x 6= y implies T (x) 6= T (y) for each x, y in S, then T is an invertible map
in S, because the inverse mapping that gives x = T−1 (x′) is uniquely defined; otherwise
T is said to be a noninvertible map, because points x exist that have several rank-1
preimages, i.e. the inverse relation x = T−1 (x′) may be multivalued. So, noninvertible
means “many-to-one”, that is, distinct points x 6= y may have the same image, T (x) =
T (y) = x′. Geometrically, the action of a noninvertible map T can be expressed by saying
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that it “folds and pleats” the space S, so that the two distinct points are mapped into
the same point. This is equivalently stated by saying that several inverses are defined in
some points of S, and these inverses “unfold” S.

For a noninvertible map S can be subdivided into regions Zk, k ≥ 0, whose points
have k distinct rank-1 preimages. Generally, as the point x′ varies in Rn, pairs of preim-
ages appear or disappear as this point crosses the boundaries separating different regions.
Hence, such boundaries are characterized by the presence of at least two coincident (merg-
ing) preimages. This leads to the definition of the critical sets, one of the distinguishing
features of noninvertible maps (Gumowski and Mira, 1980, Mira et al., 1996):

Definition. The critical set CS of a continuous map T is defined as the locus of
points having at least two coincident rank-1 preimages, located on a set CS−1 called set
of merging preimages.

The critical set CS is generally formed by (n− 1)-dimensional hypersurfaces of Rn,
and portions of CS separate regions Zk of the phase space characterized by a different
number of rank-1 preimages, for example Zk and Zk+2 (this is the standard occurrence).
As we shall see below, the critical set CS is the n-dimensional generalization of the notion
of local minimum/maximum value of a one-dimensional map, and of the notion of critical
curve LC of a noninvertible two-dimensional map1. The set CS−1 is the generalization
of the notion of critical point (when it is a local extremum point) of a one-dimensional
map, and of the fold curve LC−1 of a two-dimensional noninvertible map.

From the definition given above it is clear that the relation CS = T (CS−1) holds,
and the points of CS−1 in which the map is continuously differentiable are necessarily
points where the Jacobian determinant of T , denoted by detDT , vanishes:

CS−1 ⊆ J0 = {p ∈ Rn | det DT (p) = 0} (2.6)

In fact, in any neighborhood of a point of CS−1 there are at least two distinct points
which are mapped by T in the same point. Accordingly, the map is not locally invertible
in points of CS−1, and (2.6) follows from the implicit function theorem.

In order to explain the geometric meaning of the critical sets, let us consider a portion
of CS, say ĈS, which separates two regions Zk and Zk+2 of the phase space S, and let
ĈS−1 be the corresponding locus of merging preimages, i.e. ĈS = T

(
ĈS−1

)
. This

means that two inverses of T exist, say T−1
1 and T−1

2 , which are defined in the region
Zk+2 (and have respective ranges in the regions R1 and R2 separated by ĈS−1) that
merge on ĈS−1 (i.e. they give merging preimages on ĈS−1) and no longer exist in the
region Zk. Now, let U ⊂ S be a ball which intersects ĈS−1 in D = U ∩ ĈS−1. Then
T (D) ⊆ ĈS, and T (U) is “folded” along ĈS into the region Zk+2. In fact, considering
the two portions of U separated by ĈS−1, say U1 ∈ R1 and U2 ∈ R2, we have that
T (U1)∩ T (U2) is a nonempty set included in the region Zk+2, which is the region whose
points p′ have rank-1 preimages p1 = T−1

1 (p′) ∈ U1 and p2 = T−1
2 (p′) ∈ U2. This

means that two points p1 ∈ U1 and p2 ∈ U2, located at opposite sides with respect to
1This terminology, and notation, originates from the notion of critical points as it is used in
the classical works of Julia and Fatou.
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ĈS−1, are mapped in the same side with respect to ĈS, in the region Zk+2. This is also
expressed by saying that the ball U is “folded” by T along CS on the side with more
preimages (see Figure 1, obtained by the noninvertible map (2.11)). The same concept
can be equivalently expressed by stressing the “unfolding” action of T−1, obtained by
the application of the two distinct inverses in Zk+2 which merge along CS. Indeed, if
we consider a ball V ⊂ Zk+2, then the set of its rank-1 preimages T−1

1 (V ) and T−1
2 (V )

is made up of two balls T−1
1 (V ) ∈ R1 and T−1

2 (V ) ∈ R2. These balls are disjoint if
V ∩ ĈS = ∅ (Figure 1b).

It is worth to notice that in the case of piecewise differentiable maps the set of points
where the map is not differentiable may belong to CS−1, i.e. the images by T of such
points may separate regions characterized by a different number of rank-1 preimages (see
e.g. Mira, 1987). For example, in one-dimensional continuous piecewise differentiable
maps critical points may be located at the kinks where local maxima and minima are
formed by two branches that join with slopes of opposite sign, such as the well known
tent map or other piecewise linear maps. Moreover, piecewise continuous maps may have
points of CS−1 at the discontinuities and, differently from the case of continuous maps,
the corresponding portions of CS may separate regions that differ by an odd number of
preimages (see again Mira, 1987). In any case, the importance of the set CS lies in the
fact that its points separate regions Zk characterized by different number of preimages2.

Figure 1.

2.1 Some examples in dimension one and two

As a first illustration, we consider a one-dimensional quadratic map, the logistic map
(Figure 2a)

x′ = f(x) = µx(1− x). (2.7)

2This property may also be shared by points where some inverses are not defined due to a
vanishing denominator, as shown in Bischi et al., 1999b, 2003c.
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This map has a unique critical point c = µ/4, which separates the real line into the two
subsets: Z0 = (c,+∞), where no inverses are defined, and Z2 = (−∞, c), whose points
have two rank-1 preimages. These preimages can be computed by the two inverses

x1 = f−1
1 (x′) =

1
2
−
√

µ (µ− 4x′)
2µ

; x2 = f−1
2 (x′) =

1
2

+

√
µ (µ− 4x′)

2µ
. (2.8)

If x′ ∈ Z2, its two rank-1 preimages, computed according to (2.8), are located sym-
metrically with respect to the point c−1 = 1/2 = f−1

1 (µ/4) = f−1
2 (µ/4). Hence, c−1

is the point where the two merging preimages of c are located. As the map (2.7) is
differentiable, at c−1 the first derivative vanishes3.

Figure 2.

In order to explain the geometric action of a critical point in a continuous map, let us
consider again the logistic map and notice that as x moves from 0 to 1 the corresponding
image f(x) spans the interval [0, c] twice, the critical point c being the turning point. In
other words, if we consider how the segment γ = [0, 1] is transformed by the map f we
can say that it is folded and pleated to obtain the image γ′ = [0, c]. Such folding gives
3We remark that in general the condition of vanishing derivative is not sufficient to define c−1,
since such condition may be also satisfied by points which are not local extrema (e.g. the
inflection points with horizontal tangent).
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a geometric reason why two distinct points of γ, say x1 and x2, located symmetrically
with respect to the point c−1 = 1/2, are mapped into the same point x′ ∈ γ′ (see Figure
2b). The same arguments can be explained by looking at the two inverse mappings f−1

1

and f−1
2 defined in (−∞, µ/4] according to (2.8). We can consider the range of the map

f formed by the superposition of two half-lines (−∞, µ/4], joined at the critical point
c = µ/4 (Figure 2c), and on each of these half-lines a different inverse is defined. In other
words, instead of saying that two distinct maps are defined on the same half-line we say
that the range is formed by two distinct half lines on each of which a unique inverse
map is defined. This point of view gives a geometric visualization of the definition of
the critical point c as the point in which two distinct inverses merge. The action of the
inverses, say f−1 = f−1

1 ∪ f−1
2 , causes an unfolding of the range by mapping c into c−1

and by opening the two half-lines one on the right and one on the left of c−1, so that the
whole real line R is covered. So, the map f folds the real line, the two inverses unfold it
(see Figure 2).

Another interpretation of the folding action of the unimodal map f is the following.
Since f(x) is increasing for x ∈ [0, 1/2) and decreasing for x ∈ (1/2, 1], its application to
a segment γ1 ⊂ [0, 1/2) is orientation preserving, whereas its application to a segment
γ2 ⊂ (1/2, 1] is orientation reversing. This suggests that an application of f to a segment
γ3 = [a, b] including the point c−1 = 1/2 preserves the orientation of the portion [a, c−1],
i.e. f([a, c−1]) = [f(a), c], whereas it reverses the portion [c−1, b], i.e. f([c−1, b]) =
[f(b), c], so that γ

′

3 = f (γ3) is folded.
Let us now consider the case of a continuous two-dimensional map T : S → S, S ⊆ R2,

defined by

T :
{

x′1 = T1(x1, x2)
x′2 = T2(x1, x2) ,

(2.9)

If we solve the system of the two equations (2.9) with respect to the unknowns x1 and x2,
then, for a given (x′1, x

′
2), we may have several solutions, representing rank-1 preimages

(or backward iterates) of (x′1, x
′
2), say (x1, x2) = T−1 (x′1, x

′
2), where T−1 is in general a

multivalued relation.
In this case we say that T is noninvertible and the critical set, formed by critical

curves LC (from the French “Ligne Critique”), constitutes the set of boundaries that
separate regions of the plane characterized by a different number of rank-1 preimages.
Along LC at least two inverses give merging preimages, located on the set denoted by
LC−1 , following the notations of Gumowski and Mira, 1980, Mira et al., 1996.

For a continuous and (at least piecewise) differentiable noninvertible map of the plane,
the set LC−1 is included in the set where the Jacobian determinant det DT (x1, x2)
changes sign, since T is locally an orientation preserving map near points (x1, x2) such
that detDT (x1, x2) > 0 and orientation reversing if det DT (x1, x2) < 0. Of course,
LC = T (LC−1).

In order to understand this point, let us recall that when an affine transformation
x′ = Ax+b, where A = {aij} is a 2 × 2 matrix and b∈R2, is applied to a figure of the
plane, then the area of the transformed figure grows, or shrinks, by a factor ρ = |detA|,
and if det A > 0 then the orientation of the figure is preserved, whereas if det A < 0 then
the orientation is reversed. This property also holds for the linear approximation of (2.9)
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in a neighborhood of a point p = (x1, x2), given by an affine map with A = DT , DT
being the Jacobian matrix evaluated at the point p

DT (p) =
[

∂T1/∂x1 ∂T1/∂x2

∂T2/∂x1 ∂T2/∂x2

]
(2.10)

A qualitative visualization is given in Figure 3a.

Figure 3.

In order to give a geometrical interpretation of the action of a multi-valued inverse re-
lation T−1, it is useful to consider a region Zk as the superposition of k sheets, each
associated with a different inverse. Such a representation is known as Riemann foliation
of the plane (see Mira et al., 1996). Different sheets are connected by folds, and the pro-
jections of such folds on the phase plane are arcs of LC. This is shown in the qualitative
sketch of Figure 3b, where the case of a Z0 − Z2 noninvertible map is considered. This
graphical representation of the unfolding action of the inverses gives an intuitive idea of
the mechanism which causes the creation of nonconnected basins for noninvertible maps
of the plane.

