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Global Analysis of a Nonlinear Model
with Learning

Gian-ITaLo BISCHD® - AHMAD NaMzana™

In this paper we consider a ronlinear model with learning, motivared
by a paper by Dimitri { {988 ) dealing with a quadratic generalization
af the linear model of Bray (1983), and we give a theoretical
explanation af the numerical simulations shown in Dimitri's paper,
where the critical role of the initial conditions is siressed 4 weighted
average with exponentially decreasing weights | fading memory ),
more general than the ome proposed by Bray, is considered, and
results on the global dynamics of such a learning process are
obtained through the reduction to an equivalent two-dimensional .
map. We show that even if the map governing the long run behavior 1
af the mode! with fading memary is the same as that of a standard
adaptive rule, in the case of multiplicity of attractors the basing of
attraction are different, that is, starting from the same initial
condition different asymptotic behaviors may be obiained for the two
kinds of fearning. The main results of this paper are an exact
delimitation of the basing of attraction of Dimitri's model, and the
study of the hifurcations through which the structure of the barins
becomes rather complex. The procedure outlined for the delimitation
of the basins of attraction is quite general and it i suitable to be
applied to other nonlinear models with the same kind of learning.
(JEL.; CAI, (682, D83, D84 ).

Introduction

The concept of rational expectations equilibrium (REE) is often
considered as the standard outcome for the long run behavior of an
economic system, to which the system converges through a learning
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process. The fact that, differently from physical ot biclogical systems, the
evolution of economic and social systems is influenced by the presence of
agents who, in making their decisions, use their memories and learn from
the past experience, had already been stressed by Lindhal (1939) and
Hicks (1939).

Many authors have proposed dynamic models, endowed with some
learning rules which describe how the economic agents make forecasts by
using the information gained from the data observed in the past, o prove
CONVErgEnce, Of NON COMYErgence, to a REE (see c.g Bray, 1983; Lucas,
1986: Marcet and Sargent, 1989, Bullard, 1994; Balasko and Royer,
1996). These models are often obtained by the intreduction of additional
dynamic variables, called expected values, that describe the evolution of
agents’ forecasts over time. In particular Bray (1983) examined a linear
model where agents use a simple arithmetic mean of the prices observed in
the past to obtain a “reasonable” forecast of the next price
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where, following Bray’s notation, pl® represents the price expected at
period (¢ +1), the expectation being held at the previous period f (that is,
on the basis of the observations available in period f). In the following we
shall use the more concise motation z, instead of _, pi¢. The example

. studied in Bray (1983) can be written in the form:

(2} ;,-r|+|=¢:r+.!:z:+.~3HL

where £, is a sequence of independently and identically distributed
random variables with zero mean and finite variance. If £ is computed as
in (1) Bray shows that the sequence {z,} of the cxpected prices coOnverges,
with probability one, to the REE = TQT’ provided that b < 1.

Holmes and Manning (1988) used the learning rule (1) in 2 nonlinear
cobweb model, with supply and demand functions characterized by
constant elasticities, and proved that such a type of learning has a
stabilizing effect on the long run dynamics. However they remark that, n
their particular nonlinear maodel. the short and intermediate run dynamics
can be rather complex and of considerable interest.

In 1988 Dimitri proposed the following modification of Bray's model,
obtained by the introduction of 2 quadratic nonlinearity:

G-:i IIga*l='B'z-l-'-'-5-'-£r1'l
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with the aim of studying the effect of such a nonlinearity on Bray's result,
The model (3) has two rational expectations equilibria when B3 .:%,
given by
|+ T-4p5 . _1-|1-4p5
» 28

For model (3) with learning rule (1) Dimitri gives a necessary
condition for the local stability of a REE o', expressed by

4 g =

(5 2fe <1

This condition gives a selection rule among the two different
equilibria (4) since only the REE p" satisfies (5), which is very similar to
the condition b < 1 for Bray’s model since buth express the fact that the
multiplier at the equilibrium must be less than one, but, as repeatedly
stressed in Dimitri's paper, differing from the linear case the stability. |
condition (5) is only local, so that some questions related to the global® «
behavior of the model should be investigated. In fact Dimitri writes
% the evolution of the model is indeed very much dependent upon the
starting position...” and presents numerical simulations by which he
clearly shows that, with the same scl of parameters, the convergence
toward the locally stable equilibrium is not ensured for initial conditions
far from the equilibrium point, or, even starting near the equilibrium,
divergent price sequences are obtained if random shocks are applied.

However, the problem of the global analysis of the nonlinear model
(3) is left open in Dimitri’s paper and, to our knowledge, no serious steps
have been made, in the sconomic liteTature, toward this direction. Indeed,
many studies are devoted to the local stability analysis of the-steady states
of models with learning, whereas the question of the delimitation of the
hasins of attraction, essential in the understanding of the global
dynarical properties of nonlinear models with coexisting attractors, has
been somewhat neglected (the importance of the delimitation of the basins
of attraction in nonlinear dynamic economic models has been recently
emphasized by Brock and Hommes, 1997).

In the model (3) there are two possible kinds of asymptotic behavior:
convergence to the fixed point p* or divergence. Thus we can say that
there are two coexisting attractors: the REE p" and infinity. The
delimitation of the boundary that separates the set of initial conditions
that generate trajectories converging to the REE (ie. the basin of
attraction of p) from the set of initial conditions that generate unbounded
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trajectories (i.e. the basin of attraction of infinity) for the maodel {3} with
learning rule (1) is the main goal of this paper. In order to obtain this
result, we consider a more general class of models, with expectations on
the current variable, of the form

{E} pr*\--l=.-'r{":-r::I

with initial condition (i.c.) p , where the expected price 2, 8 expressed as a
weighted arithmetic mean

1=

i
(M 2, = 2 4P with @,z 0, k=1,..! and }_‘ a,=1
k=1

k=1

with weights of earlier ohservations distributed  as the terms of a
noninereasing gecmetTic progression of ratio p e [0, 1], that is

1k . e s
(8) a,=F£—, with Wr=lp""=l1n yo<p<t
W, £=1 t if p=1
It can be noticed that this learning rule is a generalization af that
proposed by Bray, since, for p=1, (8) gives 4 uniform distribution of

weights, =% for each 1 k=t so that (71 reduces to (1). For lower

values of p we obtain the more realistic situation of & fading memory,
in which earlier observations receive less weight than recent ones isee
Friedman, 1979 and Radner's comment 1o Bray, 1983). In the
other limiting case p=0 (7) reducss to static expectations, that is
z,=,., P =p, which means that agents believe that present price will
remain also in the next period. Thus, by using p as a varying parameter in
the interval [0, 1], we can cxplore the effect of a learning rule with mare of
less rapidly fading memory, and in particular of Bray's learning (1) in the
limiting case p=1.

