Nonlinear
Analysis

PERGAMON Nonlinear Analysis 47 (2001) 5325-5341

www.elsevier.nl/locate/na

Studying basin bifurcations in nonlinear
triopoly games by using 3D visualization

Gian Italo Bischi, Lukas Mroz, and Helwig Hauser
University of Urbino, Italy, VRVis Research Center, Vienna, Austria,
http://www.uniurb.it/, http://www.vrvis.at/,

mailto:bischi@econ.uniurb.it mailto: {mroz |hauser } @vrvis.at
Abstract

We consider three-dimensional discrete dynamical system, obtained by the iteration
of a noninvertible map of R®, which simulates the time evolution of an oligopoly
game with three competing firms. The model is characterized by the presence of
several coexisting stable equilibria, each with its own basin of attraction. In this
paper we face the question of the delimitation of the basins and the detection of
the global bifurcations that cause the creation of non-connected basins. This re-
quires a study of the global properties of the 3-dimensional noninvertible map by
the method of critical sets, based on the determination of the contact bifurcations
through a systematic computer-assisted study. This requires the visualization of sur-
faces (the critical surfaces and the basins’ boundaries) which sometimes are nested
one inside the other. Enhanced graphical methods, based on two-level volume ren-
dering, are employed in order to modulate the opacity of outer objects so that the
contacts between the basins’ boundaries and critical surfaces can be visualized. This
is obtained through the realization of ad-hoc routines, which allow interactive 3D
visualization.

Key words: Dynamic Games, Discrete Dynamical Systems, noninvertible maps,
Computer Graphics, Volume Rendering.

1 Introduction

This paper builds on, and aims to contribute to three different literatures.
First, it faces an equilibrium selection problem which is typically addressed
in the literature on dynamic and evolutionary games with several coexisting
equilibria (see e.g. [4,27,10,5]). In fact, we consider a discrete dynamical sys-
tem which represents the time evolution of a Cournot oligopoly game with
three competing firms (a triopoly game), recently proposed in [3], which is
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characterized by the existence of several stable Nash equilibria®, each with
its own basin of attraction. An oligopoly is a market structure where a few
producers, each of appreciable size, produce the same good, or goods which
are perfect substitutes. A Cournot oligopoly model (see [9]) is based on the
assumption that each firm decides its own production in order to maximize
its expected profits, and the fewness of firms gives rise to interdependence,
that is, each firm must take into account the actions of the competitors in
choosing its own action, because each profit also depends on the production
decision of the competitor. In the original work of Cournot, as well as in many
subsequent papers, suitable assumptions on the demand and cost functions
ensure that a unique Nash equilibrium exists (see [5] for references). However,
in many economic models multiple equilibria emerge and stability arguments
are often used to select among them. If several equilibria are stable, then a
situation of strategic uncertainty prevails, because the equilibrium to which
the dynamic game converges depends on the initial condition. This naturally
leads to the study of the basins of attraction, in order to ascertain the role
of the starting conditions of the dynamic game in the selection of the final
outcome. This issue is often addressed in the recent literature on dynamic and
evolutionary games, where an equilibrium is reached by a dynamic adjustment
process occurring when boundedly rational players play the game repeatedly,
a mechanism which is often represented as a discrete dynamical system (see
e.g. [4], ch.9, [27]). For the particular triopoly game considered in this paper,
the problem stated above has already been addressed in [3], where it is shown
that coexistence of stable steady states occurs with basins of attraction which
may be nonconnected sets. As repeatedly stressed in [3], the presence of non-
connected basins is peculiar of noninvertible maps, but no attempts have been
made in that paper in order to explain the global bifurcations that cause the
creation of nonconnected basins.

This leads to the second stream to which the present paper contributes, which
is related to the study of the global properties of noninvertible maps by the
method of critical sets (see e.g. [14,23,2] and references therein). Indeed, it
is now sufficiently well-known that the creation of nonconnected basins in
one-dimensional noninvertible maps can be explained in terms of contacts be-
tween critical points and basins’ boundaries (also called contact bifurcations,
see [21]). In recent years, in the study of two-dimensional noninvertible maps,
analogous results have been obtained by the method of critical curves, a two-
dimensional generalization of the notion of local maxima and minima in the
one-dimensional case (see e.g. [24,23,2]). Instead, the extension of these meth-