To give an example, let us again consider a quadratic map T : (x, y) → (x′, y′),
extensively studied in Mira et al., 1996, and Abraham et al., 1997, defined by

T :
{

x′ = ax + y
y′ = b + x2 (2.11)
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Given x′ and y′, if we try to solve the algebraic system with respect to the unknowns x
and y we get two solutions, given by

T−1
1 :

x = −
√

y′ − b
y = x′ + a

√
y′ − b

; T−1
2 :

x =
√

y′ − b
y = x′ − a

√
y′ − b

(2.12)

if y′ ≥ b, and no solutions if y′ < b. So, (2.11) is a Z0 − Z2 noninvertible map, where
Z0 (region whose points have no preimages) is the half plane Z0 = {(x, y) |y < b} and
Z2 (region whose points have two distinct rank-1 preimages) is the half plane Z2 =
{(x, y) |y > b}. The line y = b, which separates these two regions, is LC, and the locus
LC−1 of points having two merging rank-1 preimages is located on the line x = 0 (see
Figure 1). Being (2.11) a continuously differentiable map, the points of LC−1 necessarily
belong to the set of points at which the Jacobian determinant vanishes, i.e. LC−1 ⊆ J0,
where J0 = {(x, y) |det DT (x, y) = −2x = 0}. In this case LC−1 coincides with J0 (the
vertical axis x = 0) and the critical curve LC is the image by T of LC−1, i.e. LC =
T (LC−1) = T ({x = 0}) = {(x, y) |y = b}.

As stressed above, a study of the basins of attraction of a map T requires a global
analysis of the properties of its inverses. In particular, if T is a noninvertible map,
complicated topological structures of the basins, such as nonconnected sets (i.e. formed
by many disjoint portions) and/or sets with fractal boundaries, are often observed4.

The route to more and more complex basin boundaries, as some parameter is varied,
is characterized by global bifurcations, also called contact bifurcations, due to contacts
between the critical set and the basins’ boundaries. Some particular examples in di-
mension one and two will be given below. However, the origin of complex topological
structures of the basins, like those formed by nonconnected sets, can be heuristically ex-
plained on the basis of the geometrical properties of a noninvertible map. For example,
suppose that p is a fixed point of T . Since T (p) = p, one of the preimages of p is p itself,
but if T−1 is multivalued. in p, i.e. p ∈ Zk with k ≥ 2, then other preimages of the fixed
point p exist. If the fixed point is stable, and U(p) is a neighborhood of p that belongs to
its basin of attraction, then the basin of p must also include all the rank-1 preimages of
the points of U(p), which may be disjoint from U(p), due to the unfolding action of the
inverses defined in U(p) (see Figure 3b). Moreover, if also such disjoint preimages belong
to regions where some inverses exist, higher rank preimages of U(p) belong to the basin
of p, and so on. This may give rise to a so called “arborescent sequence” of (countable)
infinitely many nonconnected portions of the basin.

Hence if a parameter variation causes a crossing between a basin boundary and a
critical set which separates different regions Zk, so that a portion of a basin enters
a region where an higher number of inverses is defined, then new components of the
basin may suddenly appear at the contact. This is the basic mechanism which causes
the creation of more and more complex structures of the basins, as we shall see in the
examples given in the following sections.

4For the map (2.11) several studies and graphical representations of the basins and their quali-
tative changes are given in Mira et al., 1994, Mira and Rauzy, 1995, Mira et al., 1996, Abraham
et al., 1997.
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3 Basin boundaries and contact bifurcations in one-dimensional
noninvertible maps

In this section, we consider continuous one-dimensional maps. Before describing the
contact bifurcations, let us take a look at iterated invertible maps. If f : I → I is a
continuous and increasing function, then the only invariant sets are the fixed points.
When many fixed points exist, say x∗1 < x∗2 < ... < x∗k, they are alternatively stable and
unstable: the unstable fixed points are the boundaries that separate the basins of the
stable ones (see Figure 4a). Starting from an initial condition where the graph of f is
above the diagonal, i.e. f(x0) > x0, the generated trajectory is an increasing sequence
converging to the stable fixed point on the right. Starting from an initial condition such
that f(x0) < x0, the trajectory is a decreasing sequence converging to the fixed point on
the left (see Figure 4a, where p∗ is a stable fixed point, and its basin is bounded by two
unstable fixed points q∗ and r∗, with q∗ < p∗ < r∗). If f : I → I is a continuous and
decreasing map, the only possible invariant sets are one fixed point and cycles of period
2. In fact f2 can only have fixed points (since f2 = f ◦ f is an increasing map), that
include the fixed points of f and periodic points of period 2 of f . The periodic points of
the 2-cycles must be located at opposite sides with respect to the unique fixed point, the
unstable ones being boundaries of the basins of the stable ones (see Figure 4b, where a
stable fixed point x∗ exists, and its basin is bounded by the periodic points α1, α2 of an
unstable cycle of period 2). If the fixed point x∗ is stable and no cycles exist, then x∗ is
globally stable.

So, if the map is invertible, the basins of the attracting sets have always quite simple
structures: for stable fixed points they are formed by a unique open interval that includes
the fixed point, for stable two cycles they are formed by two open intervals each one
including one periodic point. In general, this is not true if the map is noninvertible. In
fact, in this case nonconnected portions of the basins may exist, given by open intervals
that do not include any point of the related attractor.

As a first example, let us consider the logistic map (2.7), that is, as we showed, a
noninvertible Z0 − Z2 map whose graph is represented again in Figure 5. For µ < 4
every initial condition x0 ∈ (0, 1) generates bounded sequences, converging to a unique
attractor A5, whereas initial conditions out of the interval [0, 1] generate sequences di-
verging to (minus) infinity. The boundary that separates the basin of the attractor A,
B (A), from the basin of diverging trajectories, B (∞) - marked by bold lines in Figure
5a - , is formed by the unstable fixed point q∗ = 0 and its rank-1 preimage (different
from itself), q∗−1 = 1. Observe that, of course, a fixed point is always preimage of itself,
but in this case also another preimage exists because q∗ ∈ Z2. If µ < 4, like in Figure 5a,
q∗−1 > c = µ/4, where c is the critical point (maximum) that separates Z0 and Z2. Hence,
q∗−1 ∈ Z0, and consequently no preimages of higher order exist. If we increase µ, at µ = 4
we have q∗−1 = c = 1, and a contact between the critical point and the basin boundary
occurs. This is a global bifurcation, which changes the structure of the basin. For µ > 4,
we have q∗−1 < c, and the portion

(
q∗−1, c

)
of B (∞) enters Z2. This implies that new

5The attractor A may be the fixed point x∗ = (µ− 1) /µ or a more complex attractor, periodic
or chaotic, located around x∗, see Devaney, 1987.
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Figure 4.

preimages of that portion are created, which belong to B (∞) according to (2.4). The
two rank-1 preimages of

(
q∗−1, c

)
are located in a neighborhood I0 of the critical point

c−1 = 1/2, as shown in Figure 5b. Points of I0 exit the interval (0, 1) after one iteration,
thus giving unbounded sequences. As I0 ∈ Z2, it also has two rank-1 preimages, that
are rank-2 preimages of

(
q∗−1, c

)
. These preimages are given by the two smaller intervals

denoted by I
(1)
−1 and I

(2)
−1 in Figure 5b, and are located symmetrically with respect to

c−1 = 1/2. Points belonging to I
(1)
−1 and I

(2)
−1 exit the interval (0, 1) after two iterations of

(2.7). Even these two smaller – nonconnected – portions of B (∞) are in Z2. Hence, each
of them has two preimages, which again result in nonconnected portions of B (∞). Ob-
viously, this process gives rise to a infinite sequence of preimages whose points generate
unbounded sequences. So, after the contact between the critical point c and the basin
boundary q∗−1, infinitely many nonconnected portions of B (∞) are created inside (0, 1)
(only a few of them are shown in Figure 5b). The union of all these preimages is an open
set whose closure is [0, 1]. Its complement in [0, 1] has zero Lebesgue measure and is a
Cantor set (see Guckenheimer and Holmes, 1983, Devaney, 1987). After this bifurcation
the attractor at finite distance no longer exists, and the generic trajectory is divergent.
This global bifurcation is called final bifurcation in Mira et al., 1996 or in Abraham et
al., 1997, and boundary crisis in Grebogi et al., 1983.

A similar situation occurs for a unimodal Z0−Z2 map where the attractor at infinity

12



Figure 5.

is replaced by an attracting fixed point, like the one shown in Figure 6. As in the
previous example, we have an attractor A, which may be the fixed point x∗ (or some
other invariant set around it), with a simply connected basin bounded by the unstable
fixed point q∗ and its rank-1 preimage q∗−1. Note that in this case, differently from the
previous one, initial conditions taken in the complementary of B (x∗) generate trajectories
converging to the stable fixed point z∗. This means that the basin B (z∗) is formed by the
union of two nonconnected portions: B0 = (−∞, q∗) ⊂ Z2, a connected set containing
z∗ called immediate basin, and B1 =

(
q∗−1,+∞

)
= f−1 (B0) ⊂ Z0. In Figure 6 the two

nonconnected portions of the basin B (z∗) are marked by bold lines. Now suppose that
some parameter variation makes the critical point c (maximum value) increase until it
crosses the basin boundary q∗−1. Then the interval (q∗−1, c), which is part of B1, enters
Z2, and infinitely many nonconnected portions of B (z∗) emerge in the interval (q∗, q∗−1).
Note that the total basin can still be expressed as the union of all the preimages of any
rank of the immediate basin B0, and the boundary ∂B (z∗) is the set of infinitely many
preimages of any rank of q∗.

Changing the right branch of the map depicted in Figure 6 by folding it upwards,
another critical point (a minimum) is created (Figure 7). This map is now a Z1−Z3−Z1

noninvertible map, where Z3 is the portion of the codomain bounded by the relative
minimum value cmin and relative maximum value cmax. In the Figure 7a we have three
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Figure 6.

attractors: the fixed point z∗, with B (z∗) = (−∞, q∗), the attractor A around x∗, with
basin B (A) = (q∗, r∗) bounded by two unstable fixed points, and +∞ (i.e. positively
diverging trajectories) with basin B (+∞) = (r∗,+∞). In this case all the basins are
immediate, each given by an open interval. Both basin boundaries q∗ and r∗ are in Z1,
so they are the only preimages of themselves (like for an invertible map). However, the
situation drastically changes if the minimum value cmin moves downwards below q∗ (as
in Figure 7b). After the global bifurcation, when cmin = q∗, the portion (cmin, q∗) enters
Z3, so new preimages f−k (cmin, q∗) appear with k ≥ 1. These preimages constitute
an infinite (countable) set of nonconnected portions (or holes) of B (z∗) nested inside
B (A), represented by the thick portions of the diagonal in Figure 7b, bounded by the
infinitely many preimages of any rank, say q∗−k, k ∈ N, of q∗, that accumulate in a left
neighborhood of the fixed point r∗. In fact, as r∗ is a repelling fixed point for the forward
iteration of f , it is an attracting fixed point for the backward iteration of the same map.

To conclude, we stress that in the context of noninvertible maps it is useful to
define the immediate basin B0(A), of an attracting set A, as the widest connected
component of the basin which contains A. Then the total basin can be expressed as
B (A) =

⋃∞
n=0 T−n(B0(A)).
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Figure 7.

The previous example shows that a contact between a critical point and a basin
boundary marks the transition from simple connected to nonconnected basins: infinitely
many nonconnected portions are suddenly created, given by the preimages of any rank
of the portion H0 of B (z∗) included into Z3, say H−i = T−i(H0), i = 1, 2, ....

Several examples where the multiplicity of preimages leads to basins with complex
structures are given on Mira et al., 1994, Mira and Rauzy, 1995, Mira et al., 1996, chap.
5, Abraham et al., 1997, Bischi et al., 2003a,b6, Bischi et al., 2004).

