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of the two regions on the basis of observed past profits. Numerical simulations provide some insights
into the role of the main parameters. This model has been motivated by a project for the creation of a
marine protected area (MPA) in the Adriatic sea.
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1. Introduction

The problem of a sustainable exploitation of fisheries involves
decisions characterized by several levels of strategic interaction,
strongly influenced by biological, social, economic and legislative
constraints. “Sustainable” means that fish exploitation should
guarantee the preservation of fish stocks for future generations.
Any national legislation can only influence fishing activity inside a
given distance from national coasts, whereas in the “open sea” only
international agreements for species protection can be applied,
and open access must be guaranteed to freely competing agents.
This often leads to a situation of severe overexploitation and the
serious danger of fishery collapse is sometimes faced. Indeed, even
in the case of free competition, different economic and biologic
externalities exist which may have self-regulatory effects. First,
biological externalities must be taken into account, as over-
exploitation of the resource by one agent may have important
consequences on the capacity of regeneration of the resource, thus
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producing a negative externality for the whole community of
exploiters. Second, market externalities may exist, due to price
reduction as a consequence of increasing harvesting. Moreover,
cost externalities may exist because decreasing stocks of available
fish imply increasing unitary harvesting costs. However, in the
management of common property renewable resources harvested
by competing individuals, societies or countries, the problem
known as “The tragedy of the commons” (after Hardin, 1968)
must be taken into account (see also Gordon, 1954; Clark, 1976;
Mesterton-Gibbons, 1993; Conrad, 1995).

For these reasons, international agreements for the creation of
marine protected areas (MPAs) have been recently proposed in the
literature, conferences and congresses (see e.g. Bohnsack, 1993;
Clark, 1996; Sumaila, 1998; Holland, 2002). This demonstrates
increasing interest in such kind of regulation, as results from the
proclamation endorsed by 400 prominent marine scientists at the
First Symposium on Marine Conservation Biology to “increase the
number and effectiveness of marine protected areas so that 20% of
Exclusive Economic Zones and High Seas are protected from
threats by the year 2020” (Sanchirico and Wilen, 2001), as well as
the existence of newsletters like “MPA news, International News
and Analysis on Marine Protected Areas” and the special issue of
Natural Resource Modeling (2002) devoted to the Proceedings
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of the International Conference on the Economics of Marine
Protected Areas of Vancouver, 2000 (Sumaila and Charles, 2002).

The creation of an MPA in an international sea zone has been
recently proposed in the Adriatic Sea, in a region called “Fossa di
Pomo” (Antonelli et al., 2005). In order to avoid strong opposition
from fishermen, this MPA is not intended as a reserve area (i.e. no
fishing zone) but should be a region with carefully regulated
fishing activity—for example, fishing with a limited constant effort
may be allowed. This may give rise to a possible choice for
fishermen as to whether they prefer fishing under an imposed
limited effort inside an MPA with abundant fish stocks or fishing
without imposed limits (e.g. under oligopolistic competition)
outside the MPA, i.e. in a zone with possibly depleted fish stock.

Of course this choice is strongly influenced by the level of
imposed fishing effort inside MPA and by the biological and
economic externalities mentioned above. This problem is the main
motivation for the dynamic model proposed in this paper. In fact,
we consider an aquatic environment divided into two adjacent
patches, characterized by different, in some way complementary,
fishing policies: an imposed constant fishing effort in region 1 and
oligopolistic competition in region 2, where fishermen decide their
harvesting on the basis of a boundedly rational “profit incursion”
attitude. Moreover, given the total number of fishermen, we
propose an adaptive switching mechanism, based on imitation
dynamics (Bischi et al., 2003; see also Vega-Redondo, 1996), that
endogenously regulates the fraction of fishermen that, at each time
period, decide to operate in one of the two regions on the basis of
observed profits.

The division of the two different patches is virtual, in the sense
that no physical boundaries exist, and fish can move among
regions so that the quantity of biomass in one region depends not
only on harvesting and biological growth in that region, but also on
the stock and catch in the neighboring regions (see e.g. Srinivasu,
2005). The consequence is an interdependence which, at each time
period, can increase the population of the zone where the fish
density is smaller.

The dynamic model proposed in this paper is a nonlinear four-
dimensional discrete-time dynamical system, that constitutes an
extension of the model proposed in Lamantia and Sbragia (2005),
where the subdivision of fishermen between the two regions is an
exogenously given parameter. Bischi and Lamantia (2007) also
consider a subdivision of a fishing region into patches, with these
two kinds of fishing policies, however the division modelled in that
paper is markedly different, because two independent growth
functions are considered, in the sense that the fish population of
each region is assumed to interact only with individuals of the
same region. Instead, following Srinivasu (2005), we assume, like
in Lamantia and Sbragia (2005), that the growth function in each
patch involves interaction with both subpopulations, so that if we
consider the sum of the two dynamic equations, then the growth
function of the whole undifferentiated population is obtained,
without any influence from the artificial subdivision.