1 In a game a Nash Equilibrium is an optimal choice such that none of the firms has
an incentive to deviate, since each player’s strategy is the best response to the other
players’ predicted choices. In the dynamic game considered in this paper, where the
time evolution of players’ choices are obtained by the iteration of a map, the Nash
equilibria are the fixed points of the map.
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ods to the study of models involving three-dimensional noninvertible maps,
like the one considered in the present paper, is an almost unexplored field.
In this paper we try to use the method of critical sets in order to study the
contact bifurcations which cause the creation of nonconnected basins. For
maps of dimension greater than one, the explicit analytical expressions, in
terms of elementary functions, of the critical sets, and of the basin boundaries
involved in the contact bifurcations are generally not known. So, even for two-
dimensional noninvertible maps, the ‘methods followed in the determination
of the contact bifurcations are based on a systematic computer-assisted study,
carried out through a continuous dialog between analytic, geometric, and nu-
merical methods, which often require a carefulusage of computer graphics.
This creates some nontrivial practical problems when one tries to general-
ize such method to more than two dimensions. In fact, since the computer
screen is two-dimensional, the visualization of objects in a phase spaces of
dimension greater than two, and the detection of contacts among these ob-
jects as their shapes change, may become a very difficult task. In other words,
the extension to higher-dimensional systems of the results on contact bifurca-
tions, which gave so many interesting and promising results in the study of
two-dimensional noninvertible maps, may become a very hard and challenging
task, due to the difficulties met in the computer-assisted graphical visualiza-
tion. In [3], two-dimensional sections are employed in order to visualize the
basins of coexisting attractors, but this method is not useful to detect the oc-
currence of qualitative changes in the structure of the basins and the contact
bifurcations which cause such changes.

This introduces the third topic, concerning the problem of visualizing objects
which are of higher-dimensionality than the screen. Indeed, in our case the
problem of 3D visualization also involves other difficulties, related to the fact
that it is necessary to visualize objects which are nested inside other objects.
This means that sophisticated graphical programs are necessary to modulate
the opacity of the outer objects in order “to see through” them. Moreover, the
critical sets are now two-dimensional surfaces embedded in a three-dimensional
phase space, and their contacts with portions of basin boundaries, also given
by two-dimensional surfaces, may be very difficult to be detected, unless the
critical surfaces are represented like semi-transparent veils. In this paper some
enhanced graphical methods, based on two-level volume rendering [15] are
employed in order to visualize the attractors inside their basins, the portions
of the basins of which are nested inside the basins of different attractors, and
the contacts between the basins’ boundaries and the critical surfaces. Indeed,
the realization of ad-hoc routines, which allow interactive 3D visualization,
reveals to be crucial in order to detect the occurrence and the effects of contact
bifurcations.

The remainder of this paper is organized as follows. In Section 2 we recall
the general notion of critical set for a noninvertible n-dimensional map and
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we give a qualitative description of the bifurcations which cause the creation
of nonconnected basins. In Section 3 we introduce a noninvertible map whose
iteration gives the time evolution of a triopoly game, and we give some re-
sults concerning the existence and the local stability of its fixed points, which
represent the Nash equilibria of the game. In Section 4 we briefly describe
the graphical method which is at the basis of the computer program real-
ized for the numerical study of the contact bifurcations of three-dimensional
noninvertible maps. In particular, we show an exemplary bifurcation which
changes the topological structure of a basin, from connected to nonconnected
set, caused by a contact between a critical surface and the basin boundary.
Such contacts are revealed through a nontrivial implementation of interactive
two-level volume rendering graphical software.

In this paper we only give a few images, which are just snapshots of ani-
mated sequences representing the changes of the basins as some parameters
are gradually changed along particular bifurcation paths in the space of the
parameters. Further images, as well as the whole animated sequences, can be
found at the web page correlated to this work (see [1]).

2 Critical sets and basin bifurcations for n-dimensional noninvert-
ible maps

A map T : R* — R*, defined by p' = T(p), is a noninvertible map if it is
“many-to-one”, i.e. distinct points p; # p, exist which have the same image,
T(p1) = T(p2) = p'. This means that several rank-1 preimages of a given point
p' may exist, or, equivalently, several inverse mappings are defined, being p; =
Tj‘1 (p'), 7 =1,...,m. So, the space R* can be subdivided into regions Z, k& >
0, whose points have k distinct rank — 1 preimages. Generally, as the point p’
varies in R™, pairs of preimages appear or disappear as it crosses the boundary
separating different regions. Hence, such boundaries are characterized by the
presence of at least two coincident (merging) preimages. This leads to the
definition of the critical sets, one of the distinguishing features of noninvertible

maps [14,23]:

Definition. The critical set C'S of a continuous map T is defined as the locus
of points having at least two coincident rank — 1 preimages, located on a set
CS_; called set of merging preimages.