To conclude this section, we briefly describe a unimodal map, i.e. a map with a unique
critical point c which separates Z0 from Z2, with two inflection points, like in the graphs
shown in Figure 8 (this example is taken from Gumowski and Mira, 1980).

This map has four fixed points, q < s < r < p, with q and r unstable and s stable.
The fixed point p belongs to the trapping interval R = [r, r−1] and the restriction of
the map to R behaves like a logistic map. In Figure 8 three attractors are present:
the infinity, the stable fixed point s and the attractor I included inside the absorbing

6Where an evolutionary game is studied, described by the map

x (t + 1) = x(t) + x(t)(1− x(t))
2

π
arctan

[
λπ

2

(
A−B (x1,t + 1)− C

1 + βx1,t

)]
whose graph is very similar to the one shown in fig. 7.
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interval R, which may be the fixed point p, a cycle around it or a chaotic attractor. The
respective basins are:

B (∞) = (−∞, q) ∪ (q−1,+∞) B (s) = (q, r) ∪ (r−1, q−1) ; B (I) = (r, r−1) ;

If the critical point c moves upwards as a parameter is varied, when c = r−1 the final
bifurcation (or boundary crisis) of the invariant interval R occurs, and for c > r−1

the interval R is no longer invariant because the portion (r−1, c) of B (s) enters R, as
well as its infinitely many preimages. In fact, after this contact, the segment (r−1, c)
of B (s) belongs to Z2 and infinitely many “holes” of B (s) are created inside R, given
by the preimages of any rank of (r−1, c). Inside R only a chaotic repellor, given by a
zero-measure Cantor set Λ, survives, and the generic trajectory with initial condition
x0 ∈ (q, q−1) tends to the fixed point s. Thus, after the contact bifurcation, the basin
B (s) has a fractal boundary because besides the outer boundary, given by the points
q and q−1 which separate it from B (∞), also the points of Λ belong to the boundary
of B (s). As c further increases, another global bifurcation occurs when c = q−1. After
this bifurcation the portion (q−1, c) of B (∞) enters Z2 and infinitely many preimages
of it enter inside R. These constitute a set of infinitely many holes of B (∞) nested
inside B (s). At this stage, two sets of positive measure, made up of infinitely many
disjoint subsets of B (∞) and B (s), are nested inside R: In fact, both (q−1, c) ∈ B (∞)
and (r−1, q−1) ∈ B (s) are inside Z2 and have infinitely many preimages inside R. The
boundary which separates B (s) and B (∞) inside R is the chaotic repeller Λ (see Mira
et al., 1996 for a more detailed discussion of this example). The above discussion has
only been based on qualitative consideration related to a graph, without any analytic
representation of the function. The simplest map whose graph has a shape similar to the
one shown in Figure 8 is a quartic map (i.e. a polynomial of degree 4) which has only a
critical point (i.e. f ′(x) is a cubic polynomial with only one real root) and two inflection
points (i.e. f ′′(x) is a quadratic polynomial with two real roots). An example of a map
having such properties is x′ = f(x) = x (1− x)

(
µx2 + (4− µ)x + 3

)
. As µ is increased,

all the situations described above are obtained (an exercise left to the reader).

4 Basin boundaries and their bifurcations in two-dimensional
noninvertible maps

As shown for one dimensional maps, even for higher dimensional maps the global bifur-
cations that lead to basins formed by nonconnected sets can be explained in terms of
contacts between basins boundaries and critical sets. We now consider some examples,
taken from recent models of economic dynamics, where two-dimensional iterated maps
are used to describe the interaction among economic agents. In these examples we stress
that the route to more and more complex basin boundaries, as some parameter is varied,
is characterized by global bifurcations due to contacts between critical curves and the
invariant sets that constitute the basins’ boundaries in two-dimensional maps, such as
the stable sets of saddle points or cycles, or unstable closed invariant orbits.
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Figure 8.

For two-dimensional maps, such kinds of bifurcations can be very rarely studied by
analytical methods, since the analytical equation of a singularity is not known in general.
Hence the analysis is mainly performed by geometrical and numerical methods.

4.1 A Cournot duopoly game with best reply, naive expectations and
adaptive behavior

We consider a Cournot duopoly game where at each time period t two firms decide
their next period productions on the basis of best reply functions expressed as qi(t+1) =
ri(qj (t)), i, j = 1, 2, i 6= j. We assume that competitors exhibit some kind of inertia,
adjusting their previous production quantities in the direction of the Best Response,
according to the following adjustment mechanism

q1(t + 1) = q1(t) + λ1 (r1(q2(t))− q1(t))
q2(t + 1) = q2(t) + λ2 (r2(q1(t))− q2(t))

(4.1)

where the parameters λi ∈ [0, 1], i = 1, 2, represent the speeds of adjustment. Following
Kopel, 1996, we assume in (4.1) reaction functions in the form of logistic maps ri(qj) =
µiqj (1− qj), so that the time evolution of the game is obtained by the iteration of the
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two-dimensional map T : (q1, q2) → (q′1, q
′
2) defined by

T :

{
q′1 = T1(q1, q2) = (1− λ1) q1 + λ1µ1q2 (1− q2)

q′2 = T2(q1, q2) = (1− λ2) q2 + λ2µ2q1 (1− q1)
. (4.2)

The fixed points of map (4.2), located at the intersections of the two reaction curves,
coincide with the Nash equilibria of the duopoly game (see again Kopel, 1996). If we
assume that µ1 = µ2 = µ, the fixed points can be expressed by simple analytical ex-
pressions: besides O = (0, 0) we have S =

(
1− 1

µ , 1− 1
µ

)
, that for µ > 1 represents a

symmetric Nash equilibrium, since it is characterized by identical quantities of the two
firms. Two further Nash equilibria, given by

E1 =

(
µ + 1 +

√
(µ + 1) (µ− 3)
2µ

,
µ + 1−

√
(µ + 1) (µ− 3)
2µ

)
(4.3)

and

E2 =

(
µ + 1−

√
(µ + 1) (µ− 3)
2µ

,
µ + 1 +

√
(µ + 1) (µ− 3)
2µ

)
, (4.4)

are created at µ = 3. For µ > 3 they are located in symmetric positions with respect
to the diagonal ∆ of equation q1 = q2. Each of them represents a nonsymmetric Nash
equilibrium: In E1 firm 1 produces more than firm 2 in exactly the same way as firm
2 produces more than firm 1 in E2. A study of the local stability of the equilibria
reveals that O is stable for µ < 1, S is stable for 1 < µ < 3 and for µ > 3 a range
of parameters µ, λ1, λ2 exists such that S is a saddle point and Ei, i = 1, 2, are both
stable. Moreover, the map (4.2) can generate diverging trajectories, that is, an attractor
at infinite distance exists (see Bischi and Kopel, 2001). This naturally leads to the
question of the delimitation of the basins of attraction. Numerically computed basins of
attraction are shown in Figures 10 and 11, where the dark grey region represents B (∞),
and the complementary set is subdivided into the basins of the stable Nash equilibria E1

and E2, represented by white and light grey regions respectively. These Figures show
that the structure of the basins may be quite different as the values of the parameters
vary, and we try to understand the basic mechanisms that cause such qualitative changes.

As argued in the previous sections, a study of the inverses of the map become im-
portant in order to understand the structure of the basins and their qualitative changes.
Indeed, the map (4.2) is a noninvertible map, because given a point q′ = (q′1, q

′
2) ∈ R2

its rank-1 preimages T−1 (q′) may be more than one, i.e., T−1 is a multivalued relation.
Such preimages can be computed by solving the following algebraic system obtained from
(4.2) with respect to the quantities q1 and q2:{

(1− λ1)q1 + λ1µ2q2(1− q2) = q′1
(1− λ2)q2 + λ2µ1q1(1− q1) = q′2

(4.5)

This is a fourth degree algebraic system, which may have four, two or no real solutions.
According to the number of distinct rank-1 preimages associated with each point of R2,
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Figure 9.

the plane can be subdivided into regions, denoted by Zk, k = 0, 2, 4, whose points have
k distinct preimages, hence the map (4.2) is a noninvertible map of Z0 − Z2 − Z4 type.

Being (4.2) a continuously differentiable map, the set LC−1 belongs to the set of
points in which the Jacobian determinant vanishes, which can be computed by solving
the equation (

q1 −
1
2

)(
q2 −

1
2

)
=

(1− λ1) (1− λ2)
4λ1λ2µ1µ2

(4.6)

This equation represents an equilateral hyperbola, whose two branches are denoted by
LC

(a)
−1 and LC

(b)
−1 in Figure 9a. It follows that also LC = T (LC−1) is the union of two

branches, say LC(a) = T (LC
(a)
−1 ) and LC(b) = T (LC

(b)
−1). LC(a) separates the region Z0,

whose points have no preimages, from the region Z2, whose points have two distinct rank-
1 preimages. LC(b) separates the region Z2 from Z4, whose points have four distinct
preimages (see Figure 9b). Notice that any point of LC(a) has two coincident rank-
1 preimages which are located at a point of LC

(a)
−1 , and any point of LC(b) has two

coincident rank-1 preimages which are located at a point of LC
(b)
−1 plus two further

distinct rank-1 preimages, called extra preimages (see e.g. Mira et al. 1996). The
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Riemann foliation associated with the map (4.2) is qualitatively represented in Figure
9c. It can be noticed that a cusp point of LC exists, denoted by K, characterized by
three merging preimages at the junction of two folds.

The first task in order to gain some insight into the robustness of the model is the
delimitation of the boundary that separates the basin of infinity, B (∞), from the set of
points that generate bounded (hence economically meaningful) trajectories, denoted by

B = R2 \ B (∞) (4.7)

where B (∞) = B (∞) ∪ ∂B (∞) is the closure of B (∞). The boundary ∂B = ∂B(∞)
behaves as a repelling set for the points near it, since it acts like a watershed for the
trajectories of the map T . From (2.5) it follows that if an unstable fixed point or cycle
belongs to ∂B then ∂B must also contain all of its preimages of any rank. Moreover, if
a saddle-point, or a saddle-cycle, belongs to ∂B, then ∂B must also contain the whole
stable set (see Gumowski and Mira 1980, Mira et al. 1996). Let us first consider the
case λ1 = λ2 = λ . For µ > 1 and 0 < λ < 2/ (µ + 1) the fixed point O is a saddle
(see Bischi and Kopel, 2001) with unstable set Wu (O) reaching S along the diagonal
∆ and local stable set W s

loc(O) crossing through O perpendicular to ∆. The stable set
W s

loc(O) ⊆ ∂B. In fact, if we consider a neighborhood of O, W s
loc(O) is a separatrix

between the trajectories which converge to a bounded attractor (generated by the points
above W s

loc(O)) and those which diverge to −∞ (generated by the points below W s
loc(O),

see Figure 10a). The boundary ∂B is given by the whole stable set W s(O), obtained by
taking the preimages of any rank of W s

loc(O)

∂B = W s(O) =
⋃
k≥0

T−k (W s
loc(O))

In the symmetric case of homogeneous players, i.e. µ1 = µ2 = µ and λ1 = λ2 = λ, the
preimages of O can be analytically computed, and their coordinates allow us to obtain a
rough estimate of the extension of B. Indeed, the diagonal ∆ is a trapping submanifold
for the map T , i.e., T (∆) ⊆ ∆7. The trajectories, embedded into the one-dimensional
submanifold ∆, are governed by the restriction of the two-dimensional map T to ∆,
f = T |∆ : ∆ → ∆, where the map f , which is obtained by setting q1 = q2 = q and
q′1 = q′2 = q′ in (4.2), is given by

q′ = f(q) = (1 + λ (µ− 1)) q − λµq2 (4.8)