The plan of the paper is as follows. Sections 2 and 3 define,
respectively, the biological and economic model. Section 4
introduces the discrete-time dynamic system describing the time
evolution of the system under study, whose steady states are
analyzed in Section 5. Section 6 provides some insights into
dynamics by numerical simulations. Section 7 concludes and sug-
gests some possible improvements and extensions of the model
proposed—of course, at the cost of increasing mathematical
complexity.

2. The biological model

We assume that, in a given aquatic region, the unharvested
fish population evolves according to a logistic growth function

with intrinsic growth rate o per year and carrying capacity
K=o/, ie.

X(t+1) = X(O)GX(6) = X()(1 +a — BX(D))

where X(t) denotes the total quantity of fish biomass in the water
basin at time period t. We suppose that the water basin is virtually
divided in two patches, labelled as patch 1 and patch 2, and we
denote by X; and X, the quantity of biomass in the different
regions. Obviously X = X; + X,. We can imagine that a central
authority draws a virtual line on the water basin so that it can
impose a specific harvesting policy for agents operating in one of
the two areas, denoted as marine protected area (MPA) in the
following. Assuming that fish can migrate between the different
patches according to a linear diffusion mechanism, we can model
the biological evolution of the resource in each patch by the
following two-dimensional dynamical system:

{Xl (t+1) =X (OGX(t)) — o[X; (t) — Xa()] — Hi(t) (1)
Xo(t+1) =X (0)GX(t)) + o[Xq(t) — Xa(t)] — Ha(t)

where o >0 is a diffusion coefficient, and H;(t) represents the
quantity of fish harvested in time period t in region i. An important
feature of this model is that it preserves the logistic growth of the
total resource (see Srinivasu, 2005), i.e. summing up the two Eq. (1)
we have

(X1 +X2)(t+ 1) = (X1 (£) + X2(0)G(X1 (£) + Xa(t)) — H(t)

where H(t) = Hq(t) + Hy(t) is the total harvested quantity.
3. Different harvesting policies

In this section we derive the two different harvesting functions
in patch 1 and patch 2, and we compute the profits that fishermen
can obtain from them. Let us assume that in patch 1 n; fishermen
are allowed to harvest with an imposed constant fishing effort,
whereas in patch 2 n, fishermen are engaged in a Cournot
oligopolistic competition. Let N = n; + n, be the total number of
fishermen. We denote by r = n, /N the fraction of fishermen that
choose to harvest outside the MPA, choosing the quantity to
harvest according to a profit-increasing Cournot oligopoly strategy.
Of course (1 — r) represents the fraction of agents fishing in region
1, i.e. the MPA.

If E is the individual fishing effort imposed by a regulator the
MPA, denoted as patch 1, then

Hi(X1) = qEN(1 —1)X;.

where q is the “catchability” coefficient, linked to the adopted
technology. The idea of a constant fishing effort is very common in
the literature on mathematical bioeconomic modelling of the
fisheries (see e.g. Gordon, 1954; Clark, 1976, and references
therein) and it constitutes the most frequently employed method
of control in fisheries.

In patch 2 fishermen engage in a Cournot oligopolistic com-
petition, i.e. at each time period they decide their harvesting
quantity according to profit-increasing strategies taking into
account economic externalities (see Okuguchi, 1998; Szidarovszki
and Okuguchi, 1998; Szidarovszky and Okuguchi, 2000; Bischi and
Kopel, 2002; Bischi et al, 2004, 2005). Here we assume the
existence of a unique market for the harvested resource determined
by the linear inverse demand function

p(t) = a—bH(t) (2)

where a and b are positive parameters representing, respectively,
the maximum selling price and the (opposite of the) slope of the
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inverse demand function. We also assume that the total harvested
quantity H(t) is entirely sold in the market.

The profit at time t of a representative fisherman working in
zone 1 is given by

71() = GEX: (€)(a — bH(1)) — 8E 3)
= qEX;(t){a — b[ENq(1 — r(t))X1 (t) + Nr(t)x(t)]} — 6E
where § is the unitary cost of effort, H (t) = N[1 — r(t)]qEX; (t) and
H, = Nr(t)x(t) represents the total harvesting in patch 1 and 2
respectively, r(t) is the fraction of agents operating outside the
MPA in period t, x(t) being the individual catch of an oligopolist,
whose determination is given below.