The critical set CS is the n-dimensional generalization of the notion of critical
value (when it is a local minimum or maximum value) of a one-dimensional
map?, and of the notion of critical curve LC (from the French “Ligne Cri-

2 This terminology, and notation, originates from the notion of critical points as it
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Fig. 1. Qualitative graphical illustration of the folding (on the left) and unfolding
(on the right) process.

tique”, following Gumowski and Mira [14]), of a noninvertible two-dimensional
map. The set C'S_; is the generalization of the notion of critical point (when
it is a local extremum point) of a one-dimensional map, and of the fold curve
LC_; of a two-dimensional noninvertible map. The critical set C'S is gener-
ally formed by (n — 1)-dimensional hypersurfaces of R", and portions of CS
separate regions Z of the phase space characterized by a different number of
rank—1 preimages, for example Z;, and Zy o (this is the standard occurrence).

From the definition given above it is clear that the relation C'S = T(CS_;)
holds, and the points of C'S_; in which the map is continuously differentiable
are necessarily points where the Jacobian determinant vanishes:

CS_1 C Jo = {p € R*|det DT(p) = 0} . 1)

In fact, in any neighborhood of a point of C'S_; there are at least two distinct
points which are mapped by T in the same point. Accordingly, the map is not
locally invertible in points of C'S_;.

In order to explain the geometric meaning of the critical sets, let us consider
a portion of CS, say CS, which separates two regions Zp and Zxo of the
phase space, and let CS_, be the corresponding locus of merging preimages,
ie. CS = T(é’.\S’_l). This means that two inverses of T exist, say 7; * and
T,!, which are defined in the region Zi4+2 (and have respective ranges in the
regions R; and R, separated by C'S_;). Both inverses merge on CS (i.e. they
give merging preimages on C/@_l) and no longer exist in the region Z;. Now, let
U C R* be a ball which intersects 5’3’*1 in D=UNCS_;. Then T (D) C 5&\9’,
and T (U) is “folded” along C'S into the region Z;.o. Refer to Fig. 1 for a
graphical illustration. In fact, considering the two portions of U separated by
CS_1, say Uy € R; and U € Ry, we have that T(U;)NT(Us) is a nonempty set
included in the region Z;.s, which is the region whose points p have rank-1
preimages p; = Ty (p/) € Uy and py = T (¢) € U,. This means that two
points py € Up and p, € Uy, located at opposite sides with respect to C'S_y,
are mapped in the same side with respect to C'S, in the region Zy,,. This is
also expressed by saying that the ball U is “folded” by T along CS on the
side with more preimages. The same concept can be equivalently expressed

is used in the classical works of Julia and Fatou.
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by stressing the “unfolding” action of 7!, obtained by the application of the
two distinct inverses in Zj.o which merge along 53‘, because if we consider
a ball V C Z;., then the set of its rank — 1 preimages 77 (V) and T5 (V)
is made up of two balls 77} (V) € Ry and T5 '(V) € Ry, and these balls are
disjoint if VN CS = 0.

This is the basic reason for the existence of nonconnected basins, a property
specific to noninvertible maps. We recall that the basin of an attractor A is
the set of all the points that generate trajectories converging to A

B(A) = {2|T*(z) » A as k- +o0 } (2)

If U is a neighborhood of A whose points converge to A (which exists by
definition of attractor) then U C B (A), and also the points which are mapped
inside U after a finite number of iterations belong to B (A), thus the basin of
A is formed by all the preimages of the points of U :

B(4)=UT7) (3)

where 7!(z) represents the set of the rank-1 preimages of z (i.e. the points
mapped into z by T), and T/ (z) represents the set of the rank — j preimages
of = (i.e. the points mapped into z after j applications of T).

Now, let us assume that B (A) is a connected basin for a given set of parame-
ters, and as a parameter is changed B (A) has a contact with CS, after which
a portion of B(A), say By, crosses CS and enters a region Zp.o with more
preimages. This implies the creation of new portions of B (A) given by the
new preimages T, ' (Bg), ¢ = 1,2. If these preimages belong to regions Z,
with k£ > 0, also other portions of B (A) are created after the contact, given
by higher rank preimages of By.