So, if O ∈ Z2 (like in Figure 10a) its two rank-1 preimages are O itself (being O a fixed
point) and

O
(1)
−1 =

(
1 + λ (µ− 1)

λµ
,
1 + λ (µ− 1)

λµ

)
∈ ∆. (4.9)

that can be computed by solving the equation (4.8) with q′ = 0. The condition O ∈ Z2

can be analytically determined because in the case of homogeneous players also the cusp
7This means nothing more than if two firms start with equal quantities q1(0) = q2(0) and
behave identically, then their choices will be the same for each future time period.
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point K of LC−1 belongs to the diagonal ∆, and its coordinates can be analytically
computed (see Bischi and Kopel, 2001):

K = LC(b) ∩∆ = (k, k) with k =
(λ (µ + 1)− 1) (λµ + 3(1− λ))

4λµ
(4.10)

If 0 < λ < 1/ (µ + 1) then O ∈ Z2, otherwise O ∈ Z4, i.e., it has four rank-1 preimages
(see Figure 10b). In this case, two of them, O and O

(1)
−1, belong to ∆, and the other two,

say O
(2)
−1 and O

(3)
−1, are located in symmetric positions with respect to ∆ and belong to

the line ∆−1, of equation q1 + q2 = 1+ 1
µ

(
1− 1

λ

)
. Indeed, the preimages of the points of

∆ are located on ∆ or on ∆−1, as it can be seen by setting q′1 = q′2 in (4.5) and adding
or subtracting the two symmetric equations. In particular, with q′1 = q′2 = 0 we get the
solution

O
(2)
−1 = (

λ (µ + 1)− 1 +
√

λ2µ2 + 2λµ (1− λ)− 3 (λ2 + 1) + 6λ

2λµ
, (4.11)

λ (µ + 1)− 1−
√

λ2µ2 + 2λµ (1− λ)− 3 (λ2 + 1) + 6λ

2λµ
)

and the symmetric solution O
(3)
−1 is obtained from O

(2)
−1 by swapping the two coordinates.

So, if 0 < λ < 1/ (µ + 1), the stable set W s(O) consists of two smooth arcs connecting
O and O

(1)
−1, symmetric with respect to ∆, as in Figure 10a. If λ > 1/ (µ + 1) then W s(O)

has a similar shape, with the symmetric arcs connecting O and O
(1)
−1 which pass through

the points O
(2)
−1 and O

(3)
−1, as shown in Figure 10b, obtained for µ = 3.4 and λ = 0.5.

It is also important to notice that even after the bifurcation occurring at λ (µ + 1) = 2,
when O is transformed from a saddle point into an unstable node with the simultaneous
creation of a saddle cycle C2 of period 2, the boundary ∂B remains practically the same.
In fact, in this case ∂B =W s(C2), which continues to include O and its preimages of any
rank.

The “size” of the basin B of bounded trajectories, as well as the influence of parameters
λ and µ on it, can be estimated knowing the coordinates of O and O

(1)
−1. In fact, in the

case of homogeneous behavior, the length of the segment OO
(1)
−1, given by l(OO

(1)
−1) =√

2 [1 + λ (µ− 1)] /λµ is a decreasing function of both parameters λ and µ, and it goes
to infinity as λ → 0+, i.e. the basin of bounded trajectories tends to include the whole
diagonal in such a limiting case. It is also interesting to note that in the other limiting
case, λ → 1−, we get O

(1)
−1 → (1, 1), O

(2)
−1 → (1, 0), O

(3)
−1 → (0, 1). Hence in the case of

instantaneous adjustment (λ = 1), the basin of the bounded trajectories becomes the
square (0, 1)× (0, 1). This result also holds for µ1 6= µ2, as proved in Bischi et al., 2000b.

Many of the arguments given above continue to hold in the case of different speeds
of adjustment λ1 6= λ2. However, a simple analytical expression of the preimages of
O cannot be obtained, since in this case they are given by the solution of the fourth
degree nonsymmetric algebraic system (4.5). The diagonal ∆ is no longer invariant and
the basins are no longer symmetric with respect to ∆.
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Let us move now to the problem of the delimitation of the basins B (E1) and B (E2)
of the two stable equilibria E1 and E2 respectively. The boundary of each of these two
basins is formed by an “outer portion”, which separates them from B (∞), and an “inner
portion”, separating B (E1) and B (E2), which contains the saddle point S as well as its
whole stable set W s(S). In fact, just after the pitchfork bifurcation, occurring at µ = 3,
at which the two stable fixed points E1 and E2 are created, the symmetric equilibrium
S ∈ ∆ is a saddle, provided that 0 < λ < 2

µ−1 , and the two branches of unstable set
Wu(S) departing from it reach the two stable nodes E1 and E2. Hence the local stable set
W s

loc(S) belongs to the boundary that separates the two basins, as well as its preimages
of any rank:

W s(S) =
⋃
k≥0

T−k (W s
loc(S)) = ∂B (E1) ∩ ∂B (E2) (4.12)

Also in this case, in order to study the shape of W s(S), and the global bifurcations which
change its structure, we first consider the symmetric case of homogeneous players. In
this case, because of the symmetry of the map (4.2), the local stable set of S belongs to
the invariant diagonal ∆. Indeed, as far as λ (µ + 1) < 1 the whole stable set belongs to
∆ and is given by W s(S) = OO

(1)
−1, where O

(1)
−1 is given in (4.9) and OO

(1)
−1 is the segment

joining O with O
(1)
−1. In fact, as argued above, if λ (µ + 1) < 1 then the cusp point K of

the critical curve LC(b) has negative coordinates and, consequently, the whole segment
OO

(1)
−1 belongs to the region Z2. This implies that the two preimages of any point of OO

(1)
−1

belong to ∆, and can be computed by the restriction (4.8). This proves that the segment
OO

(1)
−1 is backward invariant, i.e., T

(
OO

(1)
−1

)
= OO

(1)
−1. In this case, the structure of the

basins B (Ei), i = 1, 2, is very simple: B (E1) is the portion of B below the diagonal ∆
and B (E2) is the portion of B above it. This situation is shown in Figure 10a. The line
∆ of equal quantities is the only boundary between the two basins, hence any bounded
trajectory starting with q1(0) > q2(0) converges to the Nash equilibrium E1 and any
bounded trajectory starting with q1(0) < q2(0) converges to the Nash equilibrium E2. In
economic terms this means that an initial difference in the quantities uniquely determines
which of the equilibria is selected in the long run. If player 1 offers a larger quantity than
player 2, then E1 is selected, and vice-versa. Moreover, if q1(0) > q2(0) (q1(0) < q2(0))
then q1(t) > q2(t) (q1(t) < q2(t)) for any t, i.e. any initial order of the quantities of
the two players is maintained during the whole time evolution of the duopoly game. In
particular, both of the basins B (E1) and B (E2) are simply connected sets8.

Their structure becomes much more complex for λ (µ + 1) > 1. This is shown in
Figure 10b, obtained with µ = 3.4 as in Figure10a, but λ = 0.5 > 1/(µ + 1). In order
to understand the bifurcation occurring at λ (µ + 1) = 1, we consider the critical curves
of the map (4.2). In fact, at λ (µ + 1) = 1 a contact between LC(b) and the fixed point
O occurs, due to the merging between O and the cusp point K. For λ (µ + 1) > 1
the portion KO of the segment OO

(1)
−1 belongs to the region Z4 where four inverses of

T exist. This implies that besides the two rank-1 preimages on ∆ the points of KO

8If condition λ (µ + 1) < 1 holds, this simple structure of the basins is conserved even if Ei are
no longer stable and more complex bounded attractors exist around them.
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Figure 10.

have two further preimages located on the segment O
(2)
−1O

(3)
−1 of the line ∆−1. Since

OO
(1)
−1 = W s

loc(S) ⊂ ∂B (E1) ∩ ∂B (E2), also all the preimages of this segment belong
to the boundary which separates B (E1) from B (E2). Furthermore, also the segment
O

(2)
−1O

(3)
−1 has rank-1 preimages, because portions of it are included in the regions Z2

and Z4. These are preimages of rank-2 of OO
(1)
−1 and, consequently, belong to W s (S)

according to (4.12). This repeated procedure, based on the iteration of the multivalued
inverse of T , leads to the construction of the stable set W s(S) which is formed by the
union of infinitely many arcs which accumulate on the boundary ∂B. In fact the invariant
set ∂B, being a repelling set for the forward iteration of T , behaves as an attracting set
for the iteration of the inverses of T .

The results given above can be summarized by the following proposition:

Proposition. If µ1 = µ2 = µ and λ1 = λ2 = λ, the common boundary ∂B (E1) ∩
∂B (E2) which separates the basin B (E1) from the basin B (E2) is given by the stable set
W s(S) of the saddle point S. If λ (µ + 1) < 1 then W s(S) = OO

(1)
−1, where O = (0, 0)

and O
(1)
−1 is given by (4.9), and the two basins are simply connected sets; if λ (µ + 1) > 1

then the two basins are nonconnected sets, formed by infinitely many simply connected
components.

We would like to emphasize that the bifurcation occurring at λ (µ + 1) = 1 is a global
bifurcation, i.e. it cannot be revealed by a study of the linear approximation of the
dynamical system. The occurrence of such a bifurcation has been characterized by a
contact between the stable set of S and a critical curve, and for this reason has been
called contact bifurcation in Mira et al., 1996.

The occurrence of the bifurcation which transforms the basins from simply con-
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nected to nonconnected causes a loss of predictability about the long-run evolution of
our Cournot game starting from given initial quantities of the two players. In fact, if the
initial quantities are sufficiently far away from a Nash equilibrium, for example near the
boundary ∂B of B, then the presence of the infinitely many components of both basins
causes a sort of sensitivity with respect to these initial conditions. Even a very small
perturbation of the initial condition of the Cournot game may lead to a crossing of the
boundary which separates the two basins and, consequently, results in the convergence
to a different Nash equilibrium.

We now move to the case of heterogeneous players, characterized by λ1 6= λ2. In
this case the local stable set W s

loc(S) is not along the diagonal ∆, because T is no
longer symmetric and, consequently, ∆ is no longer invariant. However, by numerical
investigations, guided by the knowledge of the critical curves, we can analyze the structure
of the basins of the two coexisting stable Nash equilibria and we can characterize the
bifurcations that cause their qualitative changes.

In order to understand how complex basin structures are obtained, we start from a
situation in which W s(S) has a simple shape, like the one shown in Figure 11a, obtained
with µ = 3.6, λ1 = 0.55 and λ2 = 0.7. The introduction of an asymmetry in the adaptive
behavior of the players has a negligible effect on the local stability properties, since the
eigenvalues of the two fixed points are exactly the same and are very close to the ones
obtained in the homogeneous case with the same value for µ and with λ = (λ1 + λ2) /2.
On the other hand, it causes an evident asymmetry of the basins of attraction. As
shown in Figure 11a, when λ2 > λ1 the extension of B (E2) is in general greater than
the extension of B (E1), and the complementary situation is obtained if λ1 and λ2 are
swapped. Furthermore, even in situations characterized by a simple structure of the
basins’ boundaries, like the one shown in Figure 11a where both basins are connected
sets, the statement that the initial order of the quantities is maintained along the whole
trajectory is no longer true. In fact, in the case of different speeds of adjustment, say
λi > λj , the typical occurrence is that the smaller basin B (Ej) is surrounded by points
of B (Ei). Hence, the adjustment dynamic in our Cournot game may lead to convergence
to Ei in the long run, even if players start with quantities which are closer to Ej .