In this paper a general method for the analysis of the global properties
of the class of models (6) with Jearning given by (7) and {§) is applied to
Dhimitri’s model (3). The method s hased on the reduction of the mandel
with learning to an equivalent twa dimensional map. We show that the
difference equation governing the asymptotic behavior of a model with
fading memory is the same a3 that obtained by a standard adaptive rule,
but the basins of attraction are different, and may be rather complex.

In Section 1 we show how the reduction of the model (6) with learning
to a two-dimensional map is obtained, and we discuss the relation

5. Bischi - A Naimzada: Giobal Anulysis of 2 Monlinear Madel with Leamning 449

hgtwem the attractors of such a map and those of the model (5) endowed
with a standard adaptive learning. The main result given in this section is
related to the method for the delimitation of the basins of attraction af the
meodel (6) with fading memeory. .

In Section 2 these results are applied to the study of the basins of
attractinjn of (3) with fading memory, and the hmiting case p = 1 i5 used
to exgl.am the structure of the basins, and their bifurcations, for the model
(3 mgh Bray's learning (1), so that a theoretical explanation of the
numerical results presented in Dimitri (1988) is given.

1. Genmeral Results

® The model (6), endowed with learning rule (7) and geometric weights
Lie.

! t=k
©) = w5 P
. zr r-rlpl. .EZI H"’_. P#

can be written a5 a first order non-autonomous recurrence in the expected
prices:

trl-k ! -k
0y z ettt _eW P 1 -
{ R o By “r“: E/T] W, Pt W Pin=
_ pwW L oy ee
WH-I zr+ WH-! f{ﬂ-}‘ e

thrt W, dcﬁl?.cd in (8), is the t* partial sum of the geometric series of
ratio p, so that it can be obtained recursively as

(1 W, =1+ pW, W=I

r=l ]

The recurrence (10), with pW =W _ -1, can be written as an
adaptive rule

“I} zrr|:2r+a1{-ﬂl+!_=.n)

with a time-dependent speed of adjustment
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From the definition (8) of W, it follows that o is a decreasing
sequence, with ¢ = (0, 1) for cach ¢ and ¢ — (I - p)as ¢ —+ == Hence the
non-autonomous recurrence (10) tends to the fimiting form

(13 z,, =glz)=pz,+(1-pf)

This means that in the long run the model with learning (%) behaves
like a model with a standard adaptive rule (see Appendix A for more
details on adaptive learning and its relations with (9)). However, as
suggested by the numerical results of Dimitri and the remarks of Holmes
and Manning, the equivalence only holds for the limit sets, whereas the
short run behavior may be very different, and may have a strong influence
on the structure of the hasins of attraction. In other words, the transient
dynamics occurring during the early iterates of {10), when it is different
from its limiting form (13), may be crucial for the asymptotic behavior of
the trajectories when more than one coexisting attractor is present. That
is, given an initial condition p, the trajectory (and the long run behavior)
of (10) may be very different from the one obtained by iterating (13) with
the same jnitial condition.

A global characterization of the dynamical properties of (10} can be
obtained by writing (10) as a two-dimensional autonomous map. In fact,
if W, is taken as a dynamical variable, recursively defined by (11). the
following two-dimensional autonomous map is readily obtained from

(100

(14) T THapW, T 1+pW,

This map is equivalent to (8) with learning rule (%) in the sense that
the projection on the zoaxis of any trajectory of (14) starting from the
point

(15) (z, Wh=(p 1)

where W =1 is obtained from (8) with =1, represents a sequence of
expected prices 1z} from which the corresponding sequence (p} of actual
prices, starting from the initial price p,, can be obtained as the images
under the function f:
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(16) p,.,=fE) 1=12.

In other words, if {{z,, W) (75 Y o (2, W, .} is the sequence
generated by the map T starting from the initial condition
(z,, W) =(p,, 1), then {2, 25, ... 5, _..} is the sequence of expected prices
starting from z,=p,, and |p, p,=flzh - P, =f(z,_\) ..} is the
corresponding sequence of actual prices. Thus the study of the general
model (6) with an infinite-horizon learning rule (9) is reduced to that of a
two-dimensional map with initial conditions constrained on the line =1
(line of initial conditions). The dynamics with Bray's expectations (1) are
obtained for p=1-. This is the basic idea from which the resulis of this
section follow.

Since the initial conditions are to be taken on the line F=1, the
trajectories are confined in the haif-plane W=>1. In fact this hailf-plane is
mapped into itself by T because the second difference equation in (14),
which gives the dynamics of the variable W, is independent of z and gives
a monotonically increasing sequence (the partial sums of a geometric
series of ratio p). Furthermore, if 0 < p<1, the sequence { W} converges |
to the sum of the geometric series ;

1

(1T W= ——
l-p
For 0= p< | the line W= W™ is an invariant and globally attracting
line for the map T. on which the @-limit sets of all its trajectories must be
located. For this reason we shall call this line line of @-limiz sets. The
restriction of T to this line is given by the one-dimensional map

(18) g, (2 =pz+{1-p)f(2)

already obtained in (13} as the limiting form of the non-autonomous
recurrence (10). The map (18) will be called limiting map. since it governs
the asymptotic behavior of the map T This implies, as proved in Bischi et
al. (1996), that any k-cycle 4 = {20, ..o 7y} of the map g, {£) is in one-fo-
one correspondence with a k-cycle A=4* (W y={z, W (=3, W)
of the map T, located on the line of @-limit sets. Some properties of the
map (18) are given in the Appendix A. The stability of the attractors of
the model (6) with learning {9), and their basins of attraction, can be
studied on the basis of the following proposition, which is a summary of
the main results given in Bischi e al (1996):

Propasition 1. Let A bea k-cycle, k= 1, of the map g, {z), 0= p<]1. Then
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(i} if A is attracting for the limiting map g_ (z), then the set A=Ax{W s
an attracting cycle of the map T, and f{j.xi} is an attracting cycle of the
model (6) with learning (3] .
{ii) the basin of attraction D, of the attractor f(4) of the model {ﬁ} with
learning (9) is given by the intersection of the mn:u-d_irfiensmnal basin 38 of
the cycle 4 of themap T with the line of initial conditions W=1.