The cost function of a representative fisherman that chooses to
fish in zone 2, for harvesting a quantity x when the fish stock is X,
is given by

2
Cx,X2) =c+ Y%, (4)

where y is a technological parameter and c is a fixed cost, that
includes the effort for solving the harvesting decision problem.
The cost function (4) can be derived from a Cobb-Douglas
type “production function” with fishing effort (labor) and fish
biomass (capital) as production inputs (see Clark, 1976;
Szidarovszki and Okuguchi, 1998). It captures the fact that it
is easier and less expensive to catch fish if the fish population is
large, so that it includes the resource stock externalities (Smith,
1968, 1969).

The quantity of resource harvested by a single oligopolist, x(t),
is determined in the following way. Assuming that fishermen are
homogeneous, we can write the time t profit of a representative
fisherman working in zone 2 for harvesting a quantity x(t) as

x(t)?

7 (t) = x(t)(a ~ bH) ~ y o o5~ ¢ (5)

rt+1) =rt)+[1-r(t)]pe_o—1{)Po_k

Due to the complexity of the underlying model, it could be
difficult for an oligopolist to compute the profit maximizing level
of harvesting. For this reason we assume that oligopolists act in a
“boundedly rational” way, in the sense that they update their
harvesting plans in the direction of increasing profits, as specified
in the so-called profit-gradient dynamics (see Flam, 1993; Furth,
1986; Bischi and Naimzada, 1999).

Thus the quantity x(t + 1) of a representative oligopolist as a
function of r(t),x(t),X;(t) and X,(t) can be written as

Xx(t+1)

where k € (0, 1] is the speed of adjustment to the direction of the
profit gradient.

4. The dynamic model
Agents can decide at any time period which patch to fish in,

and consequently the harvesting strategy, i.e. whether to
harvest the resource according to a free competition outside

the MPA, following a Cournot oligopolistic game, or a controlled
constant effort exploitation inside the MPA. Since agents do not
have a full knowledge of the underlying structure of the game,
we assume that the switching mechanism takes place according
to an imitative behavior (see Taylor and Jonker, 1978; Weibull,
1995; Vega-Redondo, 1996; Hofbauer and Sigmund, 1998;
Noailly et al., 2003). In fact, at each time period any agent is
assumed to sample an agent that has chosen a different strategy
in the past, and to switch to the other strategy if the profit of the
sampled agent reveals to be greater than his own. We assume
that the sampling procedure is uniformly distributed so that the
probability of meeting an agent adopting a given strategy is
proportional to the fraction of those agents. Hence the
probability of changing behavior can be modelled according
to an imitation dynamic (see Bischi et al., 2003). For this reason
we specify the switching probabilities

Po—o=1-po_g
Pe—e=1-Dr_o

Po—g = (1 -1P(m1 >12);
Pe_o = P(m2 > m1);

where “p,_, " is the probability to change from the “0” strategy

(“Oligopoly”) to the “E” strategy (constant Effort). This probability
is given by the product between the probability to meet an agent
involved in the constant effort harvesting, i.e. (1 —r), and the
probability that the profit of that agent is greater than the profit for
arepresentative oligopolist, that is P(;r1 > 7;); a similar reasoning
applies for the other symbols with an obvious meaning of the
symbols.

The cumulative distribution (probability) function P(mr; > m5)
= @(my —m,) is monotone increasing with @(—oo) =0 and
D(+0) = 1. Of course, P(my >mq) =1 — DP(mq — 713).

All in all, the dynamic (deterministic mean field) equation
describing how the expected fraction of oligopolists evolves is
given by

= 1(0) + (1= (OO — DTy (6) — 2(6))] — F(O)(1 — F(E) DT (£) — (1)) 7

=11 = (1 =r(&))M(m1(t) — 72(1))] (8)

where similarly to Bischi et al. (2003), we define M(.) = 2®(.) — 1.
Eq. (7) can be interpreted as a balance equation, saying that the
fraction of agents that at time ¢+ 1 operates outside the MPA,
r(t + 1), is increased by the expected fraction of agents that decide
to exit the MPA, [1 — r(t)] p_ o, and decreased by agents entering
the MPA, i.e. (t) po_ k-

The main properties that the function M inherits from the
commonly used cumulative distributions @ are: (1) M(0) = 0; (2)
lim,. . M(z)=-1; (3) lim;_.,.M(z)=1; (4) M is an odd
function and (5) M is convex in (—o0,0) and concave in (0, +o0).

