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Abstract. We consider a two-dimensional discrete dynamical system that de-
scribes an evolutionary approach to the economic problem of consumers’ demand
under the assumption of bounded rationality. The adaptive process is obtained
by the iteration of a nonlinear map of the plane characterized by the presence of
a denominator that can vanish. Recent results on the global bifurcations of these
kinds of maps are used to explain the structure of the basins of attraction. The
equilibria of the dynamic model represent rational choices of the consumers,
i.e. solutions of utility maximization problems under budget constraints. We
derive conditions under which multiple steady states emerge, and the related
question of the study of the basins of attraction and their global bifurcations is
approached by using geometric and numerical methods.

Mathematics Subject Classifications (2000). 37N40, 37M20, 39A11

1 Introduction

The traditional approach to the economic theory of consumer demand is based
on the assumption that consumers are rational agents, that is, they make their
choices according to the maximization of a given function of the quantities of
goods consumed, called a utility function, subject to budget constraints. This
requires each consumer to have a complete knowledge of the utility function, is
able to exploit fully all the available information on the economic parameters
involved (e.g. prices and budget) and has got the computational skill required to
solve the optimization problem. Many authors argue that these assumptions are
too strong, and economic models should take into account human limited ability
to solve maximization problems. This leads to the weaker concept of bounded
rationality, which assumes that agents make repeated choices following a trial
and error (or adaptive) method, and at each time they correct the previous
choices on the basis of the observation of their effects. Sometimes this repeated
adaptive process converges to an equilibrium point that corresponds to the same
choice of a rational agent, i.e. the agents learn to behave rationally in the
long run. This possibility may be seen as an “evolutionary explanation” of the
assumption of rational behavior. In a seminal paper by Alchian (1950) this
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“evolutionary approach” is described to explain how non fully rational economic
agents (firms in that case) follow a “Darwinian” evolution, characterized by
adaptive trial and error methods, that may lead them to converge to a rational
behavior in the long run.

In this paper we consider a dynamic model, recently proposed by D’Orlando
and Rodano (2005), that describes iterated consumer choices. They assume
that at each time period the consumers update their consumption choices on
the basis of the observed discrepancy between expected utility and realized
utility. Moreover, the utility function is updated according to the consumption
choice of the previous period. The discrete time evolution of this adaptive
process is represented by the iteration of a nonlinear two-dimensional map,
whose steady states represent local maximum points of the utility function, i.e.
the choices of a rational consumers. We prove that a range of parameters exist
such that three rational equilibria are present. In this case the evolutionary
model may act as an equilibrium selection device, i.e. some equilibria may
be more likely to be reached than others when an evolutionary dynamic is
introduced (some equilibria may be not reached at all if they are unstable under
the chosen adaptive process). Of course, only those rational equilibria which
are stable under an adaptive process can be “learned” by the agents. Moreover,
when several coexisting stable equilibria are present, a situation denoted as
multistability, the evolutionary process becomes path dependent, that is, the
final outcome depends on the initial conditions. In these situations a study
of the basins of attraction has a crucial importance. In general, a complete
study of the boundaries that separate the different basins of attraction and
their qualitative changes as the parameters of the model vary is not an easy
task in dynamical systems of dimensions greater than one. In fact, this requires
a global analysis of the dynamical system, i.e. a study which is not based on
linear approximations. The discrete dynamical system proposed by D’Orlando
and Rodano is represented by the iteration of a nonlinear two-dimensional map
characterized by the presence of a denominator that vanishes along a curve, and
one component of the map assumes the form 0/0 at one point. This gives us the
opportunity to apply some of the methods recently introduced in Bischi et al.
(1999, 2003) for the study of two-dimensional map with a denominator. There
the concepts of focal point and prefocal curve have been defined to explain the
creation of particular structures of the basins called lobes. Roughly speaking, a
prefocal curve is a set of points which are mapped (or “focalized”) into a single
point, called focal point, by the inverse function (if the map is invertible) or by
at least one of the inverses (if the map is noninvertible). In this paper we detect
the typical lobe structure by a numerical computation of the basins, and we
explain the global (or contact) bifurcations that lead to their creation, by using
the concepts of focal point and prefocal curve.

The paper is organized as follows. Section 2 gives a short description of the
economic dynamic model is given. Section 3 studies the existence of equilibrium
points, and the presence of a range of parameters leading to coexistence of three
equilibria is proved. Section 4 recalls some definitions related to the basins, and
their bifurcations, for two-dimensional maps characterized by the presence of a
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vanishing denominator, on the basis of some recent papers on these topics. Sec-
tion 5 applies these definitions and results to the study of the global bifurcations
of the basins of the economic dynamic model considered in this paper. Section 6
concludes and outlines further studies to be done on the same economic model.