A sketch of the proof of this proposition is given in Appendix B.

We recall that the case k=1 corresponds to a fixed p?im " of g,(z),
and fld)=fz)=z"isa REE, since the fixed points of g, (z) are also
fixed points of f(z) (see Appendix A). . o

Part (i) of Proposition | confirms that the asymptotic behavior, i.e.
the kinds of attractors and their stability properties, are the same as those
of a standard adaptive learning rule with adaptive coeflicient o = 1-p.
For example, a sufficient condition for t!:u: attractivity of a REE z°, under
learning (9) with p < 1, is given by |8, ") | <1, thatis,

19) - <@l

This condition is always satisfied as p — |- provided Lhat fiE =
In other words, for the general maodel (6) with Bray's ]r:am;ng, the _s!em_jy
states z° characterized by f'(z7) =1 are locally attracting equilibria,
whereas those with 7 (z7) = | are repelling. This confirms, and extends,
the stability results obtained, for particular models, by Bray {1983) and
Diimitri (1988). _ N

However, the most important implications of Proposition | are due to
part (ji}, since 1t suggess 4 general procedure to nbm_in_ the boundaries of
the basins of attraction when two of mors coexisting attractors are
present, as often oocurs in the case of nonlinear models. In thf:s:c cases the
knowledge of the exact structure of the basins i:.'lf attraction is crucial, as
suggested by the numerical simulations of Dimitri, especially when a
random component is considered as in (2) and (3). Such knm-.lrh:ld_ge
cannot be obtained from the limiting map £, because the initial
conditions are to be taken on the line =1, 'ﬁ:l‘iﬂ:ﬂ:i £, only governs the
dynamics near the line of alimit sets W=W". This means that only a
global knowledge of the two-dimensional map T allows one to follow the
whole trajectory from the line of the initial conditions to that of _the
arlimit sets, thus taking into account the role of th"—‘. short-run behavior,
during which the dynamics is not governed h]_,' the limiting map g,

In the limiting case p— 1-, even if the ling of the w-limit sets moves
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infinitely far from that of initial conditions, the z variable of the map T
always converges to a fixed point ° of f(z) (i.e. a REE), so the basin of
attraction of D(z") can be obtained from the knowledge of the two-
dimensional basin of the points that generate trajectories of the map T
that indefinitely approach the linez = z".

We observe that even if the trajectories of map T starting from the
line of initial conditions W'=1 are entirely included in the region of the
phase plane (z, W) with F e (1, W), we shall study the properties of the
map T in the larger region with e (- Up, W) In fact map (14)
is a rational map which is not defined in whole plane, because the
denominator of the first component vanishes on the points of the line

(20) We=-L
”

which will be called a singular {ine below, Bischi and Gardini (1997) show
that the presence of this line, and in particular the existence, on it, of
points in which the first component of T assumes the form 0/, has
important consequences on the structure of the basins and their global
bifurcations. From such points, called focal points in Bischi and Gardini
(1997}, fans of basins boundaries arise giving peculiar finger-shaped
structures, called lobes,

It is easy to sce that the focal points of map (14) are related to the
existence of REE, since in a point (z°, W), where 2" is a fixed point of
F£iz). the first component of T has the form (/0.

The existence of lobes, issuing from the focal points, has important
comsequences on the structure of the basins of attraction of the model
with learning (%) whenever they intersect the line of initial conditions
W=1. This cccurrence causes the creation of basins with a complicated
topological structure, such as basins formed by many disjointed intervals,
as will be shown in the next section,

2. Structure of the Busing af Attraction

In this section we consider model (3) with learning rule (%) written in
the form of the equivalent two-dimensional recurrence (14

W l .
:.,-ur_p" Lz, + — (fz}+ S+€,_)
(21) T,: L+pW, © 1+pW, =~
W, =l+pW
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with initial condition (15). As explained in Section 1, the sequence {p} of
real prices can be obtained from that of expected prices {z,} as

{22) p.'rl=-ﬁ21¢+5+fr+l

In order to study the global stability properties of the process with
learning we first consider the deterministic part of the recurrence (21), ie.
the map T obtained by setting £,= @t for each ¢, then we consider the effect
aof the stochastic component a3 a sequence of shocks which cause random
variations of the z variable, represented by horizontal displacements of
the phase point (z, W) of the map T. These displacements may, of may
not, cause a crossing of the boundaries separating different basins of
altraction.

In order to better explain this point we give and comment the results
for model (3) with learning (1), obtained, in the limit case p— 17,
following the procedure that will he described below, in the Subsections
2.1 and 2.2,

If fd < 1/4, and the memaory ratio p is sufficiently close to L, then the
only bounded attractor of the limiting map &, (z) is the REE g, in
addition to an attractor at infinity {i.c. associated with unbounded
sequences). Hence, under the above assumptions, there are only two
different asymptotic behaviors of the map (21): convergence to the locally
attracting fixed point % =1 p", W) or divergence. Let F denote the
boundary (or frontier) that, in the strip W e (=1/p, W), separates the
basin G (®) from the basin (=) of poinls generating unbounded
sequences. As we shall prove in the Subsections 2.1, 2.2 and 2.3, the
following results hold:

If p— |~ then

« for -2~ 2<f&<1/4 the boundary F is formed by the vertical
segment g, given by the portion of the line of equation

(23) =g

with W e (- l/p, W), the segment &, given by the portion of the line of
equation

{24) Bz+ W+ g =0

with We (- ip, W), and the arc @ , of the ellipse of equation
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{25) flzi+ Pz W+ Wi+ (2+Bq) W+ Blgr+8)+1=0

located above the singular line W=— Ifp. These three carves cross the
singular line (20) in the focal points

(26) Fo=(g, -l and F = ig", -l
« for ff<-2- NI'E the boundary F-also includes higher rank preimages

@ . k=2, of the line which have loops that bound lobes of S{=),
issuing from the focal points F, and F, as shown Figures 1, 2 and 3.