Here we explicitly assume the functional form

M(z) = %arctan <)\2—7TZ>

where the parameter A = M'(0) = (1/2)®'(0) >0 represents the
agents’ propensity to strategy switching, inversely proportional to
the dispersion of the probability distribution of 771 — 75, i.e. greater
values of A represent more peaked probability density around O
(see Fig. 1).

The dynamical system considering the natural resources
evolution in Eq. (1) with Hy(t) = N[1 —r(t)]gEX;(t) and Hy(t) =
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Nr(t)x(t), individual oligopolistic harvesting in (6), and expec-
ted fraction of oligopolistic competitors (7) can be described
by the following map in R* in the dynamic variable X;, X5, x
and r:

Xi(t+1) = X t(O)GXy (t
Xa(t+1) =Xa(t)G(Xq(t) + Xo2(1)) + o[Xq(t) — X2(t)] — Nr(t)x(t)

Xx(t+ 1) = max {O,x(t) + k{a — bN[2r(t)x(t) + qE(1 — r(£))X1 (t)] —

(
t

rit+1) = r(t){l —(1- r(t))%arctan FTH(M (t) — nz(t))} }

It is important to note that the max operator prevents
oligopolists from choosing negative quantities of harvest. The sets
r=0and r =1 are dynamic invariant, in the sense that if r(t) = 0
(1) then also r(t+ 1) =0 (1). This corresponds to the obvious
statement that when a strategy is not performed at a given time it
does not occur anymore. In fact, imitation is impossible in such
limiting case. When r = 0, i.e. all agents exert constant effort, the
model reduces to a bidimensional map, as the equations for x and r
in (9) are redundant. This case corresponds to the one in Lamantia
and Sbragia (2005), where analysis of existence and stability
of equilibria as well as numerical investigations of the global
dynamics are carried out.

5. Steady states of the model

A steady state of the dynamical system (9) is a point S =
(X7, X3, x*, ) satisfying the following nonlinear system of equations

Xiloe — B(X1 +X2)] —0(X; —X3) —N(1 —r)gX; =0 (1)
Xaloo— B(X1 +X3)]|+0X1 —X2] —Nrx=0 (2)
aX; — bNX[2rx + qE(1 — 1)X;] —2xy =0 (3)
r(1-r)(m —m3) =0 (4)
where 7 and 7, are given in (3) and (5) respectively. When no
biomass is present in each patch, i.e. X; = X, = 0, from (10), (2) we
get x = 0 and (10), (4) reduces to r(1 —r)(c — 8E) = 0. In this case
equilibria are given by 9 = (0,0,0,0) and S9 = (0,0,0,1). When
¢ = 8E any level r* €]0, 1] guarantees an equilibrium of the type
S9 =(0,0,0,r*). All these cases represent extinction equilibria as
they involve no biomass in each patch and can be economically
interpreted in a straightforward way. About the stability of these
equilibria, the following result holds:

Proposition 1. Equilibria 59,59,59 are unstable for all parameters
values.

A proof can be given by standard equilibrium analysis and it
is outlined in Appendix A. As these equilibria are never stable,
we can deduce that the system does not tend spontaneously to
extinction.

G.I. Bischi et al./Ecological Complexity 6 (2009) 353-362

Let us now consider the case r =0, i.e. all agents harvesting
inside the MPA. Obviously Eq. (10, 4) is satisfied and from (10, 3)
we find that the harvesting equilibrium level of each representa-
tive agent is given by xj = ((a — bNGEX1)X,/2y). Note that as all

)+ Xa(8)) — oX; () — Xa(£)] = N[1 — r(6)]qEX1(t)

agents harvest inside the MPA, the equilibrium level x* has no
practical relevance whatsoever in this case.

Hence system (10) reduces now to

From the second equation, for X, # (0/8), we obtain X;
g£(X2) = Xa(a — 0 — BX3))/(BX2 — 0) >0 which, substituted back

in the first equation, lets study the equilibrium level in the variable
X, as a zero of the single variable function

Xila = B(X1 +X3)] — (X1 — X2) = NgEX; =0
Xola — B(X1 +X2)] +0X1 —X2] =0

_ Xa[(2Xa — @) (@ — 20)0 + ENq(0 — Xz B)(@ — 0 — X2 )]
(0 —X2B)°

Clearly it results f(0) =0, limyx, ., f(X2) = 400, and f has a
vertical asymptote at X = (o/f), as limy, _ 4/, f(X2) = —occ. By
continuity of fin the interval ((o/ ), +c0) we have that at least one
X5 > (o/B) such that f(X;) =0, hence defining the equilibrium
point S} = (g(X3),X3,x*,0). Note that condition f'(0) >0, equiva-
lent to («¢/o) <1+ (1/(1 + ENq)), implies the existence of another
equilibrium point such that X; € (0, (o/8)).