2 The model

Following D’Orlando and Rodano (2005), let us consider a utility function
U (z,T), where x is the quantity of a given good and T represents the aggre-
gated quantity of all the other goods that the consumer can buy. As usual in
economics, the utility function represents the satisfaction obtained by the con-
sumer as a consequence of the consumption of the goods considered. If p is the
unit price of good x and p = 1 is a reference price of the other goods, the budget
constraint becomes

pr+T =m, (1)

where m is the amount of money that the consumer can use to buy goods.
The rational choice of the consumer is the solution (z*,Z*) of the problem
of maximization of U under the budget constraint (1). If we exclude corner
solutions, the rational choice is a solution of the system

oujox _
(9U/(’“)f_p’ pr+7T =m. (2)

The economic intuition behind this system is the following: The price of the good
balances the relative gain of utility the consumer expects from the consumption
of a unit of the good considered.

D’Orlando and Rodano (2005) assume that the consumer is not able to
compute the solutions of this problem, and they consider the following discrete
time! adjustment process

xp = xp1 + p[S (ze-1) — pl, (3)
where S = gg;gg and p represents an adjustment speed. This adaptive process
is based on the assumption that at any time period ¢t the quantity x; that the
consumer buys is obtained as a correction of the quantity chosen in the previous
period, x:_1, according to the discrepancy between the price and the observed
relative utility gain S(x;—1). It is plain that a steady state of this dynamic
process is a rational choice, i.e. a solution of (2).

Following again D’Orlando and Rodano, we consider the famous Cobb-
Douglas utility function:

U(z,T) = a2z (4)

in which the exponents measure the respective marginal utility (if we multiply
the quantity of the given good by a factor ¢, utility is multiplied by a factor ¢%).

LA discrete time setting is assumed because after a consumer buys a good a certain time
interval is to be waited in order to have money to buy the good again.
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From the utility function we get

a T a m-—pr

S(x)

T 1-azr l1-a =
and the adjustment process (3) becomes

B n o m 1 (5)
Ty = Tp—1 T MU I—az 1 1—ap .

D’Orlando and Rodano also assume that the consumer’s preferences are
influenced by past choices, in the sense that a consumer may increasingly prefer
the good that was consumed in the past periods (due to habits of skillness
gained) or may decreasingly prefer the goods consumed in the past because
she/he becomes tired of it. These situations may be modelled by assuming that
the exponent « of the utility function (4) changes over time according to

ar = a(xe1). (6)
Among the many possible choices of the function « (z) D’Orlando and Rodano
propose the following increasing function, characterized by a sigmoid shape
1
=T @ 7
kl + kQ . kgt—l ( )
where k1 > 1, ko > 0 and 0 < k3 < 1, so that 0 < a; < 1. In fact, amin =
a(0) = and lim a(z) = — = amax, with @ (0) < amax < 1. Putting
kl + k2 —00 kl
all things together, the dynamical system that describes the evolutionary process
is represented by the iteration of the following two-dimensional map

RIS

l-az 1-a

Qi

(8)

/

O T L o okt

where ’ denotes the unit-time advancement operator. That is, if the right hand
side variables represent the dynamic variables at period ¢ then the left hand side
ones represent the state variables at period (¢ + 1).

In the following we shall study the existence of steady states of the adaptive
process described above, and in the cases of coexistence of equilibria we shall
focus our attention on the study of their basins of attraction.

3 Existence of rational equilibria

The steady states of the adaptive model described in the previous section are
the fixed points of the map (8), i.e. the solutions of the system

_p
a=—zx

™o (9)

O R+ kokd
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obtained by setting 2’ = z and o’ = « in (8). The solutions of this system
cannot be analytically computed. However, they can be graphically represented
as the intersections between a line through the origin of angular coefficient p/m
and a sigmoid curve, as shown in Fig. 1, where three sets of parameters are
considered such that three, one and two solutions are obtained respectively.

Figure 1:

The following proposition, proved in the Appendix, gives the ranges of the
parameters for which these different cases occur.

PROPOSITION 1 At least one positive fized point of (8) exists for each set of

parameters such that k1 > 1, ko > 0 and 0 < k3 < 1. Three positive steady
states exist provided that

k

L.