B=-3 &=3 p=1

Frgure 1

Phase spaee (z, W) of the map T with §=-3, =13 p =1 (the limiting case of Brays
learning). The line W=1 represents the line of initial conditions. The white area represents
the set of poinis that generale \rajectories {2, W} of T with 2, -» g, the grey-shaded area
represents the sel of points that give diverging trajectories. The portion (g, Z)) of the line
W= | inchuded inside the white region represents the one-dimensional basin of anraction
Dy p") of the REE p* far the model with learning. For this set of parameters there ars two
lobes, bounded by the curves w5, ssuing from the focal points F, and F. The arc @ _, has
ot reached the line of initial conditions, hence D,(p") s unique inten'n].gl'hl: dots represent
the first 10 points of a trajectory, converging to the REE p°, that starts from the inital
condition p, belonging to Dyirt




e —

With the same values of the parameters 8 and p as in Figure 1 the bagana are represented for
fi=-4.2 The basin of attraction B (") of the REE p =074 is formed by the union of twao
digjointed intervals, scparated by a “kole” (h, b ,) of Bi=) The dots represent the first 10
points of & trajectory, converging to the REE p", that starts from the initial condition p,
belonging to [ (p").

Be-835 §=3 p=1

Figure 3

With i =— 4, and the parameters & and p as the previous figures, the basin Dyip") is sphit
into 4 disjointed intervals, separated by thres “holes of Bi=]
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Motice that, in the figures, § >0 and &= 0 have been used, as in the
numerical simulations propesed by Dimitri (1988), even if, due to the
meaning of the parameters of the medel, G=0 and & <0 should be
considered. The only difference is that with f >0 we have g"= p" whereas
in our figures, obtained with § <10, g <p". This fact does not cause any
substantial change in the geometrical arguments that will be deseribed
below. and the main results are not affected by this different choice since,
25 we shall see, the bifurcations of the basins of attraction, as well as the
local bifurcations of the map g, are only influenced by the aggregate
parameter o=— 33 Hence, in the following we shall use the same
parameters as in Dimitri’s paper, in order to compare the resultz of our
analysis with his simulations,

O the basis of Proposition 1, the knowledge of ¥ allows us to obtain
an exact delimitation of the one-dimensional basin of attraction Dip™yof
the REE of the model (3) with learning (1), together with its bifurcations,
occurting as o= — féis increased (we recall that f represents the “weight”
of the nonlinear term in (3)):

Froposition 2. Let us consider the maodel {3) with learning (1), Then
(i) for p6=—2704-2 /6 the basin of attraction of the REE p™ is a
unigue interval

Dip ) =B@) n (W=1)=(g" . -g - 1p)

bounded by the intersections of the line of initial conditions B =1 with
the twa lines @ and o_, of equations (23) and (24) respectively,

(if) at B6=—27/4-2 /6 a bifurcation occurs at which the basin I, (p") is
transformed from a unigue interval into the union of two disjointed
intervals, due to the contact of the ellipse @ _; with the line B =1 at the

point z”=2L. Just after the bifurcation, for f&<-27/4 -2 ,‘"E the two

intervals are separated by a “hole”, whose points belong to the basin of
infinity, with middle point z,, and extrema given by the z coordinates h,
and k, of the two intersections of @_, with the line W=1;

iif) as B is further decreased other bifurcations occur, due to contacts
between lobes @ , & T % (@), with k=1, and the line of initial conditions
W= 1. Just after the contact of @ ,, 2577 new “hales”™ of the basin of
infinity are created, so that D,(p") becomes the union of 2¢-! disjoint
intervals. '

Before giving the proof of these results, we illustrate their meaning by
some numerical simulations, shown in Figures 1, 2and 3.
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Figure | is obtained with the same set of parameters as those used in
Table 5 of Dimitri's paper, i.e. f=—3and § =3 The basins H{P) and
i) are represented by different colors, white and grey respectively.
Since i6=-9>-27/4 -2, 6 the basin of the REE p" = (.847 is given by
the unique interval Dyip=(g".—¢ - 1/ = (- 1.18,1.51), according to
Proposition 2. For example, starting from the initial price
p=01l¢e D,i(p") we obtain the sequence of expected prices 2, = 1.535,
£, =—0333, z,=0417, z, 0,829, z,=0847, .. converging o p° (the
enrresponding trajectory of the map T is shown in Figure 1), whereas
starting from p, =16 D|(p"). we obtain the diverging sequence
7, =-1.54, z,=- 239, z,=-336 :5=—?.0.9‘4, :6=—23ﬁ.26, ..[nat
represented in the figure).

The global analysis of the basins of the deterministic part of model (3)
allows us to obtain information about the maximum spread of the
stochastic variable which ensures convergence to the REE p". In fact, the
line @ _,. which forms the right part of the boundary F, intersects the line
W= W, =1, on which is located the phase point after ¢ time steps, in the
paint of z-coordinate

(27 §4=_q-_L

B

]_i&m:e. i_n the situation shown in Figure |, a stochastic disturbance £,
applicd at time ¢, does not cause divergence if the phase point of the map
T remains inside the interval

(18) DpH=1g.z2)

whose width increases as ¢ increases. For example, with the parameters
used in Figure 1, we obtain z,= 1.31, z; = 2.85, T, =~ 4.51. This
suggests that the maximum spread of the random variable which does not
cause divergence increases with 1, that is, the stable equilibrium is more
robust as economic agents acquire more knowledge, However, as noticed
by Dimitri on the basis of his numerical simulations, at each time step a
random perturbation with a relatively high variability can give a strictly
puﬁjt_'we probability of non-convergence. From our analysis such
gualitative considerations can be changed into quantitative ones, in the
sense that at each time step (28) gives us the exact distance of the
boundaries of B{==) from p°.

Figure 2 is obtained with the same value of the parameter & as in
Figure 1, and f=-4.2, so that we are just after the hifurcation described
in part (ii) of Proposition 2. In fact, in the situation shown in Figure 2 we
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have D, (p") = (¢" b)) (hy, — 4"~ 1f) = (- 0,97, —0.078) s (0317, 1.20)-
Starting from the initial priee p=- (.6, we obtain a sequence {z.}
converging to p- (shown in Figure 1) whereas starting from p, = 0.1 we
obtain the sequence I,=1.52, I;=- 1.25, z,=-184, =-1T1,
z, =~ 1227, 2, =~ 100.46, ..diverging to — =.