To sum up, we may say that the backward iteration of a noninvertible map T
repeatedly unfold the phase space, and this implies that a basin of attraction
may be nonconnected, i.e. formed by several (even infinitely many) disjoint
portions. In fact, as a suitable set U in (3), we may take the so called immediate
basin of an attracting set A, By(A), defined as the widest connected component
of the basin which contains A. Then the basin of A (or total basin) is given
by the whole set of preimages, of any rank, of the immediate basin:

o0

B(4) = U T (E(4) (@

and, from the arguments given above, it follows that such a set may be made
up of infinitely many disjoint components. So, the global bifurcations which
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transform a simply connected basin into a nonconnected one can be explained
in terms of contacts of basins boundaries and critical sets. As stressed in the
introduction, their study is generally based on both theoretical and compu-
tational methods, and, as we shall see in the example discussed below, the
graphical visualization is often crucial in the discovery and explanation of
changes in dynamic scenarios and their parameter dependence.

3 The triopoly game and its equilibria

The time evolution of the triopoly game proposed in [3] is obtained by the
iteration of the three-dimensional map T : (¢1,¢2,93) — (¢}, d5, ¢5)

¢ =(1=A) g+ Mg gl —qg)+a(l—g)
T:9gh=01-2)g@+ules1—g)+aq (1 —q)] (5)

g3 = (1= Xs)gs + Aspia g (1 —q1) + g2 (1 — go))]

where ¢;, 7 = 1, 2, 3, represent the productions at time ¢ of the competing firms
which sell the same good in a given market, and ¢} the respective productions
at time ¢ -+ 1. The parameters belong to the parameter space

Q={p;>0and )\ €[0,1]} (6)

The fixed points of the map (5), Nash equilibria of the game, are solutions of
the following algebraic system of degree 8
prlee(l—q)+a(l-a)l=a
toles (1 —q1) + a3 (1~ g3)] = g (7)
p3lge(1—a) +a1 (1 - q)] =g

It is evident that the point E; = (0,0,0) is always a fixed point, so at least
another real solution of (7) must exist. As shown in [3], a complete analytical
solution of the system (7) can be found under the assumption

= g = [z = [ (8)

In this case, the second fixed point, which exists for each value of y, is given
by

1 1 1
Ep={1—-—1——,1-—]|.
20 2u 2u
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and other six fixed points exist provided that p > /2 + %, given by

E. = 142u+vV ¥ 142u+V¥ 3+2u—\/x17) B, — (1+2u—ﬁ 14+2u—VT  3+2u+VT
3 au > au 3 44 4 a0 ) ap i 4
B — (3+2u—\/§ 142u+vT 1+2u+«/§> E = (3+2u+\/5 142u—vT  1+2u—vT
5 a0 4w T g 6 0 A 0T ap
B = 142u+vV ¥ 342u—vT  14+2u--VT B = 42—V 34+2u+V¥  142u—VT
7 ap ’ ap ) au 8 au ) ap d 4

where ¥ = U (u) = 4pu® — 4u — 7. A complete study of the local stability
properties is easily obtained in the symmetric case of identical competing
firms, i.e.

)\1:)\2:)\3:)\. (9)

as stated in the following proposition (see [3])

Proposition. Let (8) and (9) hold. Then

(1) the fized point E; ezists for each (1, A) € Q and it is a stable node for
(1, ) € Q° (Ey), with Q*(E) = {(M, NeQ|p< %},

(1) the fized point E, exists for each (u,\) € Q and it is a stable node for
(u, A) € Q° (Eg), with Q°(Ey) = {(M, NeQli<p<2and A(2u—1)< 2};

(i) the fized points E3, Es and E; exist for p > 1/2 + /2 and are always
unstable;

(iv) the fized points Ey, Es and Eg exist for u > 1/2 + /2 and are stable for
(1, 2) € Q° (By) = Qi (Ey) UQ(Ey), with

1
Qi(E4)={(u,)\)eQ|§+\/§<u<2 and0<)\</\f(u)}

and
(B ={{p,A) € Qp>2 and 0 < X < M)}

where A¢(p) and Ap(p) are given by

Ap(p) =

5T+ (B o) (1 0)
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Fig. 2. CS_1 (top left image, three sheets CS(_l) , 059’{, and CS(_?, depicted together

with basins of attraction) and C§ (top right image, three sheets CS®, ¢S} and
CS©), depicted together with separated zones Zg, Zo, Z4, Zg, and Zg) visualized in
3D - the images below the top row show planar intersections at different (increasing)
depth values for both 3D illustrations.

and

5—4/¥ ()

(1) =
) U (1) (/O (w) +1)

respectively. In the region Q5(FE,), Ey, E¢ and Eg are stable nodes, in the
region Q5 (Ey) they are stable foci.