D In k3

and k3" < ko < kP (10)

where

2mpk1 _ kl 2mpk1 _ kl

4mpk 4mpk
— 2 bRy 2 PRl
. m m m m
Jomin _ + k3 . J;max + % T k3
2 = Tmpk ) 2
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2pkq 2pkq
kS kS

(11)

As argued in the introduction, interesting situations for economists are ob-
tained when locally stable equilibria exist, because in these cases the trajectories
of the adaptive process that converge to a stable equilibrium represent situations
of consumers that learn to be rational along the evolutionary process. However,
even if a unique stable equilibrium exists, it is important to have an estimate
of the extent of its basin of attraction, that is, how far the initial condition
can be taken so that the convergence to the rational equilibrium is guaran-
teed. To better explain this point, let us consider a set of parameters such
that a unique positive equilibrium exists, namely p = 10, m = 500, u = 0.537,
k1 =10, ks = 0.432, ko = 57 (for this set of parameters —4k;/Inks = 47.657,
ki = 80.36 and kY@ = 82.7). A numerical computation of the basin of at-
traction of the positive steady state, say A, is given by the white region shown
in Fig. 2a, where the dark grey region represents the set of initial conditions
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leading to negative values of the dynamical variables, i.e. economically unfeasi-
ble trajectories (in the following we shall denoted this set as the unfeasible set).
As we can see in Fig. 2a, there is a quite complicated structure of the bound-
ary that separated the basin of the rational equilibrium from the unfeasible set,
especially in the region around the point O = (0, 0).

The situation becomes even more involved if we consider a set of parameters
such that three positive equilibria exist, as shown in Fig. 2b and 2c, obtained
with the set of parameters p = 10, m = 1677, u = 0.917, k1 = 2.4, ks = 0.9,
ky = 78 (for this set of parameters —4k;/Inks = 91.12, k™ = 40.92 and
ke = 221.73). In this case the steady state denoted by A is a saddle point
that generated through a flip bifurcation a stable cycle of period two denoted
by Ay = {Aél), Aém}, the steady state denoted by C' is a stable node, and the
one in the middle, denoted by B, is a saddle point, whose stable set forms
the boundary F that separates the basins of attraction B(Az) and B(C) of
the stable cycle Ay and the stable equilibrium C respectively. In Fig. 2b and
2c the white region is, again, the basin B (As3), the pale grey region is B (C)
and the dark grey region represents, again, the unfeasible set. Also in this
case the structure of the basins reveals some peculiarities in the region around
the point O, where the three basins are conveyed through the point O. A
remarkable feature is that there are initial conditions that generate trajectories
that converge at the upper stable equilibrium C even if they are much closer to
the lower stable 2 period cycle As. If one considers evolutive processes starting
from different initial conditions that are gradually changed, for example along
a path from point H to point K in Fig. 2¢, unfeasible trajectories are obtained
first (dark grey portion of the path), then trajectories that converge at the
upper stable rational equilibrium, then trajectories that converge at the cycle,
then trajectories converging to the upper equilibrium again and so on. In other
words, it is not easy to forecast what rational behavior (if any) will be learned
by the boundedly rational consumer.

In the following we shall focus our attention on the problem of understanding
the global dynamical properties of the map (8) that are responsible for the
creation of such peculiar structures of the basins, formed by lobes issuing from
the point O = (0,0).
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Figure 2:

4 Basins and their bifurcations

We first recall some basic definitions and properties? of the basins of attraction
for a discrete dynamical system defined by the iteration of a two-dimensional
map T': (z,y) — (2',y") defined by (2',y') = T'(z,y) = (f(z,y), 9(z,y)), where
(z,y) € R? and f, g are assumed to be real valued functions. The point (2/,y’) €
R? is called a rank-1 image of the point (z,y) under T, and (z,y) is called a
rank-1 preimage of (z/,y). A set A C R? is trapping if it is mapped into itself,
T(A) C A, ie. if (z,y) € A then also T'(z,y) € A. A trapping set is invariant
if it is mapped onto itself: T(A) = A, i.e. all the points of A are images of
points of A. A closed invariant set A is an attractor if it is asymptotically stable,
i.e. if a neighborhood U of A exists such that T(U) C U and T'(z,y) — A as
t — +oo for each (z,y) € U.

The Basin of an attractor A is the set of all points that generate trajectories
converging to A

B(A) = {(z,y) | T"(z,y) = A ast— +oo}. (12)

2For a more detailed and rigorous treatment, see e.g. Mira et al., 1996.
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Starting from the definition of stability, let U be a neighborhood of an attractor
A whose points converge to A. Of course U C B(A), but also the points of
the phase space which are mapped inside U after a finite number of iterations
belong to B (A). Hence, the total basin of A (or briefly the basin of A) is given
by the open set B(A) = J,~o T "(U), where T°(z,y) = (z,y) and T~ "(z,y)
represents the set of rank-n preimages of (x,y), i.e. the set of points that are
mapped into (z,y) after n iterations of the map T. The basin B(A) is trapping

under T and invariant under 771, i.e.