Thus, for the set of parameters lsed To obtain Figure 2 we have a non-
connected basin of the REE, formed by two disjointed intervals of which
only one contains the point p*, called the immediate basin of the attracting
point p*. In such 2 situation, a price sequence starting from an initial price
near p*, i.e. in its immediate basin, may give diverging dynamics if a small
random shock brings it into the hasin (=), whereas a larger shock may
bring the initial price inside the other part of the basin of p*, beyond the
hale. $o that the future evolution of the process with learming will remain
convergent to p*. This is a counterintuitive result arising from the global
analysis of the basin of attraction of the stable REE. From Figure 2 it can
be seen that w_, does not intersect the lines W =W for r>1. This implies
that as ¢ increases an exopenous perturbation, which causes a horizontal

displacement of the phase point, cannot bring it inside the hole for,
sufficiently high values of L. Furthermore, as remarked above, the size, in*

the = direction, of B(¥), increases for higher values of W, s0 that stronger
shocks are necessary to bring the phase point inside M=), These two
features of the global structure of the basins of the map T imply that the
system is less vulnerable, with respect to exogenous perturbations, as time
gOes on.

If o =~ pé is [urther increased new holes are created, as shown in
Figure 3, obtained with =3 and #=— 85 In this case a trajectory
converging to p* = 0538 is obtained, for example, starting from

, =~ 0.4, whereas starting from p, = 0.62, which is closer to the REE, 2
diverging trajectory is obtained.

21. A General Procedure for the Delimitation of the Basin Boundaries

We now describe the procedure followed to obtain the boundary Fin
the model with an exponentially fading memary, described by the
weighted average (9) with U= p = |. Foreach 0 p=1and A =< 1/4 the
map T has two fixed points: 2 = (g%, W*yand ® =(p% F*). The fixed
point 2 is a saddle point, with unstable manifold along the line W =W
and local stable manifold along the invariant line z = g* (see Appendix B).

According to Proposition 1. the attractors of T are obtained from
those of the limiting map £, (). and, as explained m Appendix A, for any
ie (-1/4, 7) the map g (z) has 2 unique bounded attractar. This attractor
is the fixed point p* if rﬁne stability condition (A8) holds true. As remarked
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in Appendix A, such a condition is always satisfied if the memory ration p
is sufficiently close to |, whereas for lower values of p the bounded
attractor of the map g, (z) may be a cycle or even a chaotic interval. In
any case. in the Following we shall denote by A the bounded attractor of
the limiting map g, and by s the corresponding bounded attractor of T
located on the line W =W*. Let #(s) denote the basin of attraction of s,
defined as the open set of points of the phase plane of T whose trajectories
converge to &,

Singe o is the only bounded attractor of the map T, the
complementary set of the closure of R(sl) is W(=), ie. the set of points
having divergent trajectories. The goal of this section is the determination
af the frontier F = 98 () = 0% (e¢) that separates the two basins. Such a
frontier behaves as a repelling set for the points near it, since it acts as a
watershed for the trajectories of the map T. Points belonging to F are
mapped into F both under forward and backward iteration of T° more
exactly T(F) = F, T (F) = F (see Mira et al, 1954 Mira et al., 1996,
ch. 5). This implies that if a saddle-point 2 belongs to ¥, then F must also
contain the whole stable manifold (see Gumowski and Mira, 1980; Mira
et al., 1996). We consider the local stable manifold of the saddle point o,
located on the line z = g* (see Appendix B). A trajectory of T starting on
the lefi of the line z=g* is diverging, and this line behaves as a repelling
line. because the unstable manifold of the saddle 2, along the line
W =W*, has a branch pointing toward the bounded attractor «, and the
opposite branch going to infinity (see Figure 4). The other parts of F can
be obtained by taking all the pre-images of the local stable set (see
Gumowski and Mira, 1980; or Mira er al., 1998)

(29) Fou T ({z=g"1)

where T'-" (z, W) represents the set of all the rank-n pre-images of a given
point (z, B

The map T, given by (21) with £=10, is a noninvertible map. This
means that even if a point (z. ) has a unique image under the
application of T, (z,,,. W,, )= Tiz, W). the backward ileration of T
is mot uniquely defined, since given a point (z,.,, W ) its pre-images
(z,, W) are obtained by solving a second degree alpebraic system, that has
two real solutions, given by

v .—-.“_ w.“‘lji\:(T_ Wlll}:+4ﬁ[;3_-+tw|-r'l_a}
(30)  T-':{ 28
W 1

Wo=—atl_
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ifa=(1-W  F+48(,, W, -8 >0 0rno real solutions if‘ﬂ.ﬂ! 0. In
the former case we say that the point (2, . W . _lj has two pre-images,
given by (20}, in the latter case we say that t‘r!e point iz, . W,_ ) has no
pre-images. Following the terminology of Mira e c_z!. (1996) we say that
the plane is divided into two regions, called Z, and Z,, whose points have
two Or no pre-images respectively. These two regions are separated by the
curve defined by the equation

(31) Az, W)= (1 - W)+ 4fcW - 4p5=0

called critical curve LC (from the French “Ligne Critique™). Th_e points
belonging to LC have two coincident pre-images located on the h,m: LC
given by 1

(32) pW +2fz =0

obtained from the first of (30) with A = Dand W, =_pl'rlr’| +1. The curve
LC |, can also be obtained as the locus of points at which the determinant
of the Jacobian matrix of T vamishes. and LC = TILC_ ) (see Gumowskl
and Mira, 1980; or Mira et al. 1996 for a review of the method of critical
curves in two-dimensional noninvertible maps). The curves LC and LC
for the map (21) are represented in Figures 4. o .

The knowledge of the curves LC and LC_, is important 0 jhe
computation of the pre-images of the local stable set of 2 from w!yn;h Fis
obtained according to (29). The segment o of the line z = q* gntwely lies
inside the region £, In fact, under the assumption 438 < 1. Wh!ﬂtl. EnSures
the existence of the fixed points, we have Alg®, W)= 0 since 4fq" W = IW
from the expression of g* given in {4). From (30} ws_th 2,01 = q* w*e get the
two preimages of ar one belongs to the same invanant line z = g* and the
ather one is on the ling of equation

{33) e+ pW+ gt =0

This line intersects the line of initial conditions W = 1 in the point of
z-coordinate

{34} :2'|_—F_q_F

According to (29), also line (33) belongs to F. Ths:_ portion of thi_s line.
located below the critical curve LC belongs to t_he region Z,, h¢_ncr. it has
two pre-images, say @', and @' ,, whose equations can be obtained from
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(30) v.ﬂth .zr‘_lz--pwﬂl—,ﬂq*_ These two pre-images are located at
opposite sides with respect to the line LC and merge in the point f.
given by the merging pre-images of the point H, = @ |~ LC (s Figun:.
4). ._M‘ter some algebraic manipulation it is possible to see that such
pre-images belong to the curve of equalion