The analysis of the case r = 1, i.e. all agents harvesting outside
the MPA, leads to a similar exercise. Again Eq. (10, 4) is satisfied
and the harvesting equilibrium level of each representative agent
asx; = (aXz)/2(bNX) > 0. The existence of equilibria can be studied
similarly to the previous case. Under the likely assumption that
o > 20 it is possible to prove analytically that no equilibrium exists
with X; < (o/B) and at least one equilibrium S = (X},8(Xj),x;,1)
always exists with X; > (o/8). Moreover, it is easy to verify that
condition a < (4byo (o — 2))/B ensures uniqueness of equilibrium
S; under the case r = 1. The details are left to the reader.

Now we tackle the problem of existence of inner equilibria with
re(0,1) and with X;,X3 > 0. As before, we can find equilibria in
terms of a two-dimensional system of equations, whose derivation
is carried out in Appendix A. This system can be easily solved
numerically. An easy situation is depicted in Fig. 2a, with
parameters ¢ =2; 8=02; 0=06; E=1; N=80; qg=0.1;
a=2;b=03;y=05;§=0.5; c= 0.5 where the unique positive

f(X2)

M 1

0.75 M

0.5 0.5
0.25

-4 -2 2 z 4 7r1-—-ﬂ'2
-0.25
-0.5
T qow” A “lugh” A

-1

Fig. 1. Sketches of M(z) for (a) “low” and (b) “high” propensity to strategy switching A.
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Fig. 3. Bifurcation diagrams for E € [0, 30]. (a) and (b) show in the vertical axis the asymptotic values of biomass in patch 1 and 2; the corresponding individual profits for

agents operating in patch 1 are depicted in (c).

equilibrium with (X7, X;) ~ (6.7341,4.6296) is represented as the
intersection point of two curves defined by the previous system.
It can be easily checked that the corresponding equilibrium level
of r and x are also feasible (i.e. 0 < r < 1 and x > 0). More involved
equilibrium curves are depicted in Fig. 2b, where parameters are
set as «=3; B=04; 0=03; E=2; N=80; q=0.1; a=2;
b=0.3; y=0.5; §=0.5; c = 0.5, where four equilibria A, B, C, D
are obtained (also in these cases the corresponding equilibrium
level of r and x are also feasible).

As stability analysis for equilibria of the type Sj and S; as well as
for inner equilibria with r€(0,1) is not an easy task, we only
perform numerical analysis for these cases in the next section.

6. Numerical simulations
In the following we present some numerical simulations that

give an insight on the richness of possible dynamic scenarios
arising from (9). We present two main cases. In the first one, only

constant effort is exerted, so that a part of the region can be
regarded as a no-take area. In this case we show that the model
suggests that an intermediate level of effort should prevail which
maximizes profits in a sustainable way. This is very similar to the
notion of maximum sustainable yield presented in Gordon (1954).
The second example shows some dynamic scenarios arising in the
complete model, when harvesting both inside and outside the MPA
is allowed. A useful tool for numerical investigation is the
bifurcation diagram, showing the possible long-term values
(equilibria/fixed points, periodic or chaotic orbits) of the system
as a function of a bifurcation parameter. Even if the cases presented
in this section are based on fixed parameter values, we found
similar situations for a broader set of parameters, as briefly
outlined below. Before discussing these cases in detail, however,
we observe that often the system (9) diverges when r(0) > 0: if we
let even one agent harvest outside the MPA, then many fishermen
will imitate him and so the resource will be depleted so that it
becomes extinct in finite time. We find this point very interesting,
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Fig. 4. Bifurcation diagrams for E € [0, 0.1] with a “low” propensity to strategy switching A. (a), (b), (c), (d) in the vertical axis the asymptotic values for state variables X1, X, x,
are reported respectively; (e), (f) corresponding individual profits 777 and 7, for agents operating in patch 1 and 2 respectively.

as it resembles the “tragedy of the commons” recalled in the
introduction.

We start by considering a case with all agents inside the MPA,
i.e. r=0. If r(0) = 0 then the last equation in (9) reduces to the
identity r(t + 1) = r(t) = 0 for each t, and so also the third equation
in (9) loses practical relevance, as no oligopolist exists. So the
system is described by the iteration of a two-dimensional discrete
dynamical system for the state variables X; (t) and X, (t).

Inside the MPA, harvesting is regulated by the authority by
setting a constant fishing effort level E. Of course the authority is
interested in setting this parameter conveniently, as low effort
levels reduce agents’ profits whereas high levels can deplete the
resource. Therefore we mainly focus on the impact of parameter E
on biomass and agents’ profits.