T7HB(A)) =B(4), T(B(A)CB(A).

The boundary F = 0B(A) behaves as a repelling set for the points near it, since
it acts as a watershed for the trajectories of the map 7. Points belonging to
JF are mapped into F both under forward and backward iteration of T'. More
exactly

T-19B(A)) = 0B(A),  T(dB(A)) C dB(A).

We remark that T-1(0B(A)) = OB(A) implies that if a curve segment belongs
to OB(A) then also all its preimages must belong to 9B(A). In particular, 0B(A)
includes the stable set of any fixed point (or cycle) of T belonging to dB(A).

So, in order to study the structure of the boundaries of a basin, the properties
of the inverse (or inverses if a map is noninvertible, see Mira et al., 1996) must
be considered.

It is worth noticing that the map (8) is not defined in the whole plane because
the denominator of its first component

, —a)2? + aum — zup
= P (13)

vanishes along the two lines z = 0 and a = 1, and assumes the form 0/0 in
the point O = (0,0). Following the terminology introduced in Bischi et al.,
1999, the two lines constitute the set of non-definition s, and the point O may
be a focal point (see also Bischi et al., 2003, 2005). Bischi et al., 1999, 2003
show that the structure of the basins of a map with a denominator that can
vanish is strongly influenced by the presence of a focal point, where the map
assumes the form 0/0. As we shall see, this is also true in the case of the map
(8). Before proving this statement we briefly recall the main definitions and
properties related to focal points.

4.1 Definition of focal point and prefocal set

Let us consider a two-dimensional map, defined by (z/,y") = (F(z,y), G(z,v)),
with at least one of the components F' or G containing a denominator that
can vanish. This implies that the map is not defined in the whole plane. This
characteristic is the source of some particular dynamical behaviors, as recently
evidenced in Bischi et al., 1999, 2003, where new singularities, called focal point
and prefocal curve, have been defined to characterize some new kinds of global
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bifurcations. Roughly speaking, a prefocal curve is a set of points for which at
least one inverse exists which maps (or “focalizes”) the whole set into a single
point, called focal point.

In order to simplify the exposition, let us assume that, like in the case of the
map (8) only one of the two functions defining the map T has a denominator
which can vanish

[ 2’ =F(z,y) = N(z,y)/D(z,y)
T { y = G(x,y) ’ (14)

where x and y are real variables, G(z,y), N(z,y) and D(x,y) are continuously
differentiable functions defined in the whole plane R2. Hence, the set of nondefi-
nition of the map T, defined as the set of points where at least one denominator
vanishes, reduces to

0s = {(z,y) € R? | D(z,y) = 0}. (15)

We assume that ds is given by the union of smooth curves of the plane. The
two-dimensional recurrence obtained by the successive iterations of T is well
defined provided that the initial condition belongs to the set E given by E =
R2\ Upey T (8,), where T7%(8,) denotes the set of the rank-k preimages of
ds, 1.e. the set of points which are mapped into ds after k applications of T
(T°(65) = ). Indeed, the points of ds, as well as all their preimages of any
rank that constitute a subset of R? of zero Lebesgue measure, must be excluded
from the set of initial conditions that generate non interrupted sequences by the
iteration of the map 7', so that T : E — FE.

Now consider a bounded and smooth simple arc 7, parameterized as y(7),
transverse to d5 (like v, and 7. in Fig. 3), such that v(0) = (20, y0) and yNds =
{(z0,y0)}. We are interested in its image T'(y). As (zo,y0) € ds we have,
according to the definition of 05, D(xg,yo) = 0, but in general N(xq,yo) # 0.
Hence

Tl_i}I(IJiT(’}/ (T)) = (OOvG(x(vaO))v (16)

where co means either +00 or —oo. This means that the image T'(y) is made up
of two disjoint unbounded arcs asymptotic to the line of equation y = G(xq,yo)
(see Fig. 3).