(35) ﬁjzl+]ﬂpzW+p]W1+p(2p+,ﬂ;*}W+ﬁ[q‘+5j+p=|:|
This curve is an ellipse if p > 1/4, a parabola if p = 1/4, 2 branch of

hyperbola it_' 0 < p < 14, The curve (33) crosses the singular line (20) at
the focal points Fq and FP defined in (26). According to {29) also the curve

f=-08% &=3 p=04

3 F, -2 -1 0 | F

-

-
l...u
2]
=

Figare 4

gbf _ﬁ::lulgir ﬁ that separates B(P) from H(=e), grven by the stable set of the saddle point
: = l\FqF. ]_, 15 rl!pl'lrsm'l[l.‘-d. for memary ratio p = 0.6 and parameters §=3, f=-08 The
T:;ﬁg:[gﬂ;hls lhc-l;y_u of m—'lrar;lll sets, the thicker part of the line of initial conditions W= 1
& one-dimensional basin of attraction D[ p") under the process with learni
'1'3[;: CUMVES Flenatad. by LC and LC_| are portions the critical curve (31) and its prei.lu::l’;
{32). For this set of parameters the point A =LA 1% below the line W = |, hence its

preimage H is helow the line W =0. This implies that the i
byl F' ) imp al re are ao lobes isswing from the
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{35) belongs to the frontier &, but we are only interested in its portion
above the singular line, denoted by @, in Figure 4. As long as the point
of intersection H| between 1C and the line @, is below the line
w=Ww=1, the whale curve @, lies below the z axis, so that the
pre-images of @ , are located below the singular line, as can be easily
deduced from the second component of (30).

As o =— P8 increases the critical curve LC moves upwards, and when
it reaches the line W =W =1 the curve @_, reaches the 2 axis, so that its
pre-images @, 3PPEaT, issuing from the twa focal points F, and F_ las
proved in Bischi and Gardini, 1997). For example, in Figure 5 the point
H is above the line W= 1, and consequently its pre-image H, which 15 on
the top of the arc @, is above the line W= 0. The two pre-images of the
portion of @, abave the 7 axis are the lobes issuing from the focal points.

- p=-2 B=3 p=0§

a2 F 0

Figure §

With = 2, and the parameters d and p as in theffig. 4, the point H, = Lo is above
the Tine B= W, =1, but pelow the ling W= W, = b + p. Henoe its preimage H w betwesn the
lines W =0 and B =W, = | This implies that the 1w premmages of the grey shaded portion
of Tjea) are given by o lobes, denoted by o o isswing from the focal poinis F, and F_. The
pasin of atiraction BN represenied By the thicker part of the line of initial conditions
W = |, is given by the interval (g7 2,0
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2.2, Bifurcation fram Connected to Non Connected Bagin

For the set of parameters used in Figure 5 the arc @ , of ¥ does not
intersect the line of initial conditions W =1, thus it does not affect the
basin of attraction D,(4) of the hounded sequences of the process with
learning. This is due to the fact that the point H =, ~ LC is located
below the line W= W,=1+p, and this implies that its pre-image H is
located below the line of initial condition W= W =1. In fact, due to the
particular structure of the second equation of the map L, we have

t-1
{1’5} lezpk

k=0

and this in turn implies that the pre-images of any point of a line W= W,
are located on the line W= W,_, ascan be easily computed by the second
equation of (30).

As o=- Béis increased, a value will be reached, say o =d, at which
the point H, is on the line FF=W,=1+p and, as a consequence, the
curve o, becomes tangent (o the line of initial conditions W= W, =1, the
tangency point being the intersection between the line LC_ | and the line
W =1, say (z,, 1) where

(37) S

ST

The value o), which can be easily computed from the tangency
condition betwesn the curve of equation (33) and the line W=1,
represents a bifurcation of the basin D(A4) of initial conditions which
penerate bounded price sequences. In fact for o<, the basin D,(4) i3
the interval (g", Z,), whereas for o> @', a hole is created around z,, whose
points belong to #(=), bounded by the two intersections (k. 1y and (hy, 1)
between the curve (35) and the line B = 1 (see Figure ).

Motice that for the set of parameters used in Figure 6, i.e. 8 =3,
f=—3 and p=10.6, the fixed point p" is no longer attracting, since the
stability condition {43} is not satisfied, and the attractor 4 = {z, f3t = a
cycle of period 2, represented in Figure & by the two small circles om the
line W =" A remarkable fact is that the periodic point 1 falls inside
the “hole™, so that the trajectory starting from it does not converge to the
cycle (it diverges). :

The situation becomes even more complex as @ is further increased. A
value o=ga, is reached at which the peoint H, is on the line
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W=W,=1+p+ p* at this value of o two lobes of 3{:#1 h_nundﬂd by
@, reach the line of initial conditions, the tangency points bem_g, th_: o
pre-images H', and H, of the point H (see Figure 6). This gives a
second bifurcation of the basin D, (4), at which two new holes are created
around the tangency points. ' .

Other similar bifurcations occur at &= o, at which @_, . belonging
to the set T %! (@), become tangent to the line of initial conditions. This
implies that 2* mew holes are created. The result of this sequence of
hifurcations is that the basin I}, (4) becomes smaller and smaller, with the
structure which is typical of a Cantor set. ]

In Figure 7, obtained for p = 06 §=3and f=-4 the attractor 4 is
a chaotic interval, and its basin of attraction if given by the union of 16
disjoint intervals, separated by holes of ®{==).

p=-1 &=3 p=06
:.'_lca S [ "‘c < /k—l
I~

to r——

i F_l Z

Figure &

With f=- 3, and the paramelers §and pas in the fiz. 4, 1.h~_: hounded a.l_mmr of tl:u:
process with learning is 2 cycle of period 2, 4 = f2 25 The basin D (4} =14 . hpihy, 1))
is formed by the union of two disjoint interels. The point H=LCnw, h:tu:ng; ) ah_-: lame
W=W,=1+ @+ p? Hence its preimage H belongs to the line W= W =1 111.|5_ is .!:!11:
pifurcation occurnng al o= a’, al which the lobes @, are tangent (o {he line of mital
conditions.
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f=-4 &=3 p=086