Let us consider the bifurcation diagrams shown in Fig. 3, where
parameters are given as'a =2.7,8=0.6,0 =02,N=50q=
.001,a=15,b=03,y=0.1,§ = 0.005,c = 3,k = 0.02, A = 0.1,
and initial condition (i.c.) X; (0) = 0.3,X,(0) = 0.2,x(0) = 0.07 and
r(0) = 0. The bifurcation parameter E ranges in the interval [0,30].
For low values of E, harvesting is kept at low levels and so biomass

1 As for parameter o, expressed in day~!, we considered in the numerical
simulations values over 2.5, following Conrad and Clark (1987, p. 98).

in both patches varies according to natural fluctuations, driven
by logistic growth. However the shrinking of the chaotic attractor
for exploited biomass X; as E is increased is evident (see Fig. 3a).
Further increasing the level of imposed effort E causes the chaotic
attractor to vanish through a sequence of period halving
bifurcations and a stable four cycle appears. In this case, the
initial condition r(0) = O forces every agent to stay inside the first
region (MPA), as there is no oligopolist to imitate. Consequently,
biomass in the second region, X;, is left unharvested and its
value grows on average, as is clearly visible in Fig. 3b. The
corresponding values of individual profits as constant effort is
increased are shown in Fig. 3c. It is interesting that for low levels
of efforts, profits are positive and agents are better off when the
authority imposes an average level of effort E. High levels of
effort (and so of resource exploitation), not only lead to resource
depletion in the region, but they can also cause losses to
fishermen. It is interesting to compare the situation depicted in
Fig. 3c with the one described in the seminal paper by Gordon
(1954), in particular with the notion of maximum sustainable
yield. For parameters as in Fig. 3, if we consider an initial
condition with r(0) > 0, then in numerical simulations we always
observe that the system diverges, i.e. the resource becomes
extinct in finite time.
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Now we turn our attention to the complete case where both
patches are exploited and agents can switch strategies according to
the imitation dynamic mechanism previously described. In this
case the initial condition of the system (9)is such thatr € (0,1) and
any steady state of the dynamical system is characterized by
constant levels of biomass and harvesting in both patches, so that
agents are indifferent to harvesting in patch one or in patch two, as
profits are equals.

We begin this analysis by comparing two situations obtained
with, respectively, a low and a high A, that regulates agents’
propensity to change strategy. In the bifurcation diagrams of Fig. 4,
parameters are given by o« =2.7,8=0.7,0 =06,N =30,q =
03,a=3,b=3,y=1.7,6 = 04,c = 0.2,k = 0.0003,A» = 0.1,
imposed efforts E<[0,0.1] and i.c. X;(0) = 0.3,X3(0) = 0.2,x(0) =
0.07 and r(0) = 0.3.

For low levels of efforts, agents split themselves almost equally
between the two regions (r — 0.43), but this fraction decreases as
more harvesting is allowed in patch one (see Fig. 4d). For low levels
of efforts, however, the long run behavior of the system stabilizes to a
fixed point. As effort in the MPA is increased, competition rises and
so agents outside the MPA are forced to increase unitary catches to
keep up with competitors (see Fig. 4c). At E = E; ~ 0.07261 the
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steady state loses its stability through a Neimark-Sacker (NS)
bifurcation, i.e. it loses stability and a stable closed curve emerges,
where (quasi)periodic motion takes place. Also in this case it is
interesting to consider agents’ profits in both regions. As E is further
increased, inside the MPA profits increase as a consequence of more
intensive resource exploitation and profits outside the MPA also
increase due to greater individual harvesting x, as noticed before.
However, the NS bifurcation leads to high biomass variability, which
has a deep impact on profits, especially for oligopolists. Conse-
quently, they can gain huge profits or suffer big losses as time goes on
(see Fig. 4e and f).

It is interesting to compare this result with the situation
depicted in Fig. 5, where all parameters are as in Fig. 4 but A = 0.8.
Again a Neimark-Sacker bifurcation causes the loss of stability of
the fixed point, but two main differences with respect to the
previous case are evident: firstly the fixed point has a very small
region of stability, as the bifurcation appears for a lower value of
effort, namely at E, ~ 0.0011. Secondly, and more interestingly,
after the NS bifurcation takes place, larger oscillations in the state
variables with quasi-periodic motion appear. A larger effort inside
the MPA in general reduce the biomass in the MPA and causes an
increase of the variability of the biomass outside the MPA. Again
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E

Fig. 5. Bifurcation diagrams for E € [0, 0.1] with a “high” propensity to strategy switching A. (a), (b), (c), (d) in the vertical axis the asymptotic values for state variables X3, X5, x,
r are reported respectively; (e), (f) corresponding individual profits 7y and 7, for agents operating in patch 1 and 2 respectively.
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Fig. 6. Bifurcation diagrams for ¢ € [0, 2.2]. (a), (b), (c), (d) in the vertical axis the asymptotic values for state variables X, X5, x, r are reported respectively; (e), (f) corresponding

individual profits 7r; and i, for agents operating in patch 1 and 2 respectively.

profits oscillate, but the high propensity to change behavior
amplifies strongly their variability.