A different situation may occur if the point Q(z,yo) € s is such that not
only the denominator but also the numerator vanishes in it, i.e. D(xo,y0) =
N(zo,y0) = 0. In this case, the first component of the limit (16) takes the form
0/0. This implies that this limit may give rise to a finite value, so that the
image (T(7) in Fig. 3) is a bounded arc crossing the line y = G(zo, yo) in the
point (z, G(zo,yo)), where

T = 1ir%F(:17 (1) ,y (7). (17)

T
It is clear that the value z in (17) depends on the arc v. Furthermore it may
have a finite value along some arcs and be infinite along other ones. This leads
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Figure 3:

us to the following definition of the singular sets of focal point and prefocal curve
(Bischi et al., 1999):

DEFINITION. Consider the map T in (14). A point @ = (xo,yo) is a focal point
if at least one component of 7' takes the form 0/0 in @ and there exist smooth
simple arcs v(7), with v(0) = @, such that lirr%) T(~(7)) is finite. The set of

all such finite values, obtained by taking different arcs () through @, is the
prefocal set d¢, the equation of which is y = G(Q).

Let us consider a simple focal point, i.e. a simple root of the algebraic system
N(z,y)=0,  D(z,y)=0.

We recall that a focal point Q = (o, o) is simple if N, D, — N, D, # 0, where

ON
N, = —(x0,yo) and analogously for the other partial derivatives. In this case

ox

a one-to-one correspondence is defined between the point (z, G(Q)), in which
T'(vy) crosses d¢, and the slope m of v in Q:

m — (z(m),G(Q)), with xz(m) = (N, +mN,)/(D; +mD,) (18)
and
(z,G(Q)) — m(z)  with m(x) = (Dyx — Ny)/(Ny — Dyx). (19)

These relations can be obtained by using a method either based on a series ex-
pansion of the functions N(z,y) and D(z,y) in a neighborhood of Q = (x¢, y0),
or by considering the Jacobian determinant of the inverse map 7! (or one of
the inverses if the map is noninvertible). In fact, from the definition of the
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prefocal curve, it follows that the Jacobian det (DT_l) must necessarily vanish
in the points of dg. Indeed, if the map 7! is defined in dg), then all the points
of the line dg are mapped by 7! into the focal point . This means that 7*
is not locally invertible in the points of d¢g, being a many-to-one map, and this
implies that its Jacobian cannot be different from zero in the points of d¢.

From the relations (18), (19) it results that different arcs -y;, passing through
a focal point ) with different slopes m;, are mapped by 7' into bounded arcs
T(v;) crossing d¢ in different points (z(m;),G(Q)) (see the qualitative picture
in Fig. 4a)

@ Tiyy) Tt,)

x(m,) x(m,

()
71
<_/\
/xj x\ %
@
Figure 4:

Interesting properties are obtained if the inverse of T (or the inverses, if T
is a noninvertible map) is (are) applied to a curve that crosses a prefocal curve.
Let dg be a prefocal curve whose corresponding focal point is ¢). Then each
point sufficiently close to §g has its rank-1 preimage in a neighborhood of the
focal point Q. If the inverse 7! is continuous along J¢ then all the points of
dg are mapped by T~! in the focal point Q. Roughly speaking, we can say
that the prefocal curve dg is “focalized” by T~ in the focal point @, or, more
concisely, that T7!(dg) = Q. We note that the map 7 is not defined in @, thus
T~ cannot to be strictly considered as an inverse of 7' in the points of d¢, even
if 77! is defined in dg. In fact, if an arc w crosses d¢ in two distinct points, say
(71,G(Q)) and (72, G(Q)) then its preimage T~ !(w) must include a loop with
double point in @, as shown in Fig. 4b.

When the presence of a vanishing denominator induces the existence of focal
points, important effects on the geometrical and dynamical properties of the
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map T can be observed. Indeed, a contact of an arc w with a prefocal curve
dq, gives rise to important qualitative changes in the shape of the preimages
Tj_l(w). When the arcs w are portions of phase curves of the map T, such
as invariant closed curves or stable sets of saddles that form basin boundaries,
one has that contacts between singularities of different nature generally induce
important qualitative changes, which constitute new types of global bifurcations
that change the structure of the basins. In fact, let us consider a smooth curve
segment w that moves towards a prefocal curve d¢g until it crosses through dq
(see Fig. 5) so that only a focal point @ = T~!(dg) is associated with d¢. The
prefocal set dg belongs to the line of equation y = G(Q), and the one-to-one
correspondence defined by (18) and (19) holds. When w moves toward d¢, its
preimage w_; = T~ ! (w) moves towards Q. If w becomes tangent to g in
a point C' = (z.,G(Q)), then w_; has a cusp point at ). The slope of the
common tangent to the two arcs, that join at @, is given by m(z.), according
to (19). If the curve segment w moves further, so that it crosses dg at two
points (21, G(Q),) and (z2,G(Q)), then w_; forms a loop with a double point
at the focal point (). Indeed, the two portions of w that intersect dg are both
mapped by T~! into arcs through @Q, and the tangents to these two arcs of w_1,
issuing from the focal point, have different slopes, m(x1) and m(z2) respectively,
according to (19).