In the situation shown in Figure 11a, the smaller basin B (E1) is a simply connected
set. The basin B (E2) is a multiply connected set, due to the presence of a big “hole”
(or “island”, following Mira et al., 1994) nested inside it, whose points belong to B (E1).
Furthermore, W s(S), i.e. the boundary which separates the two basins, is entirely in-
cluded inside the regions Z2 and Z0. However, the fact that in Figure 11a a portion
of W s(S) is close to LC suggests the occurrence of a global bifurcation. In fact, if the
parameters are changed, so that a contact between W s(S) and LC occurs, this contact
marks a bifurcation which causes qualitative changes in the structure of the basins. If
a portion of B (E1) enters Z4 after a contact with LC(b), new rank-1 preimages of that
portion will appear near LC

(b)
−1, and such preimages must belong to B (E1). Indeed, this

is the situation shown in Figure11b, obtained after a small change of λ1. The portion
of B (E1) inside Z4 is denoted by H0. It has two rank-1 preimages, denoted by H

(1)
−1

and H
(2)
−1 , which are located at opposite sides with respect to LC

(b)
−1 and merge on it (in

fact, by definition, the rank-1 preimages of the arc of LC(b) which bound H0 must merge
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along LC
(b)
−1). The set H−1 = H

(1)
−1 ∪H

(2)
−1 constitutes a nonconnected portion of B (E1).

Moreover, since H−1 belongs to the region Z4, it has four rank-1 preimages, denoted by
H

(j)
−2 , j = 1, ..., 4, which constitute other four “islands” of B (E1) , or “holes” of B (E2).

Points of these “islands” are mapped into H0 in two iterations of the map T . Indeed, in-
finitely many higher rank preimages of H0 exist, thus giving infinitely many smaller and
smaller disjoint “islands” of B (E1). Hence, at the contact between W s (S) = ∂B (E1)
and LC the basin B (E1) is transformed from a simply connected into a nonconnected set,
constituted by infinitely many disjoint components. The larger connected component of
B (E1) which contains E1 is the immediate basin B0 (E1), and the whole basin is given
by the union of the infinitely many preimages of B0 (E1).

Such contact bifurcations can only be revealed numerically, since the equations of the
curves involved in the contact cannot be analytically expressed in terms of elementary
functions. This happens frequently in nonlinear dynamical systems of dimension greater
than one, where the study of global bifurcations is generally obtained through an interplay
between theoretical and numerical methods, and the occurrence of these bifurcations is
shown by computer-assisted proofs, based on the knowledge of the properties of the
critical curves and their graphical representation (see e.g. Mira et al., 1996, for many
examples). This “modus operandi” is typical in the study of the global bifurcations of
nonlinear two-dimensional maps.

Figure 11.

An extension of such methods to the study of higher dimensional noninvertible maps
is not easy in general. Indeed, some non-trivial practical problems arise, related to
the obvious reason that the computer screen is two-dimensional, so the visualization of
objects in a phase spaces of dimension greater than two, and the detection of contacts
among these objects as their shapes change, may become a very difficult task. For
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example, in Agiza et al., 1999, a repeated Cournot game is considered, whose time
evolution is obtained by the iteration of the three-dimensional map T : (q1, q2, q3) →
(q′1, q

′
2, q

′
3)

T :

 q′1 = (1− λ1) q1 + λ1µ1 [q2 (1− q2) + q3 (1− q3)]
q′2 = (1− λ2) q2 + λ2µ2 [q3 (1− q3) + q1 (1− q1)]
q′3 = (1− λ3) q3 + λ3µ3 [q1 (1− q1) + q2 (1− q2)]

(4.13)

which can be seen as the extension of the game illustrated above to the case of three
players. In Agiza et al., 1999, two-dimensional sections are employed in order to visualize
the basins of coexisting attractors, but this method is not useful to detect the contact
bifurcations which cause changes in the structure of the basins. The same game has
been re-examined in Bischi et al., 2001, where enhanced graphical methods have been
used to modulate the opacity of the outer objects in order to visualize objects which
are nested inside them. Moreover, the critical sets, which are now two-dimensional
surfaces embedded in a three-dimensional phase space, have been represented like semi-
transparent veils, so that their contacts with portions of basin boundaries, also given by
two-dimensional surfaces, can be detected.

4.2 A duopoly game with gradient dynamics

In this section we consider a Cournot duopoly game, proposed by Bischi and Lamantia,
2002a, where two firms produce quantities q1 and q2 in a market characterized by a linear
demand function p = a − b(q1 + q2) with nonlinear cost functions Ci = ciqi/(1 + γijqj)
i = 1, 2, j 6= i. At discrete time periods each player decides, given the competitor’s
action, its own production in order to maximize the expected profit

πi(q1, q2) = qi [a− b (q1 + q2)]−
ciqi

1 + γijqj
; i, j = 1, 2, i 6= j (4.14)

From the first order conditions ∂πi/∂qi = 0, we can easily get the reaction functions9

qi = ri(qj) =
1
2b

(
a− bqj −

ci

1 + γijqj

)
. (4.15)

For a given expected production of the competitor, ri represents the “Best Reply” of the
quantity-setting firm i according to its optimization problem. In Bischi and Lamantia,
2002a, it is proved that these two reaction functions have a unique positive intersection,
say E∗, that represents the unique Nash equilibrium of the game.

Although fully rational players are assumed to reach the Nash equilibrium immedi-
ately (in one shot), an important issue in economic literature concerns the outcome of
the game when agents are not fully rational. In Bischi and Lamantia, 2002a, a repeated
Cournot duopoly game is proposed where two boundedly rational players update their
production strategies at discrete time periods by an adjustment mechanism based on
a local estimate of the marginal profit ∂πi/∂qi: At each time period t a firm decides
to increase (decrease) its production for period t + 1 if it perceives positive (negative)
9A simple check of the second derivatives testifies that these solutions indeed represent local
profit maxima, provided that the quantities are non negative.
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marginal profit on the basis of information held at time t, according to the following
dynamic adjustment mechanism (see e.g. Bischi and Naimzada, 2000)

qi(t + 1) = qi(t) + αi(qi(t))
∂πi

∂qi
(q1(t), q2(t)) ; i = 1, 2 (4.16)

where αi(qi) is a positive function which gives the extent of production variation of
ith firm following a given profit signal. A Nash equilibrium, defined by the first order
conditions ∂πi/∂qi = 0, is a stationary point of the dynamical system. We assume
linear functions αi (qi) = viqi, i = 1, 2, since this assumption captures the fact that
relative production variations are proportional to marginal profits, i.e. qi(t+1)−qi(t)

qi(t)
=

vi
∂πi

∂qi
, where vi is a positive speed of adjustment. With these assumptions, together with

the profit functions given in (4.14), we obtain a discrete dynamical system of the form
(q1(t + 1), q2(t + 1)) = T (q1(t), q2(t)), with the map T : R2 → R2 given by

T :

 q′1 = q1 + v1q1

[
a− 2bq1 − bq2 − c1

1+γ12q2

]
q′2 = q2 + v2q2

[
a− 2bq2 − bq1 − c2

1+γ21q1

] (4.17)

Besides the equilibrium point E∗, located at the intersections of the reaction curves
(4.15), the map (4.17) has three boundary equilibria located along the coordinate axes:

E0 = (0, 0), E1 = (
a− c1

2b
, 0), E2 = (0,

a− c2

2b
). (4.18)

The fixed points E1 and E2 can be denoted as monopoly equilibria provided that ci < a,
i = 1, 2. It is worth to note that the coordinate axes qi = 0, i = 1, 2, are invariant
submanifold, i.e. if qi = 0 then q

′

i = 0. This means that starting from an initial
condition on a coordinate axis (monopoly case) the dynamics are trapped into the same
axis for each t, thus giving monopoly dynamics, governed by the restriction of the map T
to that axis. Such a restriction is given by the following one-dimensional map, obtained
from (4.17) with qi = 0

qj = (1 + vj(a− cj))qj − 2bvjq
2
j j 6= i . (4.19)

This map is conjugate10 to the standard logistic map (2.7) through the linear transfor-
mation

qj =
1 + vj(a− cj)

2bvj
x (4.20)

from which we obtain the relation µ = 1 + vj(a− cj).
If γ12 = γ21 = 0 the map (4.17) reduces to the one studied in Bischi and Naimzada,

2000, where it is shown that unbounded trajectories are obtained if the initial condition
is taken sufficiently far from the Nash equilibrium11, hence E∗ cannot be globally stable.
10See Devaney, 1987.
11From an economic point of view, diverging trajectories do not represent interesting evolutions,

as they can be interpreted as an irreversible departure from optimality.
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As in the previous model, we denote by B the set of points which generate feasible
trajectories and by B (∞) the set of initial conditions whose trajectories diverge. A
feasible trajectory may converge to the Nash equilibrium E∗, to another more complex
attractor inside B or to a one-dimensional invariant set embedded inside a coordinate
axis, when one competitor exits the market. However, when the Nash equilibrium exists
the coordinate axes are transversely unstable, so they behave as repelling sets with
respect to trajectories approaching them from the interior of the nonnegative orthant, and
consequently evolutions of the duopoly game toward monopoly situations are excluded.

Let us first consider the dynamics of T restricted to the invariant axis q2 = 0. From the
one-dimensional restriction defined in (4.19), we can deduce that bounded trajectories
along that invariant axis are obtained for v1(a − c1) ≤ 3 (corresponding to µ ≤ 4 in
(4.20)), provided that the initial conditions are taken inside the segment ω1 = OO

(1)
−1,

where O
(1)
−1 is the rank-1 preimage of the origin O computed according to the restriction

(4.19), i.e.

O
(1)
−1 =

(
v1(a− c1)

2bv1
, 0
)

(4.21)

and divergent trajectories along the invariant q1 axis are obtained starting from an initial
condition out of the segment ω1. Analogously, when v2(a− c2) ≤ 3, bounded trajectories
along the invariant q2 axis are obtained provided that the initial conditions are taken
inside the segment ω2 = OO

(2)
−1, where

O
(2)
−1 =

(
0,

v2(a− c2)
2bv2

)
. (4.22)

and, also in this case, divergent trajectories along the q2 axis are obtained starting from
an initial condition out of the segment ω2.

Consider now the region bounded by the segments ω1 and ω2 and their rank-1 preim-
ages, say ω−1

1 and ω−1
2 respectively. Such preimages can be analytically computed as

follows. Let X = (x, 0) be a point of ω1. Its preimages are the real solutions (q1, q2) of
the algebraic system obtained from (4.17) with (q′1, q2

′) = (x, 0): q1

[
1 + v1

(
a− 2bq1 − bq2 − c1

1+γ12q2

)]
= x

q2

[
1 + v2

(
a− 2bq2 − bq1 − c2

1+γ21q1

)]
= 0 .

(4.23)

It is an easy exercise to show that the preimages of the points of ω1 are either located
on the same invariant axis q2 = 0 or on the curve of equation

q2 = r2(q1) +
1

2bv2
. (4.24)

where r2 is the reaction function defined in (4.15). Analogously, the preimages of a point
Y = (0, y) of ω2 belong to the same invariant axis q1 = 0 or to the curve of equation

q1 = r1(q2) +
1

2bv1
. (4.25)
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where r1 is the reaction function defined in (4.15). The curve (4.24) intersects the q2

axis in the point O
(2)
−1 and the curve (4.25) intersects the q1 axis in the point O

(1)
−1.