From an economical point of view we can summarize these last
results as follows. When the regulator is able to enforce low effort
levels in the first patch, then the system is characterized by
stability in all relevant quantities: biomass in each patch,
harvesting and fraction of oligopolists. This is a consequence of
imposing low harvesting levels in the first patch so that many
agents are better off by operating in patch two. Indeed patch one
serves as a restocking area, since harvesting levels are kept at a
minimum. However, if the regulator lets agents increase their
catches in patch one, then a larger fraction of fishermen tends to
switch to the first patch. As a consequence, also individual
harvesting in patch two is increased (see Fig. 4c), in order to
compensate higher harvesting (and profit) from patch one (see
Fig. 4e). This mechanism is more complicated after the NS
bifurcation occurs, as endogenous oscillations in state variables
(biomasses, harvesting, and fraction of oligopolists) appear. These
effects are more evident with higher agents’ propensity to switch
strategies, with consequently more persistent oscillations in
biomass levels and fractions of oligopolists. Similar results can
be obtained, for a given level of imposed efforts, by varying the cost
of effort 4. In particular we observe that the higher the cost of effort

is, the more stable the system appears. In particular the oscillatory
behavior encountered with low costs of effort disappears as § is
increased over a given value.

Now we consider the effect of changing fixed costs ¢ of a
representative oligopolist, see Eq. (5). This fixed cost can also be
interpreted as a fixed tax imposed on each oligopolist at each time
period. In this case, as before, there is a range of fixed costs
ensuring stability of the steady state but now loss of stability of the
steady state can happen through flip (period doubling) bifurca-
tions. Let us consider again parameters as in Fig. 4 but with E =
0.025 and c € [0, 2.2]. In this case we can notice that the fraction of
oligopolists decreases as fixed cost c increases over a small
threshold ¢ (see Fig. 6d). Since oligopolists prefer to change
behavior and exert constant effort as a consequence of taxation c,
biomass in patch two tends to increase and, consequently, patch
one is heavier exploited. At a level ¢ ~ 1,21, a flip bifurcation
takes place, and biomass in both regions starts oscillating between
a low and an high level (see Fig. 6a and b). When c is above a given
level, exploiting patch two gives rise to sure losses (see Fig. 6f) so
that almost all agents operate in patch one (see Fig. 6d). Hence
patch two tends to become a no-take area. In this scenario we have
that r — 0 as time passes and the third equation in (9), representing
harvesting of a representative oligopolist, does not influence
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biomass levels in practice: with heavy taxation on oligopolists, the
model reduces to the one proposed in Lamantia and Sbragia (2005),
that can be regarded as a benchmark case of (9) when oligopolistic
behavior is ruled out.

7. Conclusions

In this paper we have proposed a dynamic nonlinear fishery
model to simulate the time evolution of fish stock in an aquatic
environment which is divided into two adjacent patches character-
ized by different exploitation methods: harvesting in one patch is
limited by a constant fishing effort rule imposed by a regulator,
whereas in the other patch the individual catch is freely determined
by fishermen according to a decision rule based on the knowledge of
economic (demand and cost) externalities and on profit-increasing
attitude (profit gradient dynamics). The available fish stock in each
time period in each patch is determined by reproduction, by the
fishermen'’s harvesting decisions and by migration of fish from one
patch to the other according to differences between fish densities. It
is also assumed that fishermen can switch harvesting decision rules
according to an imitation dynamic, based on comparison of profits
obtained in the previous by fishermen fishing in the two different
patches. The patch where oligopolistic competition takes place is
intended to represent an open access high sea fishery, whereas the
patch with imposed fishing effort is intended to represent a marine
protected area (MPA).

Our simulations of models with two different kinds of fishing
strategies reveal a much broader array of dynamic behavior with
respect to those obtained in the study of system with a
homogeneous fishing environment: besides steady state behavior,
periodic, quasi-periodic and chaotic dynamics emerge, and
qualitative changes (or bifurcations) are detected as some
parameters of the model are varied.