(& 6Q
T-I
«——
®
X /TNE 6Q
T-!
-
®»

Figure 5:

When w is an arc belonging to a basin boundary F, the qualitative modifi-
cations of the preimages Tj_1 (w) of w, due to a tangential contact of w with the
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prefocal curve, can be particularly important for the global dynamical proper-
ties of the map T'. As recalled above, a basin boundary F is backward invariant,
ie. T7Y(F) = F, soif w is an arc belonging to F, then all its preimages of any
rank must belong to F. This implies that if a portion w of F has a tangential
contact with a prefocal curve dg, then a cusp points, located in the focal point
Q, is included in the boundary F. It results that if the basin boundary F was
smooth before the contact with the prefocal curve d¢g, such a contact gives rise
to points of non smoothness. When F crosses through é¢g in two points, after
the contact F must contain a loop with double points in Q. So, a contact of a
basin boundary with a prefocal curve gives rise to a new type of basin bifurcation
that causes the creation of cusp points and, after the crossing, of loops (called
“lobes”), along the basin boundary.

As we shall see in the next section, this is the basic mechanism leading to
the particular structure of the basins shown in Fig. 2.

5 Basins’ bifurcations for the adaptive process
The first component of the map (8) assumes the form

2 = Flz,0) = ]DVE;C zi _ - Q)Z(;F_O‘Z;l . (20)

hence its denominator vanishes along the lines
0s ={(z,a) |z =0o0r a =1} (21)

and it assumes the form 0/0 in the point @ = (0, 0). Indeed, this is a focal point
for the map 7', and the corresponding prefocal curve is

1

obtained by inserting the coordinates of ) in the second component of (8).

We now show that inverse 7! focalizes the line d¢ into the unique point
Q. In fact, it is easy to compute the inverse of T' by solving the system (8) with
respect to z and «. In fact, from the second equation we obtain

nf— -2
a/kg kg
= 22
v In ks (22)
and from the first equation
2 _ I
o — :v2 xx' — upx (23)

)
x? —xx’ — pum

where each z in the right hand side can be replaced by using (22), so that the
inverse map T~ ! is obtained. The first component (22) of the inverse is defined
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in the range of the map T', given by

0<a < 1 (24)
k1
and the second component, (23), is defined in E' = R?\ | J;—, T* (07,), where &,
is the locus of points where the denominator of (23) vanishes. It is immediate
to check that T71(dg) = Q = (0,0). In fact, if we insert o/ = 1/(k1 + k2) in
(22) we get z = 0, and from (23) with x = 0 we get a = 0.

This allows us to explain the structure of the basins observed in Fig. 2 on
the light of the results recalled in the previous section. Let us consider first
the situation shown in Fig. 6a, obtained with parameters k1 = 10; ky = 20;
ks = 0.432; m = 500; p = 10; p = 0.537. In this case we have only an
equilibrium point, a stable node, whose basin boundary is separated from the
unfeasible set by the line §5 of equation x = 0 and its preimages. The rank-1
preimage of &, say §; ' = T~ (d,) (see Fig. 6a), is close to the prefocal line &g,
and the rank-2 preimage, denoted by §;2 = T~1 ((55_1), is also shown. As the
parameter ky is increased, the curve §; ! moves upwards, until it has a tangential
contact with the prefocal line (Fig. 6b). This implies that portion of the basin
boundary formed by §; 2 has a cusp point in @, and a further increase of ks leads
to a crossing between 0, ! and dg. This causes the creation of a lobe issuing
from the focal point @, formed by the rank one preimage of the portion of the
unfeasible set above dg (Fig. 6¢). When this lobe will grow up for increasing
values of ko it will reach the line §g and this will mark the creation of a new
lobe and so on, thus leading to the situation shown in Fig. 2a.

Let us consider, now, a situation of bistability, like the one shown in Fig. 2b,
where a “rational equilibrium” and a stable cycle coexist, each with its own
basin of attraction. The boundary that separates these two basins is formed
by the stable set of the saddle point. Also in this case, any contact of a basin
boundary with the prefocal curve will cause the creation of a lobe of the same
basin issuing from the focal point. Let us start from the situation shown in
Fig. 7a, obtained with parameters k1 = 2.4; ko = 44; k3 = 0.9; m = 1677;
p=10; u = 0.917. As the parameter k is increased, the basin boundary of the
stable equilibrium crosses the prefocal line dg. This causes, again, the creation
of a lobe issuing from the focal point ), formed by the rank one preimage of
the basin of attraction of the stable equilibrium (Fig. 7b). For increasing values
of ko also the preimages of rank two, three, four and so on will cross the line dq
creating an high number of lobes.