Figure 7

With f=-4, and the pararcters d and p as in the fig. 4, the bounded attracter A of the
procsss with learning it & chaotic interval. The basin 1A}y is formed by the union of 16
dusjoint intervials,

2.3, The Limiting Case of Bray's Learning

The global analysis of the basin boundaries described in the previous
subsection holds for any value of the memory ratio p belonging to the
interval (0, 1). In particular it holds in the limiting case g — I~ In this
case the singular line (20, where the focal points F_and F, (from which
the lobes of (=) arise} are located, has equation W=-1. The equations
of the curves (24) and (25) are obtained, respectively, from (33) and (33)
with p =1, Furthermore, the simpler form of (25), with respect 1o (35,
allows us an easy computation of the tangency condition berween the arc
@ _, and the = axis, and the value o= 2+, 2, at which the lobes issuing
from the focal points appear, is obtained. Also the tangency condition
between the arc ar , and the line of initial conditions W = 1 can be easily

obtained, which gives the bifurcation value g|=2T4+2/6 appearing in
Propaosition 2.

This completes the proofl of Proposition 2.

|
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Concluding Remarks

In this paper the global dynamical properties of a nonlinear model
with expectations on the current variable, proposed by Dimitel (1988) as a
quadratic generalization of the linear model of Bray (1983), are studied.
In order to give a theoretical explanation of the remarks on the role of the
initial conditions, given by Dimitri on the basis of numerical simulations,
we have proposed the learning rule (9). where the expected price is
computed as a weighted average of the values of the past, from which the
simple average proposed by Bray. and used by Dimitri. can be abtained as
a limiting case.

The study of the global dynamical properties of a model (8) with
learning (9) is performed through the reduction to an equivalent two-
dimensional map. This allowed us to define a general procedure to obtain
the exact delimitation of the basins of artraction of the attracting sets. Our
results show that the difference equation that governs the long-run
dynamics of the model with fading memory (9) is the same as that of a
standard adaptive learning rule, but, given an initial condition, the fate of
the trajectory may be different if the nonlinear model is characterized by
multiplicity of equilibria.

The global analysis of the basins given in this paper allowed us to
obtain information about the maximum spread of a stochastic variable 50
that convergence to the REE is ensured, Our results suggesl that the
maximum spread of the random variable which does not cause divergence
increases with time, i.e. a REE is more robust as cconomic agents acquire
more knowledge.

In other words, in a nonlinear maodel with multiple equilibria,
endowed with a learning rule of the form (9), the study of the limiting
equation (13} is not sufficient to abtain a forecasting on the asymptotic
behavior of the trajectories. In fact, only a global study of the two-
dimensional map (14) can give a complete understanding of the fate of the
trajectories of the model with learning. Furthermore, the delimitation of
the basins of attraction of the two-dimensional magp (14) is necessary o
understand the possible effects of stochastic disturbances, even during the
short and intermediate run dynamics. This fact is in agreement with the
analysis given in Vercelli (1994) whers, in the context of a general
discussion on the coneept of equilibrium. it is stressed that the robustness
of an equilibrium situation in an economic model can be only established
through a global analysis of the endogenous dynamis behavior of the
model.

In this paper we have applied our results to Dimitri's model, following
his claim for a global analysis of his nonlinear model. However, the
methods used in this paper can be applied to the study of the global




|
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properties of other nonlinsar models endowed with a learning rule (9}, or
its limiting case (1). For example, very similar structures of the basins are
obtained for other models represented by unimodal maps, like the cobweb
model proposed by Jensen and Urban (1984), or the one proposed by
Artstein (1983), endowed with learning (%). An application to a cobweb
model in which the limiting map is bimodal, with coexisting atiracting
cycles, is given in Bischi and Maimzada (1995).

Applications of the procedure exposed in this paper to fictitious plays
{see e.g. Shapley, 1964, and references therein) also give interesting results,
both for the kinds of attractors and for the structure of the basins. Such
applications will be the object of further studies.
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APPENDIX A
Adapnive Learning, Infinite Memory and Limiting Map

If at each time period the eapected price z,=,, pi¥is computed
according to the standard adaptive rule

I:A'U :H-'.;:'J-ﬂ[lﬂrrl_z.\}

where @ & [0, 1] is the constant speed of adjustment, the time evolution of -
the expected prices is governed by the difference equation

(A2) I, =g =(1-az+ afiz)

obtained by inserting the law of motion (&) mto (Al) The properties of
the map (A2) are well known. It is a convex combination of the map fand
the identity map, so its graph is included inside the region berween the
graph of fand the diagonal. This implies that the map g, (z) and the map
Fiz) have the same fixed peints, which are REE. Instead, the cycles of g,
are in general different from those of f, because the two maps have
different graphs for @ <1. For example, even if the map f has cycles of
arbitrary peried, like in the case of a quadratic map, the map g7} cannat
have cyeles at all for sufficiently low values of w. This can be intuitively
understood since the map g (z) approaches the diagonal as a — 0, hence
a value & & (0, 1) exists such that g_(z) is an increasing function for any
e {0, &), and an increasing map cannot have cycles of period k= 1 (see
e.g, Devaney, 1986 or Mira, 1987}

Motice that {A2) has the same form as the limiting map (13} with
p= | — o Henee the limiting form of (107, which is also the limiting map
governing the asymptotic behavior of the two-dimensional map T has the
same properties as (A2). This means, for example, that any more complex
asymptotic behavior so that the convergence Lo a REE is not possible if
the memory ratio p is sufficiently close to 1, is always truc in the limit
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p—+ 1, ie. in the case of Bray's karning (1)- For the model (6) with
fiz) = (Bz* + B), ie. the function proposed by Dimitri, we have

(A5 gp(:}=p:+{1—p}{,ﬂz’+5]

which is a quadratic map conjugate, by the linear transformation
1

z= E1? ¥ - ',G{_lp— H to Myrherg's map
{Ad) X, =Xk

with parameter

. L .