Moreover, the two curves intersect at a point O
(3)
−1, which is another rank-1 preimage of

O = (0, 0). These four rank-1 preimages of the origin are the vertexes of a “quadrilateral”
OO

(1)
−1O

(3)
−1O

(2)
−1, whose sides are ω1, ω2 and their rank-1 preimages located on the curves

of equation (4.24) and (4.25) respectively, denoted by ω−1
1 and ω−1

2 in Figures 12a, b.
It is evident that the sides O

(2)
−1O

(3)
−1 and O

(3)
−1O

(1)
−1, given by ω−1

1 and ω−1
2 of equation

(4.24) and (4.25) respectively, are parallel translations of the reaction curves R2 and R1,
shifted of 1

2bvi
, i = 2, 1, respectively. All the points outside this quadrilateral cannot

generate feasible trajectories. In fact, the points located on the right of ω−1
2 are mapped

into points with negative q1 after one iteration, as can be easily deduced from the first
component of (4.17), and the points located above ω−1

1 are mapped into points with
negative q2 after one iteration, as can be deduced from the second component of (4.17).

For γ12 = γ21 = 0 the curves ω−1
1 and ω−1

2 reduce to straight lines, as already proved
in Bischi and Naimzada, 2000. This situation is shown in Figure12a, obtained with
v1 = 0.2, v2 = 0.25, c1 = 3, c2 = 4 and γ12 = γ21 = 0. With this set of parameters the
Nash equilibrium E∗ is stable, and the set B coincides with the basin of E∗. As it can
be seen in Figure 12a, where the numerically computed basin of E∗ is represented by the
white region and the basin of infinity by the grey one, the boundary ∂B is formed by ω1,
ω2 and their rank-1 preimages ω−1

1 and ω−1
2 of equations (4.24) and (4.25) respectively,

which are parallel to the reaction curves R2 and R1 (shown in Figure 12). In Figure 12b
one of the spillover parameters is positive, namely γ21 = 3, and the other parameters
are the same as in Figure 12a. It can be noticed that in this case the upper boundary,
belonging to the curve ω−1

1 , is concave.

The simple shape of ∂B shown in Figure 12 is due to the fact that only preimages
of rank-1 of ωi exist. In fact, ω−1

1 and ω−1
2 are entirely included inside a region of the

plane whose points have no preimages. The situation is different when the values of the
parameters are such that some portions of these curves belong to regions whose points
have preimages, which constitute preimages of rank higher than one of the segments
ωi. In this case the set B has a more complex topological structure. Also in this case,
the transitions between qualitatively different structures of the basins can be described
in terms of contacts between ∂B and arcs of critical curves. In fact, the map defined
in (4.17) is noninvertible, since given a point (q′1, q

′
2) ∈ R2 its preimages, computed by

solving the sixth degree algebraic system (4.17), may be up to six. For instance, as shown
above, the origin O = (0, 0) can have four rank-1 preimages, given by O itself and O

(i)
−1,

i = 1, 2, 3.
For a given set of parameters, the critical curves of the map (4.17) can be easily

obtained numerically. For example, for the set of parameters used to obtain Figure 13a,
i.e. v1 = 0.25, v2 = 0.3, c1 = 4, c2 = 3 and γ12 = 2, γ21 = 4, the numerically computed
set of points at which the Jacobian vanishes is formed by the union of two branches,
denoted by LC

(a)
−1 and LC

(b)
−1 in Figure 13a., where LC(b) separates the region Z0, whose

points have no preimages, from the region Z2, whose points have two distinct rank-1
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Figure 12.

preimages, and LC(a) separates the region Z2 from Z4, whose points have four distinct
preimages.

The curve LC
(b)
−1 intersects the qi axis at the point of maximum of the restriction

(4.19), given by M i
−1 = 1+vi(a−ci)

4bvi
, and the curve LC(b) intersects the qi axis at the

corresponding maximum value M i = [1+vi(a−ci)]
2

8bvi
of the restriction (4.19).

In Figure 13a B is a simply connected set, with the boundary ∂B having the “quadri-
lateral shape” described above, because the preimages ω−1

i , i = 1, 2, of the invariant axes,
are entirely included inside the region Z0, so that no preimages of higher rank exist. The
situation would be different if some portions of these lines were inside the regions Z2

or Z4. Indeed, the fact that a portion of LC(b) is close to ∂B suggests that a contact
bifurcation may occur if some parameter is varied. In fact, if a portion of B (∞) enters
Z2 after a contact of ∂B with LC(b), then new preimages of that portion will appear
near LC

(b)
−1 and such preimages must belong to B (∞). This is the situation illustrated

by Figure 13b, obtained after an increase of the spillover parameters, i.e. γ12 = 3 and
γ21 = 7. In fact, after a contact between ∂B and LC(b), a portion of B (∞), say H0

(bounded by a portion of ω−1
1 and LC) which was in region Z0 before the bifurcation,

enters inside Z2. The points belonging to H0 have two distinct preimages, located at
opposite sides with respect to the line LC−1, with the exception of the points of the
curve LC(b) inside B(∞) whose preimages, according to the definition of LC, merge on
LC

(b)
−1. Since H0 is part of B (∞) also its preimages belong to B (∞). In other words,

the rank-1 preimages of H0 are formed by two areas joining along LC−1 and constitutes
a hole of B (∞) nested inside B. This is the largest hole appearing in Figure 13b, and is
called the main hole. It lies inside region Z2, hence it has 2 preimages, which are smaller
holes bounded by preimages of rank 3 of ω1. Even these are both inside Z2, so each of
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them has two further preimages inside Z2, and so on. Now the boundary ∂B is formed by
the union of an external part, given by the coordinate axes and their rank-1 preimages
(4.24) and (4.25), and the boundaries of the holes, which are sets of preimages of higher
rank of ω1. So, the global bifurcation just described transforms a simply connected basin
into a multiply connected one, with a countable infinity of holes inside, called arborescent
sequence of holes (see Mira et al., 1994, Mira et al., 1996, Abraham et al., 1997).

Figure 13.

5 Symmetric dynamical systems, Milnor attractors and riddled
basins

In this section we consider an extension of the notion of attractor, known as Milnor
attractor (after Milnor, 1985), whose basin of attraction may assume a structure, called
riddled basin, characterized by an extreme form of complexity, according to the following
definitions (see Alexander et al., 1992, Ashwin et al., 1996, Buescu, 1997). The more
general notion of Milnor attractor has been introduced to evidence the existence of in-
variant sets which “attract” many points even if they are not attractors in the usual
topological sense.

A closed invariant set A is said to be a weak attractor in Milnor sense (or simply
Milnor attractor) if its stable set B (A), i.e. the set of points whose ω-limit sets of x
belongs to A12,has positive Lebesgue measure.

If A is a Milnor attractor, then its stable set B (A) is called “riddled basin” if it is such
that any neighborhood of it contains points whose trajectory converge to another attrac-

12The ω−limit set of x is the set of accumulation points of T t(x), as t→∞.
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tor. In other words, a riddled basin does not include any open subset, so it corresponds
to an extreme form of uncertainty.

This section is mainly devoted to riddled basins, as well as to the global bifurcations
leading to their creation.

Note that an attractor in the usual (topological) sense is also a Milnor attractor, but
the converse is not true. In fact, a topological attractor is such that its basin B (A)
contains an open neighborhood of A, whereas for a Milnor attractor initial conditions
arbitrarily close toA can generate trajectories that are locally repelled out fromA. In this
case B (A) is called “realm of attraction” (Milnor, 1985) reserving the term “basin” when
B (A) is an open set. However, since the term basin is more standard in the literature,
we shall use such term even when A is a Milnor (but not topological) attractor, for which
B (A) is not, in general, an open set.

Restricting an n-dimensional dynamical system with phase space S to an invariant
lower dimensional submanifold N ⊂ S, (i.e. T (N) ⊆ N), the map g = T |N : N → N
determines a discrete dynamical system in its own. The trajectories embedded into N ,
whose dynamics are governed by the lower dimensional restriction g, are called synchro-
nized trajectories. The existence of such lower dimensional dynamics embedded into the
n-dimensional phase space of T rises the question, recently investigated by many authors,
if an attractor AN of g in N is also an attractor of the map T , and in which sense (see e.g.
Buescu, 1997, and references therein). Of course, an attractor AN of the restriction g is
stable with respect to perturbations on N , so an answer to this question can be given
through a study of the stability of AN with respect to perturbations transverse to N
(transverse stability). Results on transverse stability have mainly been studied when the
dynamics restricted to the invariant submanifold are chaotic. In this case the question
of transverse stability is related to the phenomenon of chaos synchronization (i.e. when
trajectories starting out of N are attracted toward a chaotic attractor AN ⊆ N).

These phenomena have recently raised interest in many fields, ranging from electrical
engineering and communication systems to ecology and chemistry (see e.g. Fujisaka and
Yamada, 1983, Ferretti, 1988, Pecora and Carrol, 1990, Ashwin et al., 1996, Buescu,
1997). Applications in economic modelling have recently been proposed in Bischi et al.,
1999a, Bischi and Gardini, 1998, 2000, Kopel et al., 2000, Bischi and Lamantia, 2002b.

The particular feature of the invariance of a submanifold of lower dimension is a
standard occurrence if the map T has some symmetry property, a situation that often
occurs in applications. Measure theoretic, but not stable in Lyapunov sense, attractors
appear quite naturally in this context, together with new and striking phenomena, like
on-off intermittency and riddled basins, and also new kinds of bifurcations, like riddling
(or bubbling) bifurcations and blowout bifurcations.

Maps with symmetry properties arise quite naturally in dynamical models of competi-
tion. In fact, when two competitors behave identically, the state variables that represent
the competitors’ choices can be swapped without changing the dynamical system. This
means that the system has a symmetry property and, consequently, an invariant sub-
manifold.

Let us consider, for example, the case of two competitors that choose their actions,
measured by x1(t) and x2(t) respectively, at discrete time periods, and assume that this
process is modelled by the iterations of a two-dimensional map T : S → S, S ⊆ R2. In
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the case of identical competitors, the map T must remain the same under the exchange
of the players, i.e. T ◦ P = P ◦ T , where P : (x1, x2) → (x2, x1) denotes the reflection
through the diagonal ∆ =

{
(x1, x2) ∈ R2|x1 = x2

}
. This symmetry property implies

that the diagonal is mapped into itself by T , i.e. T (∆) ⊆ ∆.
In this case, the synchronized trajectories are embedded into ∆, i.e. are characterized

by identical choices x1(t) = x2(t) for every t. This invariance property translates the
obvious statement that identical players, starting with identical initial strategies x1(0) =
x2(0), behave identically for each t ≥ 0, even if each of them behaves chaotically, and
the common behavior of the two players is summarized by the dynamics of the simpler
one-dimensional map g = T |∆ : ∆ → ∆.

An important question is whether trajectories starting with initial condition outside
of ∆, i.e. when x1(0) 6= x2(0), will evolve toward synchronization, i.e. |x1(t)− x2(t)| → 0
as t → +∞, so that the long-run behavior is governed by the one-dimensional attractors
of the restriction g. Of course, the attracting sets of the map g are stable with respect to
perturbations along ∆, hence an answer to the question addressed above requires a local
study of the stability with respect to perturbations transverse to ∆ (transverse stability).
When the attractors of g embedded inside ∆ are chaotic, they may be Milnor (but not
topological) attractors of the two-dimensional dynamical system, and their basins may
be riddled.