(11)

From this proposition it follows that a wide range of parameters exists which
gives coezistence of stable Nash equilibria. Since the stability regions Q° (Es)
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and Q° (E4) overlap for L + /2 < < 2 and A (2 — 1) < 2 in such a region
we have four coexisting Nash equilibria, s, Fy4, E¢ and Ejg, which are stable
nodes. In the portion Q3 (E4) of the region Q° (E4) we have the three coexisting
stable Nash equilibria Ey, Eg and Eg, which are stable foci, and in the portion
Q3 (Ey) of Q° (By) with 1+ V2 < pp < 2 and A(2u — 1) > 2 the three stable
Nash equilibria Fy, Eg and Eg exist, which are stable nodes. Accordingly, the
questions stated in the introduction naturally arise, namely, to which Nash
equilibrium does the evolutionary process described by the market dynamics
lead and which role do the initially chosen quantities of the competitors play
in this process? An answer to this question requires a global analysis of the
map (5), which is a three-dimensional noninvertible map. Indeed, given a point
(¢}, 45, q3) its rank-1 preimages 7! (¢}, g5, g3), may be more than one (really
up to eight) since they are obtained by solving the eighth degree algebraic
system (5) with respect to the unknowns (g, ¢s,¢3). For this map, which is
continuously differentiable, we have CS_; = {(g1, g2, ¢2) € R®|det DT = 0},
where

=M A (1= 2g2) pyAs (1 — 2¢3)
DT(g1:92: @) = {mpAa (1= 2¢1)  1=2z  ppde (1 - 2g3) (12)
psA3 (1= 2q1) psAs (1 —2¢2)  1— A

and the critical set CS, which separates regions with different numbers of
rank-1 preimages, is obtained as C'S = T (C'S_;). Three-dimensional pictures
of the sets CS_; and C'S, as well as their projections on the coordinate planes
are shown in Fig. 2. It can be noticed that the critical set C'S subdivides the
phase space into the regions Zy, Zs, Z4, Zg, Zs, nested one into the other, with
the points far from the origin O = (0,0, 0) belonging to Zy, as can be easily
seen from the algebraic system (5) when solved with respect to the unknowns
q; with sufficiently high values of ;.

4 Graphical study of the contact bifurcations

For a proper visual investigation of the bifurcation event, which leads to the
creation of disjoint parts of a basin of attraction, two types of structures
within the phase space need to be visualized. First, the boundary of each
basin of attraction has to be depicted. Secondly, C'S and the way it subdivides
the phase space into regions with different numbers of preimages (zones Z;)
has to be depicted. Unlike the 2D case, in 3D this is not a trivial task —
basin boundaries may be of complex shape themselves and/or be grouped
in a hierarchical way such that they are spatially stacked over each other.
Moreover, C'S may consist of several sheets folded over each other in a complex
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way. Visualization of such 3D structures poses the problem of occlusion, which
is dealt with by rendering selected parts of the 3D objects with different levels
of transparency.

The standard procedure of representing surfaces in interactive computer graph-
ics is to use of an approximation of the surface, which is constructed from many
tiny triangles (see [19]). This surface representation can usually be rendered in
an efficient way, by exploiting acceleration hardware widely available in current
PCs. Unfortunately, due to the often complex shape of basin boundaries and
critical sets, tremendous amounts of triangles would be needed for a proper
approximation of the 3D structures, resulting in a rather weak rendering per-
formance (several seconds per image). Contrarily, visualization applications
designed for interactive use require update rates no slower than 10Hz.

To allow interactive viewing and manipulation we use a volumetric represen-
tation of investigated structures instead of triangles, which — in our case — can
be rendered interactively (see [17,25]). An axis-parallel box-shaped sub-set of
phase space — [Tmin, Tmaz) X [Ymins Umaz) X [Zmin, #maz] — Which contains all the
structures of interest is discretized (sampled) to a regular 3D grid (volume
data-set). Each structure (basin boundary or critical set) is represented by a
set of samples (called vozels) within the volume. A voxel can belong to several
structures (to C'S and a basin boundary for example).