4

This is a well known map (see eg. Mira, 1987, or Gumowski and
MWira, 1980), which is also conjugate to the logistic map ¥,.,= py (1=

) . x 1 ,
through the linear change of variable y=——"’-J—E, from which the

relation between the paramelers i3 d= % —%. Hence, like Myrberg and
the logistic map, the map {A3) can have attracting cycles of any
period and can also exhibit chaotic behavior (see ¢.g. Dievancy, 1986
Baumaol and Benhabib, 19891

For any set of parameters f, &and p the dynamical properties of the
map g,{z) can be obtained from those of Myrherg's map with parameter
A given by (AJ5): the fixed point g° is always repelling, whereas p* is
attracting for 1/d < 1< 34, corresponding to the condition

(A8) ————-:_,Elﬁc.l—

For each A = (34, 2) a unique bounded attractor exists, which can be
a cycle of pericd k=1 or 2 chaotic attractor. For A =2 no bounded
attractars exist, i.e. the generic trajectory of Myrberg's map s diverging
{see Mira, 1987).

It is evident that the sufficient condition (A8) for the attractivity of p*
is always satisfied for p sufficiently close ta |, This contrasts with the very
rich dynamical behavior shown with low values of p (see Mira, 1987 for a
description of the complex hehavior of Myrberg's map or Devaney, 1986
for the logistic map). This suggests that high values of the memery ratio o,
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a5 well as low values of the speed of adjustment @in the standard adaptive
rule, have a stabilizing effect an the asymptotic dynamics.

However, while the basin of attraction if the REE p* under the
standard adaptive learning (A1) 15 simply obtained from a study of the
one-dimensional map g, (z), the basin of the same REE for the model with
learning (%) is different, since it must be obtained by the procedurs
indicated by part (i) of Proposition L.

This difference can be also understood by writing the adaptive
learning rule as an infinite weighted average (sze &g Merlove, 1958 or
Gandolfo, 1981 page 7):

:
(AT) 3.'—"12-,“' ﬂ]"*xk

S

A comparison between (AT} and (9), with p=1-a, shows a
substantial difference between the two weighted averages, since the
average (%) has a finite aumhber of terms for each finite time (the terms of
such average tend to become infinitely many only in the limit { = + ==,
whereas the average (AT) 1s always formed by infinitely many (erms, far .
each 1. Hence, even if the two averages become maore and maore similar as ¢
increases, they are different at each finite time, especially for values of 7
close to the “starting peint” of Bray’s average (or its generalization (9)).
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APPENDIX B

Sketch of the Proaf af Proposition 1

The proof is based on the fact that the line W= W":—lll i i5
invariant, because W, =W’ implies W, = W for each ¢, and globally
atiracting, because the second companent of (14) is such that the sequence
[W ) is always monotonically convergent 1o W*. This implies that the
cycles of the rwo-dimensional map (14) and those of its restriction to the
line W= W", given by the map g,(z) defined in {18), are in one-to-one
correspondence. Moreover, if 4 is an attracting cycle of F then & is also
attracting for T, and if 4152 repelling cycle of g, then 15 a saddle cycle
for T, with unstable manifold along the invariant ling W= B, and stable
manifold transverse to it. In fact, the Jacobian matrix of the map (14)1s 2
triangular matrix that, computed in the points of the line W=FW"
hecomes
{Bl}l DTEZ. W‘}=[Sﬁ[3} P“- _Pl]:[:_.lf{:ﬂ'l

At any fxed point 2° of fiz), DTi, W*) becomes diagonal, with
eigenvalues

(B2) A, =gy =p+(-pf ) and A;=p

and corresponding elgenveclors parallel to the z axis and the P axis
respectively. It follows that a fixed point (", W) of the map T 15 an
attracting node if and only if |g;[:".|'|{ 1, ie. z' is an attracting fixed
point for the limiting map £,(2h whereas it is a saddle, with unstable
manifold along the line W= W and stable manifold along the vertical
line z=z", it and only if =" is & repelling fixed point for the map £
A similar reasoning holds for a k-cycle, with k=1 In fact, if

A={z, 23 Z} isa k-cycle of the map gp{zj then any point (2}, W
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1s*a t"lfted' po\i‘m? of T* and the Jacobian matrix DT*(z, W)=
IT:_, DTz, W")is a triangular matrix with eigenvalues I

&
mp=Ilge) and  MY=p!
a:'u:_i corresponding eigendirections along the line W= W" and transverse
to it respectively. The eigenvalue X is the multiplier of the k-cycle A of
the map g _{z}. hence, as in the case of a fixed point, the mrrc;pnn-liin

cycle of _fun; an attracting node (saddle) when A is attracting {repellingﬁ
for g, From the definition of local stability it follows that when & is
ﬂE!.bIE for T an apen neighborhood around each periodic point (=" .W'}
exists whose points generate trajectories of T converging to & .'md the
union of these neighborhoods is called the local stable set, ) (:961}, of .

n THF, (al)

|

Figure §

!sjchcrr{at:: I::pr\esn:ntatio'n of the geometric argumenis produced to prove Proposition I. The
line W= P'r is the line of the w-limit sets of the two-dimensional map T, the line #'=1 i.sthe
lins of initial conditions. The projection on the 7 axis of & tragclory r.»1l' T starting from the
line W’_-— | is & trajectory of the model (6) with learning expressed by (9). (&) Case of an
attracting fixed point. (b} Case of an attracting cycle. -
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The total basin of & can be constructed by taking the union of all the
pre-images of ¥, (). e B =Uaae T, {50} Bacaube o_f the
particular structure of the second equation of T, which is a linear
contraction in the W direction, we have that cach inverse of T 15 an
expansive map in the W direction. This implies that a finite _value N exists
such that US-q 777 (. (=D intersects the line of initial conditions
W=1. Hence a subset of positive one-dimensional measure of thel line
I =1 exists whose points generale trajectories converging to al (sec Figure
%). This proves that A4 is an attractor for {ID},I and f(4) 18 ﬂ'_u:
corresponding attractor for the sequences of actual prices. The total basin
of attraction D[4} for the process With learning is given b::.r _th:
intersection the two-dimensional basin B(sl), with the line of initial
conditions =1

D,(A) =% () N {W=1)

In Figure § the geometric idea behind the prool is iI'Ius_trated. .-!Ln
attracting fixed point " always belongs to D,(z"). In fact the line z=2 15
an invariant line, because 7, =2 implies z,, =2 for each L. and this
implies that a set of preimages of ¥, {#) expa‘ndf. alopg_that line (see
Figure 3a). Instead, for an atracting cycle A= {:l,_ T3 Tyt it MAY happen:
that some periodic point z; & D,(A), i.e. the trajectory starting from z;
does not converge to o (ses the point z; of Figure 6.
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