In Bischi et al., 1999a, Kopel et al., 2000, the one-dimensional restriction g : ∆ → ∆
has been considered as the model of a representative agent whose dynamics summarize
the common behavior of the two synchronized competitors, so the study of the asymptotic
synchronization has been related to the common assumption, often made in economic
modeling, that the behavior of a system with many identical agents can be summarized
by that of a “representative agent”, a point that has been recently criticized by some
authors (see Kirman, 1992, Aoki, 1996).

5.1 Some basic definitions and results

Let A∆ be a chaotic attractor (with absolutely continuous invariant measure on it)
of g, the restriction to ∆ of the bidimensional map T . The key property for the study
of the transverse stability of A∆ is that it includes infinitely many periodic orbits which
are unstable in the direction along ∆. For any of these cycles it is easy to compute the
associated eigenvalues. In fact, due to the symmetry of the map, the Jacobian matrix
of T , computed at any point of ∆, say DT (x, x) = {Tij (x)}, is such that T11 = T22

and T12 = T21. The two orthogonal eigenvectors of such a symmetric matrix are one
parallel to ∆, say v‖ = (1, 1), and one perpendicular to it, say v⊥ = (1,−1), with related
eigenvalues given by

λ‖ (x) = T11 (x) + T12 (x) and λ⊥ (x) = T11 (x)− T12 (x)

respectively. Of course, λ‖ (x) = g′(x). Since the product of matrices with the structure
of DT (x, x) has the same structure as well, a k-cycle {x1, ..., xk} embedded into ∆ has
eigenvalues λk

‖ =
∏k

i=1 λ‖ (xi) and λk
⊥ =

∏k
i=1 λ⊥ (xi), with eigenvectors v‖ and v⊥ re-

spectively. So, for a chaotic set A∆ ⊂ ∆, infinitely many transverse Lyapunov exponents
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can be defined as

Λ⊥ = lim
N→∞

1
N

N∑
i=0

ln |λ⊥ (xi)| (5.1)

where
{
xi = gi(x0), i ≥ 0

}
is a trajectory embedded in A∆. If x0 belongs to a k-cycle

then Λ⊥ = ln
∣∣λk
⊥
∣∣, so that the cycle is transversely stable if Λ⊥ < 0, whereas if x0 belongs

to a generic aperiodic trajectory embedded inside the chaotic set A∆ then Λ⊥ is the nat-
ural transverse Lyapunov exponent Λnat

⊥ . By the term “natural” we mean the Lyapunov
exponent associated to the natural, or SBR (Sinai-Bowen-Ruelle), measure, i.e., com-
puted for a typical trajectory taken in the chaotic attractor A∆. Since infinitely many
cycles, all unstable along ∆, are embedded inside a chaotic attractor A∆, a spectrum of
transverse Lyapunov exponents can be defined (see Buescu, 1997)

Λmin
⊥ ≤ ... ≤ Λnat

⊥ ≤ ... ≤ Λmax
⊥ (5.2)

The meaning of the inequalities in (5.2) can be intuitively understood on the basis of
the property that Λnat

⊥ expresses a sort of “weighted balance” between the transversely
repelling and transversely attracting cycles (see Nagai and Lai, 1997). If Λmax

⊥ < 0,
i.e. all the cycles embedded in A∆ are transversely stable, then A∆ is asymptotically
stable, in the usual Lyapunov sense, for the two-dimensional map T . However, it may
occur that some cycles embedded in the chaotic set A∆ become transversely unstable,
i.e. Λmax

⊥ > 0, while Λnat
⊥ < 0. In this case, A∆ is no longer Lyapunov stable, but it

continues to be an attractor in the weaker Milnor sense. The transition from asymptotic
stability to attractivity only in Milnor sense, marked by a change of sign of Λmax

⊥ from
negative to positive, is denoted as riddling bifurcation in Lai and Grebogi, 1996 (or
bubbling bifurcation in Venkataramani, 1996).

Even if the occurrence of such bifurcation is detected through the study of the trans-
verse Lyapunov exponents, its effects depend on the action of the nonlinearities far from
∆, that is, on the global properties of the dynamical system. In fact, after the riddling bi-
furcation two possible scenarios can be observed, according to the fate of the trajectories
that are locally repelled along (or near) the local unstable manifolds of the transversely
repelling cycles:

(L) they can be reinjected towards ∆, so that the dynamics of such trajectories are
characterized by some bursts far from ∆ before synchronizing on it (a very long sequence
of such bursts, which can be observed when Λ⊥ is close to zero, has been called on-off
intermittency in Ott and Sommerer, 1994);

(G) they may belong to the basin of another attractor, in which case the phenomenon
of riddled basins is obtained (see Alexander et al., 1992).

Some authors call local riddling the situation (L) and, by contrast, global riddling the
situation (G) (see Ashwin et al., 1996, Maistrenko et al., 1997). When also Λnat

⊥ becomes
positive, due to the fact that the transversely unstable periodic orbits embedded into A∆

have a greater weight as compared with the stable ones, a blowout bifurcation occurs,
after which A∆ is no longer a Milnor attractor, because it attracts a set of points of
zero measure, and becomes a chaotic saddle. In particular, for λmin

⊥ > 0 all the cycles
embedded into ∆ are transversely repelling, and A∆ is called normally repelling chaotic
saddle.

34



Also the macroscopic effect of a blowout bifurcation is strongly influenced by the
behavior of the dynamical system far from the invariant submanifold ∆: trajectories
starting close to the chaotic saddle may be attracted by some attracting set far from ∆
or remain inside a two-dimensional compact set located around the chaotic saddle A∆,
thus giving on-off intermittency.

So, the effects of these bifurcations are related to the action of the nonlinearities
acting far from ∆. When T is a noninvertible map, as generally occurs in problems of
chaos synchronization13, the global dynamical properties can be usefully described by the
method of critical curves and the reinjection of the locally repelled trajectories can be
described in terms of their folding action. This idea has been recently proposed in Bischi
and Gardini, 1998, Bischi and Gardini, 2000 for the study of symmetric maps arising in
game theory, and in Bischi et al., 1999a, for the study of the effects of small asymmetries
due to parameters mismatches, see also Bischi and Lamantia, 2002b, where the concept
of correlated chaos is introduced. In these papers, the critical curves have been used
to obtain the boundary of a compact trapping region, called absorbing area following
Mira et al., 1996, inside which intermittency and blowout phenomena are confined. In
particular, in Bischi and Gardini, 1998, the concept of minimal invariant absorbing area
is defined in order to give a global characterization of the different dynamical scenarios
related to riddling and blowout bifurcations.

Before giving an example, let us recall some properties of critical curves and absorbing
areas (see Mira et al., 1996, chap. 4, or Bischi and Gardini, 1998, for more details).

The critical sets of rank k are defined as the images of rank k of LC−1 denoted
by LCk−1 = T k(LC−1) = T k−1(LC), LC0 being LC. Segments of critical curves of
rank-k, k = 0, 1, ..., can be used in order to define trapping regions of the phase plane.
An absorbing area A is a bounded region of the plane whose boundary is given by
critical curve segments (segments of the critical curve LC and its images) such that a
neighborhood U ⊃ A exists whose points enter A after a finite number of iterations and
then never escape it, i.e. T (A) ⊆ A.

Following Mira et al., 1996 (see also Puu, 2000) a practical procedure can be outlined
in order to obtain the boundary of an absorbing area (although it is difficult to give a
general method). Starting from a portion of LC−1, approximately taken in the region
occupied by the area of interest, its images of increasing rank are computed until a closed
region is obtained. When such a region is mapped into itself, then it is an absorbing area
A. The length of the initial segment is to be taken, in general, by a trial and error
method, although several suggestions are given in the books referenced above. Once an
absorbing area A is found, in order to see if it is invariant (or strictly mapped into itself)
the same procedure must be repeated by taking only the portion γ = A ∩ LC−1as the
starting segment. Then one of the following two cases occurs:

(i) the union of m iterates of γ (for a suitable m) covers the whole boundary of A; in

13In fact the one-dimensional restriction g must be a noninvertible map in order to have chaotic
motion along the invariant subspace ∆.
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which case A is an invariant absorbing area, and

∂A ⊂
m⋃

k=1

T k(γ) (5.3)

(ii) no natural m exists such that
⋃m

i=1 T i(γ) covers the whole boundary of A, in
which case A is not invariant but strictly mapped into itself. An invariant absorbing
area is obtained by ∩n>0T

n(A).

The minimal invariant absorbing area is the smallest absorbing area that includes
the Milnor attractor on which the synchronized dynamics occur14. Its delimitation is
important in order to characterize the global properties which influence the qualitative
effects of riddling or blowout bifurcations. In fact, a minimal invariant absorbing area
that surrounds a Milnor attractor defines a compact region of the phase plane that
acts as a trapping bounded vessel inside which the trajectories starting near ∆ are con-
fined. This gives an upper bound for the oscillations (bursts) which characterize both
the transient dynamics of the trajectories which eventually synchronize, and the persis-
tent oscillations (on-off intermittency) which describe the dynamics just after a blowout
bifurcation. Moreover, contacts between the portions of critical curves bounding the
minimal absorbing area surrounding a Milnor attractor and the basin boundaries may
mark the transition between local and global riddling phenomena, as it will be shown in
the example below.

5.2 A competition model for market share

We consider a dynamic brand competition model proposed in Bischi et al., 2000a.
This model describes a market where a population of consumers can choose between two
brands of homogeneous goods, produced by two competing firms. Let x, y represent the
marketing efforts of two firms (advertising, R&D, etc.) and B the total sales potential
of the market (in terms of customer market expenditures). Then the share of the market
(sales revenue) accruing to firm 1 and to firm 2 is Bs1 and Bs2 = B−Bs1, respectively,
where

s1 =
axβ1

axβ1 + byβ2
, s2 =

byβ2

axβ1 + byβ2
. (5.4)

The terms A1 = axβ1 and A2 = byβ2 represent the recruitment of customers by firm 1
and 2, respectively, given x and y units of effort, and the parameters a and b denote the
relative effectiveness of the effort made by the firms15. A dynamic model is obtained by
assuming that the two competitors change their marketing efforts adaptively, in response

14Boundaries of trapping regions can also be obtained by the union of segments of critical curves
and portions of unstable sets of saddle cycles, and in this case we have a so called absorbing
areas of mixed type (see Mira et al., 1996). We don’t enter here in such details, as in the
example given below only standard absorbing areas (i.e. completely bounded by critical arcs)
are present.