The visualization process is subdivided into two stages. First, during a time-
consuming preprocessing step, the discretized representation of the boundaries
and the critical set is computed off-line. The computation results in a data-
file, which afterwards can be viewed and interactively investigated during the
second step. The system in use actually processes a 4D data-set before render-
ing, because the parameter responsible for the bifurcation of interest is also
discretized to several values before and after the bifurcation.

To obtain the boundaries of basins within the investigated portion of phase
space, a trajectory is started at the center of each voxel v. After determin-
ing to which attractor E; the trajectory converges, the voxel is labelled as
belonging to the basin B(E;). After classifying all voxels of the volume data,
the boundary of B(E;) is determined as the set of all voxels v which have at
least one neighbor which itself belongs to another basin than v. If the coordi-
nates of v within the volume data-set are z, y, and z, there are 26 neighbors
with coordinates (z + dz,y + dy, z + dz), where dz, dy, dz assume the values
{-1,0,1}, except for dz = dy = dz = 0.

For the calculation of C'S the determinant of the Jacobian matrix is evaluated
at the center of each voxel. If the sign of the determinant differs for two neigh-
boring voxels, C'S_; is assumed to pass in-between. If required, the voxels close
to C'S_; can be marked for serving as a representation of C'S_; during visual-



5336 Third World Congress of Nonlinear Analysts 47 (2001) 5325-5341

ization. For acquiring a voxel of the representation of C'S, binary subdivision
is performed in-between the two voxels to obtain a more precise location of
CS_i. The image by T of this point of CS_; gives a voxel of C'S. Further
iterations can be performed to build up representations of CS; = T(CS), . .
., CS, =T™(CS) successively.

As — in the current application — we are interested in contacts between basin
boundaries and CS, the visualization of the distance between voxels of C'S
and the closest voxel of a boundary is useful. Distance information can be
associated with each voxel of C'S and displayed during visualization. The
distance computation is performed using 3D distance metric which is a close
and fast approximation of the shortest Euclidean distance to a set of voxels
(see [28]).

As only the contacts between a basin boundary and specific parts of C'S result
in the creation of disjoint basins, 'S has to be further subdivided into several
objects, because uninteresting parts of C'S can be omitted during visualization
to reduce occlusion and the complexity of the resulting image.

Volume rendering ([18)) is used for the visualization of the data obtained af-
ter the computation step. Basic volume rendering interprets the contents of
a scalar data volume as densities of a medium (similar to gas or particles)
with specific optical absorption and emission properties (see [20]). An image
is produced by integrating the contributions of the medium along viewing rays
shot through each pixel of the image. In practise, the integration is replaced
by summing up samples of contributions along the viewing ray, see [16]. This
simple model can be used for depicting cloud-like 3D objects like fog or fire.
More sophisticated approaches make use of transfer functions (see [18]) allow-
ing for arbitrary assignment of optical properties to data values. The most
well-known images obtained using this technique are probably images from
medical applications (bones together with soft tissue around) obtained from
computed tomography data (CT) or similar acquisition devices. By assigning
different colors to voxels belonging to different objects, distinction between
objects is accomplished. Assigning different absorption levels to different ob-
jects, allows to see through them to perceive structures nested within them -
for example basin boundaries within basin boundaries.

To achieve a better impression of the 3D shape and spatial correlation of
the objects, the influence of a light source onto the color of each voxel is
also included during rendering [26]. To ease the visual detection of parts of
CS where the contact event takes place, the distance to the nearest basin
boundary, which has been computed during the first step, can be used to
modify either the color, or the transparency of each voxel of C'S. Thus, the
closest areas of the critical set can be either highlighted by coloring them red,
for example, or parts of C'S which are far away from any basin boundary can
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Fig. 3. Basins of attraction (four attractors except co) visualized before and after
the contact bifurcation — the creation of disjoint parts of one basin (depicted in
cyan) is clearly visible.

be rendered more or less transparent, reducing the complexity of the image
and depicting only possibly important parts of the surface.