This sequence of global bifurcations is at the basis of the formation of basins’
structures like those shown in Fig. 2b and 2c.

As a final remark, we can stress that attractors which are different from sta-
ble equilibria can be observed among the dynamic scenarios of the dynamical
system generated by the iteration of the map (8), such as attracting periodic
cycles, like the one as shown in Fig. 2¢, or chaotic attractors. In these cases the
asymptotic behavior of the adaptive process will never converge at a rational
behavior, i.e. the consumers never learn to behave rationally. These kinds of
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Figure 6:

disequilibrium dynamics may exhibit interesting features, both from a mathe-
matical and an economic point of view, and will be studied elsewhere. However,
it is worth noticing here that other properties of the maps with denominator, al-
ready stressed in Bischi et al., 1999, can be applied in this context. In fact, also
the inverse map 71, defined by (22) and (23), has a vanishing denominator, and

its second component assumes the form 0/0 in the point % — up, %)
k1+ko k:sp
This is a focal point of the inverse map, and the associated prefocal line has
equation x = ™. As indicated in Bischi et al., 1999, a simple way to detect this
is based on the study of the determinant of the Jacobian matrix of the map T,

given by
apm wm — ppx

1—
22(1—a) z(l-a«)?
PE=1 kg ik . (25)
(k1 4+ k2k§)2
hence

m
det DT =0 & z=—. (26)

p

Then it is easy to see that the image by T of the line at which the Jacobian
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determinant vanishes is a single point

m m 1
T\z=—y|=|——w,———=
b p ]f1+]€2]€3p

i.e. that line is “focalized” by T', thus confirming that the line 2 = m/p is the
prefocal line of T—!. If a chaotic attractor exists that crosses the prefocal curve
of the inverse, then it will include a so called “knot” (following the terminology
introduced by Bischi et al., 1999).

Figure 7:

6 Conclusions

In this paper the theory of focal points and prefocal curves (see Bischi et al.,
1999, 2003, 2005) has been used to explain some peculiar structures of the basins
of attraction of a discrete time dynamical system proposed by D’Orlando and
Rodano (2005) to model the behavior of boundedly rational consumers. In fact,
this dynamical system is obtained by the iteration of a map characterized by
the presence of a denominator that can vanish, and assumes the form 0/0 in a
point of the phase plane.

Maps with focal points and prefocal sets naturally arise in discrete dynamical
systems of the plane found in several applications, such as economic modeling
(see Bischi and Naimzada, 1997, Bischi et al., 2000) or numerical iterative meth-
ods (see Billings and Curry, 1996, Gardini et al., 1999). These papers exhibit
basins with structures which are peculiar of maps with a vanishing denomi-
nator, called lobes and crescents, that can be explained in terms of contacts
between basin boundaries and prefocal curves. For the dynamical system de-
scribed in this paper a study of the basins is particularly important, because
convergence to a stable equilibrium is interpreted as the possibility that non
rational consumers can learn to behave rationally in the long run. So, on one
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side the assumption of rationality seems to be too strong an assumption, a kind
of limiting case, if compared with real economic systems where agents have a
limited ability to compute, on the other side the convergence of the evolutionary
process analyzed in this paper can be seen as a justification of the assumption
of rationality. This was Nash’s concern: we can attain a rational outcome as
the asymptotic outcome of an evolutionary process (see e.g. Marimon, 1997).
Moreover, in the case with multiple rational equilibria, the evolutionary model
may act as a selection device, and the kind of rational choice reached by the
evolutionary dynamics becomes path dependent, i.e. crucially depends on the
initial conditions. This is the reason why we focused our attention on the study
of the basins of attraction.

Even more interesting situations of equilibrium selection arise when there are
attractors of the adaptive dynamics which are not rational equilibria. This leads
to situations of coexistence, for the bounded rationality dynamics, of rational
attractors with non-rational attractors, so that long-run behavior is character-
ized by agents which continue to make choices different from the rational ones.
Parameter constellations that give rise to the presence of chaotic attractors can
be easily evidenced in the numerical explorations of the model considered in this
paper. Their properties, which be investigated in the future, may have some
interesting topological features due to the existence of focal points of the inverse
map that can also cause the creation of particular kinds of chaotic attractors.
Indeed a focal point, generated by the inverse map, may behave like a “knot”,
where infinitely many invariant curves of an attracting set shrink into a set of
isolated points, as shown in Bischi et al., 1999.