15Since dA1
dx

x
A1

= β1 and dA2
dy

y
A2

= β2, the parameters β1 and β2 denote the elasticities of the
attraction of firm (or brand) i with regard to its effort.
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to the profits achieved in the previous period:

T :

 x(t + 1) = x(t) + λ1x(t)
(
B x(t)β1

x(t)β1+ky(t)β2
− x(t)

)
y(t + 1) = y(t) + λ2y(t)

(
B ky(t)β2

x(t)β1+ky(t)β2
− y(t)

) (5.5)

where the parameters λi > 0, i = 1, 2, measure the rate of adjustment and k = b/a.
The map (5.5) is a noninvertible map of Z4 − Z2 − Z0 type. The set of points for

which det DT (x, y) = 0 is given by the union of two branches, say LC
(a)
−1 and LC

(b)
−1, and

the shape of the two branches of LC, LC(a) = T (LC
(a)
−1 ) and LC(b) = T (LC

(b)
−1), as well

as the corresponding Riemann foliation, is similar to the one shown in Figure 9.
Following Kopel at al., 2000, Bischi and Gardini, 2000, let us consider the symmetric

case of identical firms, obtained for λ1 = λ2 = λ , β1 = β2 = β and k = 1, to show some
applications of the methods described above. The restriction of the symmetric map to
the invariant diagonal is given by

g(x) = (1 +
1
2
λB)x− λx2. (5.6)

which is conjugate to the standard logistic map (2.7), z′ = µz(1− z), with µ = 1 + 1
2λB,

by the linear transformation x = z (1 + λB/2) /λ. For the symmetric map, the Jacobian
matrix, computed at a point of the diagonal ∆, is

DT (x, x;λ, B, β, ) =

[
1− 2λx + λB(β+2)

4 −λBβ
4

−λBβ
4 1− 2λx + λB(β+2)

4

]
. (5.7)

Hence, the eigenvalues are λ|| = 1 + 1
2λB − 2λx, λ⊥ = 1 + 1

2λB(1 + β) − 2λx, and the
transverse Lyapunov exponents are readily obtained:

Λ⊥ = lim
N→∞

1
N

N∑
n=0

ln
∣∣∣∣1 +

1
2
λB(1 + β)− 2λxn

∣∣∣∣ .
It is important to note that the parameter β only appears in the transverse eigenvalue
λ⊥, i.e. β is a normal parameter : It has no influence on the dynamics along the invariant
submanifold ∆, and only influences the transverse stability. This allows us to consider
fixed values of the parameters λ and B, such that a chaotic attractor A∆ ⊂ ∆ of the map
(5.6) exists, with an absolutely continuous invariant measure on it. So, we can study the
transverse stability of A∆ as the parameter β varies.

Suitable values of the aggregate parameter λB, at which chaotic intervals for the
restriction (5.6) exist, are obtained from the well known properties of the logistic map
(see e.g. Collet and Eckmann, 1980, Mira, 1987). For example, at the parameter value
µ2 = 3.5748049387592... the period-4 cycle of the logistic map undergoes the homoclinic
bifurcation, at which four cyclic chaotic intervals are obtained by the merging of 8 cyclic
chaotic intervals. By using λB = 2(µ2 − 1) we get a four-band chaotic set A∆ along the
diagonal ∆.
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Figure 14 shows the results of the numerical computations of the natural transverse
Lyapunov exponent Λnat

⊥ as β varies in the interval (0, 0.2). Observe that a “window”
of negative values of Λnat

⊥ is visible for 0.0575 < β < 0.1895. For example, for β = 0.09
we have Λnat

⊥ = −8.36× 10−2 < 0, and we expect that synchronization of the marketing
efforts of the two firms occurs for a set of initial conditions with positive Lebesgue mea-
sure (this implies that trajectories that synchronize, even starting out of the diagonal,
can be numerically observed). The issue of synchronization gets more complex in this
case, however, because for this values of the parameters two coexisting attractors inside
the feasible set can be numerically observed: the 4-cyclic chaotic set A∆ ⊂ ∆ and an
attracting cycle of period 2 with periodic points located out of ∆. In Figure 15 the coex-
isting attractors are represented by black points, each with its own basin of attraction:
the white points represent the basin B (A∆) of the points generating trajectories that
synchronize along A∆, whereas the light grey points represent the basin B (C2) whose
points generate trajectories converging to the stable cycle C2. The dark-grey region rep-
resents the set of points which are not feasible, i.e., which generate trajectories involving
negative values of the state variables.

Figure 14.

For the set of parameters used in Figure 15, the four-band chaotic set A∆, embedded
into the invariant diagonal ∆, is not a topological attractor however. In fact, an 8-cycle
C8 embedded inside the diagonal exists, which is transversely repelling. This means
that trajectories starting along the local unstable set Wu

⊥(C8), issuing from the periodic
points of C8, as well as those starting from narrow tongues along Wu

⊥(C8) and from all
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the infinitely many preimages of the periodic points of C8 (such preimages are densely
distributed along A∆ due to the fact that A∆ is a chaotic set with absolutely continuous
invariant measure) are repelled away from the diagonal. So, if we consider a sufficiently
small neighborhood W of A∆, we have that the local unstable set of the transversely
unstable cycle intersects ∂W and a set of points with positive Lebesgue measure exists
in W whose trajectories exit W in a finite number of iterations. This implies that
no neighborhood V ⊂ W exists such that the definition of Lyapunov stability holds.
In this case it is possible to prove that, around the local transverse unstable set of a
transversely unstable cycle, open sets of points exist, called “tongues” in Lai et al., 1996
or “wedges” in Alexander et al., 1992, such that the trajectories starting from points
of these “tongues” exit W after a finite number of iterations. Similar “tongues” also
exist in correspondence of the infinite preimages, along ∆, of the points of C8. So, A∆

is not a topological attractor for T , however it is an attractor in Milnor sense because
Λnat
⊥ < 0. In other words, most initial conditions close to A∆ are attracted to A∆, but

in any neighborhood of A there exists a dense set that is locally repelled in a direction
transverse to it. As argued in the previous section, the locally repelled trajectories may
eventually return to A∆ (i.e. synchronize) after a transient phase in which they make
several excursions (bursts) away of ∆, or they may belong to the basin B (C2). In the
latter case the basin of A∆ is riddled with the basin of C2. In our case, the locally repelled
trajectories are folded back by the action of the global dynamical properties of the map
T , and after a transient with some bursts away from ∆ occurring, they synchronize in
the long-run. The time evolution of the difference of the marketing efforts, (xt − yt),
during the transient portion of a typical trajectory, starting from the initial allocations
(x0, y0) = (6, 6.01), is shown in Figure 15b, where the early 300 iterates are represented.
After about 40 periods the evolution of the system seems to have reached almost complete
synchronization. During the next 40 periods the two competitors behave practically in
the same way. At this point the trajectory seems to have definitively settled down on the
attractor A∆ (this would be the case for a topological attractor), and we would tend to
conclude that the two-players model can be replaced by a one-player model. However, the
trajectory then moves again far away from the diagonal, and the two competitors now act
again in a very different fashion. Several bursts of the trajectory, out of ∆, are observed
until perfect synchronization of the marketing efforts is eventually obtained. Such an
intermittent behavior is a typical characteristic of the convergence to a non-topological
Milnor attractor. The pattern of the time series resembles that of a system which is
subject to exogenous random shocks, even if the dynamical system that generates such
a pattern is completely deterministic. This peculiar dynamical behavior is related to the
fact that even if the Milnor attractor attracts “on average” according to the fact that
Λnat
⊥ < 0, the presence of some transversely repelling cycles (even if less influent than

the transversely attracting ones) causes sudden bursts when the trajectories happen to
get close to them.

However, the locally repelled trajectories cannot reach the other attractor C2. This
is due to the presence of an absorbing area A around A∆, from which the trajectory
starting close to A∆ cannot escape. The boundary ∂A of such absorbing area, shown in
Figure 16a, has been obtained following the procedure outline in the previous section:
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Figure 15.

starting from a portion of LC−1, approximately taken in the region occupied by the
area of interest, its images by T of increasing rank are computed until a closed region
is obtained. In order to obtain the boundary of the absorbing area A, six images of the
generating arc γ are sufficient. However, only the portion of γ belonging to the branch
LC

(b)
−1 has been used because the images of the other portion, the one belonging to the

upper branch LC
(a)
−1 , are always inside the absorbing area, so that they do not form part

of the boundary. Hence in Figure 16a we have γ = A∩LC
(b)
−1 and ∂A ⊂

⋃6
k=1 T k(γ).

We remark that A includes the Milnor chaotic attractor A∆ ⊂ ∆, and all the tra-
jectories starting from a neighborhood of A∆, cannot escape A. Loosely speaking ∂A
behaves as a bounded vessel for the intermittency phenomena related to the presence of
the transversely repelling cycles embedded inside A∆. The local unstable sets of these
cycles are folded back (reinjected) by the folding action of the critical curves that form
∂A. The size of the absorbing area containing the Milnor attractor A∆ gives us firstly an
idea of the maximal difference between the marketing efforts of the two firms. Secondly,
there is an inverse relationship between the longevity of transients and the values of the
natural Lyapunov exponent Λnat

⊥ . For values of the degree of competition β for which
Λnat
⊥ is strongly negative the transient phase where bursts occur before the trajectories

of marketing efforts settle down along the diagonal is relatively short. Neglecting this
relatively short transient period we can conclude that the model of the representative
player is a good approximation. On the other hand, if Λnat

⊥ is close to zero but negative,
then the transient phase is rather long. Frequent and persistent bursts occur before the
marketing efforts of the competitors synchronize. It might seem that this justifies, at
least in the long run, the assumption, often made in economic models, that homoge-
neous agents can be considered as synchronized, so that their common behavior can be
summarized by the behavior of a representative agent. However, in the situation shown
in Figure 16a, the boundary of the absorbing area A is quite close to the boundary of
the basin of the stable cycle C2. Indeed, a small increase of β causes a contact between
the absorbing area and the basin of C2 which leads to the destruction of the absorbing
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area, so that some of the trajectories that are repelled from A∆ can converge to C2, and
the basin of A∆ becomes riddled (Figure 16b). This example shows a transition from a
locally riddled to a globally riddled dynamics caused by a contact between the boundary
of a minimal invariant absorbing area and the boundary of its basin of attraction.

After this bifurcation, it is very difficult to forecast if two homogeneous agents will
synchronize in the long run, because even starting from an initial condition very close
to the diagonal ∆, i.e. such identical agents with quasi-identical starting efforts, the
structure of the basins is such that any forecasting about synchronization has no practical
meaning. So, the concept of representative agent cannot be applied in such a situation.

Figure 16.

5.3 Synchronization and partial synchronization in higher dimensional
models

Some of the results stated above can be extended with more than two competitors. For
example, let us consider a model that describes the interaction between three competitors,
and assume that the time evolution of the system is described by the iteration of a map
T : (q1(t), q2(t), q3(t)) → (q1(t + 1), q2(t + 1), q3(t + 1)) given by

T :

 q′1 = T1(q1, q2, q3)
q′2 = T2(q1, q2, q3)
q′3 = T3(q1, q2, q3)

If all competitors are identical, then T is symmetric under the group of permutations

D3 = {M123,M132,M321,M213,M312,M231}
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where

Mijk

 q1

q2

q3

 =

 qi

qj

qk

 .

Obviously M123 = I is the identity (trivial symmetry), whereas the three permutations
of two coordinates

P1 (q1, q2, q3) = (q1, q3, q2)
P2 (q1, q2, q3) = (q3, q2, q1)
P3 (q1, q2, q3) = (q2, q1, q3)

represent reflections through the planes

Π1 = {(q1, q2, q3) | q2 = q3} ;
Π2 = {(q1, q2, q3) | q1 = q3} ;
Π3 = {(q1, q2, q3) | q1 = q2}

and the two cyclic permutations of the three coordinates

R1
3 : (q1, q2, q3) → (q3, q1, q2) and R2

3 : (q1, q2, q3) → (q2, q3, q1)

represent rotations of 2
3π around the diagonal S = {q1 = q2 = q3}.

A dynamical system with a symmetry M has a linear invariant subspace, given by the
set of fixed points of M . In particular, Πi are invariant two-dimensional submanifold for
T , and the trajectories embedded inside Πi, governed by the two-dimensional restriction
of T to Πi are called partially synchronized (two of the three players move in a syn-
chronized way). Moreover, the intersection of the three invariant planes Πi, given by
S =

{
(q, q, q) ∈ R3

}
is an invariant one-dimensional submanifold, and the trajectories

embedded inside S, governed by the one-dimensional restriction of T to S, are fully syn-
chronized trajectories. More generally, with n identical competitors, we can have clusters
of k ≤ n synchronized competitors coexisting with non-synchronized ones.
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