Especially for the investigation of bifurcation events, several data-sets for dif-
ferent settings of the bifurcation parameter have been computed. Using our
viewer, which is capable of interactive volume rendering, see [15], the sequence
of data-sets can be investigated. By changing the optical properties of voxels
belonging to distinct objects, an exploration of the computed data is possible.
In the case of basins, only the boundary is depicted. To reduce occlusion, in-
ner parts of a basin are assumed to be totally transparent. As for the given
parameter settings the system investigated in this paper exhibits four partly
nested basins and a CS folded in a complex way (see Fig. 2), it is crucial to
omit nonrelevant objects from rendering in order to obtain a clear view on
the location of the bifurcation. An additional tool for revealing hidden parts
of the data set is to use clipping planes which remove data above the plane —
to provide insight into data below it.

In order to comment an exemplary case, where a contact bifurcation causes
the transformation of a basin from simply connected to a nonconnected set,
let us consider a set of parameters for which we have four coexisting stable
Nash equilibria, the stable nodes E,, Ey, Fg and Fg. In Fig. 3a the different
basins are represented by different colors®: the basins of Ey, Fg, and Eg are
represented by cyan, yellow, and purple, respectively, are nested inside the
basin of Fy, whose boundary appears as a semi-transparent surface. The outer
(black) region represents the basin of infinity B(0o), defined as the open set

3 for color images refer to URL
http://bandviz.cg.tuwien.ac.at/basinviz/disjoint/
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Fig. 4. The basin of attraction which causes the contact bifurcation is visualized in
3D together with reponsible parts of C'S.

of points that generate diverging trajectories

B(OO) = {(Q17QQ7(]3) l ”Ti ((]1,(12,Q3)” —o0ast— +oo} .

In Fig. 3a, obtained with parameters’ values Ay = Ay = A3 = 0.5, and p = 1.95,
the basins B (Ey), B(Es) and B(FEs) are simply connected sets, and B (Fs)
is a multiply connected set surrounding them. After a small change of the
parameters, a qualitatively different structure of the basin B (E;) is obtained,
as shown in Fig. 3b, obtained with A\; = 0.4263, Ao = 0.5, A3 = 0.5737,and s =
1.95. Evidently, this slight variation of the parameters caused the occurrence
of a global bifurcation at which the basin B (F,) becomes a nonconnected
set, formed by the so called immediate basin, defined as the larger connected
portion of a basin which includes the attractor itself, and several disjoint
portions (also called “islands” in [24]), some of which are clearly visible in
Fig. 3b.

Other smaller “islands” are also created at the bifurcation, and can be seen by
zooming in. The occurrence of this global bifurcations is caused by a contact
between the boundary of B (E4) and a critical surface, after which a portion
of the immediate basin enters a zone characterized by a larger number of
preimages, as explained in Section 2. The disjoint portions of B (E,) which
are clearly visible in Fig. 3b are rank-1 preimages, located across C'S_j, of
the portion B, of the immediate basin which crossed the critical set at the
bifurcation, and if some of these “islands” are, at least partially, included
inside a zone Z; with k > 0 then other smaller islands are present, which are
rank-2 preimages of 5., and so on.

In order to study the contact which causes such a remarkable basin bifurcation,
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graphical representations of B (E4), together with the critical sets C'S, are
given in Fig. 4 before and after the contact respectively. The value of the
parameters at which the contact occurs, as well as the point of the phase space
where the contact occurs, can be easily numerically bounded to the interval
[(0.438,0.562), (0.44,0.56)] for equally increasing/decreasing values of A; and
Az; Ag equals 0.5 and p = 1.95. Moreover, the fact that a bifurcation is going
to occur can be anticipated because, if required by the user, the computer
program calculates the minimal distance between a given basin boundary and
the critical set C'S, and the points of the basin boundary where such a distance
is becoming smaller and smaller can be colored in order to emphasize where the
contact is going to occur. This enables one to realize that a qualitative change
of the basins structure is going to occur even if the contact point is located
behind, and consequently the user can interactively rotate the coordinate axes
in order to understand more clearly the kind of contact bifurcation.

Really, the few images given above give a very poor information about the
method used to detect the contact bifurcation by using the interactive graphi-
cal program. Indeed, the study can only be performed by the usage of animated
sequences with the possibility of interactive rotation and transparency mod-
ulation of the objects appearing on the screen, as well as a proper interactive
usage of cutting planes. Further images, and some animated sequences, can
be found at the web page correlated to this work (see [1]).
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