Appendix

Proof of Proposition 1. First of all we notice that a solution of (9) always exists,
because the difference between the two functions at right hand sides

1 P
g9(x) = s(z) —r(z) = Ty + kok? m’
3

. : 1 . b
is such that ¢(0) = s(0) = 1/(k1 + k2) > 0 and mll)riloog(:v) = wETw =
—00.

In order to find necessary and sufficient condition for the existence of three
solutions of (9) let us write the equation
P 1

P 1 27
m" Tkt kokd @7)

in the equivalent form

~ =g (28)

from which

=z. (29)
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We now consider the equivalent system:

(G- B) (30)

and we want that the two right hand sides have the same derivatives in two
points (a necessary condition for having three solutions) and then we ask for
which values the points of equal derivative are true tangency points between the
two curves represented by the two equations (30). The two derivatives coincide
at the solutions of the equation

m
— =1 31
In ks (ma — pky2?) (31)
i.e.
pk1 Inksz? — mInksz —m = 0. (32)
Two solutions
_moymt R _mE R (33)
= 2p/€1 ’ 2= 2pk1
exist provided that
dmpky
2
0 34
+ In kg ( )
i.e. m
m —aR]
— . 35
P > In k3 (35)

The upper point of tangency, at © = x4, is characterized by the condition:

m o+ fm? + SR 1
P n ks (36)

m 2pk1 m+1/m2+74$7;’;1

k1 + k2k3 Pk

1.e
my[m24 7417:1;{:’1

2mpk Ty ks
mpe =k + koky (37)

4 k
mt (fm? 4 ek

from which k5*?* is get. Analogously, the tangency condition for z = x; gives
k5. This completes the proof. O

Acknowledgments. We thank prof. Giorgio Rodano, who gave a very in-
teresting lecture at the University of Urbino, in April 2005, on the economic
model studied in this paper. We also thank the participants to the Fourth In-
ternational Conference on Nonlinear Economic Dynamics, Urbino (Ttaly), 2005.



BASINS OF ATTRACTION IN AN EVOLUTIONARY MODEL 363

This work has been performed under the Joint Research Grant (0382): “Recon-
sideration of economic dynamics from a new perspective of nonlinear theory”,
Chuo University, Japan, and within the activity of the national research project

“Nonlinear models in economics and finance: interactions, complexity and fore-
casting”, MIUR, Italy.

References

1]

2]

13

4]

5]

[6]

7]

18]

19]

[10]

[11]

A.A. ALcHIAN, Uncertainty, Evolution, and Economic Theory, Journal of
Political Economy, 58 (1950), 211-221.

L. BiLLINGS and J.H. CURRY, On noninvertible maps of the plane: Erup-
tions, Chaos, 6 (1996), 108-119.

G.I. BiscHi, L. GARDINI and C. MIRA, Maps with denominator. Part 1:

some generic properties, International Journal of Bifurcation & Chaos, 9
(1999), 119-153.

G.I. BiscHi, L. GARDINI and C. MIRA, Plane Maps with Denominator.
Part II: Noninvertible maps with simple focal points, International Journal

of Bifurcation and Chaos, 13 (2003), 2253-2277.

G.I. BiscHi, L. GARDINI and C. MIRA, Plane Maps with Denominator.
Part III: Non simple focal points and related bifurcations, International
Journal of Bifurcation and Chaos, 15 (2005), 451-496.

G.I. BiscHI and A. NAIMZADA, Global analysis of a nonlinear model with
learning, Economic Notes, 26 (1997), 143-174.

G.I. BiscHi, M. KOPEL and A. NAIMZADA, On a rent-seeking game de-
scribed by a non-invertible iterated map with denominator, Nonlinear Anal-

ysis, Theory, Methods and Applications, 47 (8) (2001), 5309-5324.

F. D’ORLANDO and G. RODANO, Fondamenti teorici dell’ipotesi di razion-
alita: il ruolo dell’esperienza, 2005, submitted in Economia Politica.

L. GARrDINI, G.I. BiscHl and D. FOURNIER-PRUNARET, Basin boundaries
and focal points in a map coming from Bairstow’s method, Chaos, 9 (1999),
367-380.

R. MARIMON, Learning from learning in economics, in D.M. Kreps and
K.F. Wallis, eds., Advances in Economics and Econometrics: Theory and
Applications, Volume I, Cambridge University Press, Cambridge, UK, 1997.

C. MiraA, L. GARDINI, A. BArRuGOLA and J.C. CATHALA, Chaotic dy-
namics in two-dimensional noninvertible maps. World Scientific, Singapore,

1996.