The main conclusions are related to the sustainability of
exploitation in the whole region. In fact, sustainability is favored by
reducing the harvesting levels in one of the two patches, which
hence serves as a restocking area. Among the tools to disincentive
harvesting in one region, we considered the simplest ones, such as
reduction of individual efforts, taxation on oligopolists or on effort.
All in all we believe that these results can provide useful insights
into the complicated matter of management of renewable resource
in the presence of regions where different fishing policies are
adopted and strategic interactions occur.

In particular, the important role of marine protected areas can
be deduced from the results shown in this paper. In this paper we
have focused our attention on the level of effort to impose within
the MPA. In fact we found that low levels of effort tend to stabilize
the system around equilibrium levels, whereas large variability of
state variables are present when effort is over some threshold
values. This effect is more evident as agents’ propensity to switch
strategy is increased. The stability of state variables is important as
it also implies stability in profits. In any case, as effort is increased,
we observed more variability in profits for oligopolists than for
constant effort exploiters; hence oligopolistic behavior can be very
risky when the MPA is not properly enforced. This point suggests
keeping regulated effort at low levels not only to prevent
overfishing inside the MPA, but also to reduce profit variability
to oligopolists. Moreover the regulator can influence the fishing
level outside the MPA by properly tuning the parameter ¢, which
may be interpreted as a taxation on oligopolists.

A peculiar feature deduced from the numerical results shown in
this paper is the tendency to produce oscillatory time patterns,
with periodic, quasi-periodic or chaotic oscillations. In a real
system this property may create some difficulties in the analysis of
empirical data when policy makers try to understand the trend of
available fish stock after the creation of a MPA. In other words, the

benefits of the creation of a MPA can be properly evaluated only if
they are observed for a long period after the MPA exists.

Of course, the model proposed in this paper gives a very
simplified and stylized representation of the real system described.
In fact, the presence of many important factors have been
neglected, such as the presence of different species of fish as well
as the existence of different age (or size) classes. This fact is
particularly important in the particular case that motivated this
paper, the project of a MPA in the region known as Fossa di Pomo in
the central Adriatic Sea. In fact, the importance of this region is
related to the presence of young (hence small) fishes (it is denoted
as a “nursery”). So, the limitation of fishing activity in that region
has the important effect of increasing the number of big size fishes
around it. This effect, as well as other boundary effects around a
MPA, has been neglected in the model proposed. Moreover, the
effects of the mobility of fishes different from linear diffusion due
to density differences have also been neglected. In other words, the
model proposed in this paper constitutes a first modest step
towards more realistic models that can be obtained by improving it
through inclusion of these more realistic assumptions. Of course,
the inclusion of more realistic assumption has the consequence of
giving the model a more complicated mathematical structure, and
the usual trade-off between mathematical simplicity and a
realistic description of real systems always constitutes a difficult
and challenging problem.
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Appendix A

Proof of Proposition 1. Stability of extinction equilibria $9,59, $3 can
be shown by standard linearization analysis. For instance for
equilibrium SY, eigenvalues of the Jacobian matrix for dynamical
system (9) read

Ap=1 +a—07%<ENqi ENg? +402)

12Ky

Xa
2 T
A=1-— ;arctan [EA(C - Ec‘S)]

It is straightforward that, assuming « > o, eigenvalue A; =1+
o« — 0 — (1/2)(ENqg — \/ENg? + 40%) is never inside the stability
interval, being A; > 1 for all parameter values. Moreover we observe
that eigenvalues A3 approaches —oo as X, — 0" and that it is
A4 €(—1,1) as long as SE < c. Therefore S cannot be stable for all
possible parameter values. The details for 5, S are similar and are left
to the reader.

Inner equilibria with r € (0, 1)X;, X > 0. From (10, 1) we can write
r(X1,X2) = (ENq — o + B(X; +X2) —o0(X1 —X3)/ENq). By adding
together From (10, 1) and From (10, 2) and substituting back the
expressions for r and 1 —r, we obtain an expression for x(Xi, X3) =
(¢ — BX1 + X2)) X2 + 0(X1 — X2)]EqX1/X1[ENq — o + B(Xq+
X3)] — o(X1 —X3)). By employing the obtained expressions for
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r(X1,X2) and x(X1,X3) in (10, 3) and (10, 4) we obtain the following
system of equations only in the variables X; and X, that characterize
inner equilibria with r€(0,1) and X;,X; >0

a— bNGE(1 — 1X; — Z(bNr +Xl)x -0

qEXija — b(GENX1(1 —1))] - SE+c= x{a + bNQEX1(2r — 1) — (bNr +

where the last equation can be referred to as the locus of points
where profits inside and outside the MPA are equal. Note that any
solution (Xj,X;) of the previous system only define a feasible
equilibrium point when r(X;,X;) € [0,1] and x(X;,X3) > 0.
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