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Abstract. Starting from a family of discontinuous piece-wise linear one-dimen-

sional maps, recently introduced as a dynamic model in social sciences, we pro-

pose a geometric method for finding the analytic expression of the bifurcation

curves, in the space of the parameters, that bound the regions characterized

by the existence of stable periodic cycles of any period. The conditions for the

creation and the destruction of periodic cycles, as well as the analytic expres-

sions of the bifurcation conditions, are obtained by studying the occurrence

of border-collision bifurcations. In this paper we consider the case of maps

formed by three linear portions separated by two discontinuity points. After

summarizing the bifurcation structure associated with one-dimensional maps

with only one discontinuity point, we show how this is modified by the intro-

duction of a second discontinuity point. Finally we show how the considered

map can be obtained as the limit case of a family of continuous maps as a pa-

rameter is increased without bounds, and we show how the low period cycles,

which are typical of the discontinuous map we consider, emerge from the more

complex (i.e. chaotic) behaviors observed in the continuous maps when a pa-

rameter value is large enough. From the point of view of the social application

the increasing values of the parameter can be interpreted as higher degrees of

impulsivity of the agents involved in binary decisions.
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1. INTRODUCTION

Since the Seventies of the last century, plenty of papers and books devoted to

dynamic and geometric properties of nonlinear discrete dynamical systems have

been published, giving rise to a flourishing literature on the qualitative study of

the asymptotic behaviors and bifurcation theory for discrete dynamical systems,

represented by the iteration of differentiable one-dimensional maps (see e.g. [8],

[11], [19], [49], [39]). However, in the recent literature on dynamic modelling applied

to the description of engineering, economic and social systems, several models are

ultimately expressed in the form of iterated piecewise differentiable functions, which

may either be continuous (see e.g. [9], [10], [22], [23], [24], [16], [35], [36], [45],

[42], [43], [17]) or discontinuous, with one or more discontinuity points ([38], [37],

[44], [46], [47], [7], [48]). The bifurcations involved in such class of maps are often

described in terms of the so called border-collision bifurcations. We can classify as

border-collision any qualitative change in the properties of a dynamical system due

to a contact between an invariant set and a boundary (or border) of its region of

differentiability. The term border-collision bifurcation was used for the first time by

Nusse and Yorke in [33] (see also in [34]) and it is now widely used in this context, i.e.

for piecewise smooth maps, although the study and description of such bifurcations

started several years before these papers. For example, Leonov ([26], [27]) described

several bifurcations of that kind, and gave a recursive relation to find the analytic

expression of the sequence of bifurcations occurring in a one-dimensional piecewise

linear map with one discontinuity point, which is still almost unknown, except for

a limited number of researchers among which Mira ([31], [32]), Maistrenko et al.

[28], [29], [30]. See also the results obtained by Feigen in 1978, re-proposed in di

Bernardo et al. [12], [13]. These authors already described the contact bifurcations

now called of border collision, but using different names and notations.

These kinds of bifurcations are now widely studied and gave rise to a flourishing

literature in the last years, mainly because of their relevant applications in Electrical
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and Mechanical Engineering. In fact, several papers on piecewise smooth dynami-

cal systems and border collision bifurcations have been motivated by the study of

models used to describe particular electrical circuits or systems for the transmission

of signals ([28], [29], [30], [12], [13], [3], [4], [5], [25], [14], [15], [20], [50], [51], [52],

[1], [2]).

In this paper we analyze a family of discontinuous piecewise linear maps proposed

by Bischi and Merlone [6] to model the dynamic evolution of binary decisions in

a population of ”impulsive individuals” under the influence of social externalities.

In fact, Bischi and Merlone ([6]) presented the following discrete-time adaptive

dynamic model, based on the qualitative properties described by Schelling ([40],

[41]), to represent an adjustment process of repeated binary choices under social

externalities:

(1)

xt+1 = f(xt) =

{
xt + δAg [λ (A (xt)−B (xt))] (1− xt) if A (xt) ≥ B (xt)

xt − δBg [λ (B (xt)−A (xt))]xt if A (xt) < B (xt)

where x ∈ [0, 1] represents the fraction of players that choose the option A, char-

acterized by a payoffs function A(x), whereas the complementary fraction (1− x)

chooses the opposite strategy B that has payoff B(x), δA, δB ∈ [0, 1] represent

switching propensities and g : R+→ [0, 1] is a continuos and increasing function

such that g(0) = 0 and limz→∞ g(z) = 1. The positive parameter λ representing

the speed of reaction of agents - small values of λ imply more inertia, while, on

the contrary, larger values of λ imply more reactive agents. In [7] the limiting case

when λ tends to infinity has been considered, which represents agents that immedi-

ately switch their strategies even when the difference between payoffs is extremely

small, also called impulsive agents. Under this assumption the function f becomes

discontinuous:

(2) xt+1 = f∞(xt) =





(1− δA)xt + δA if B (xt) < A (xt)

xt if B (xt) = A (xt)

(1− δB)xt if B (xt) > A (xt)

In [7] this limiting case has only been considered with monotonic payoff functions

that intersect in one interior equilibrium point, and for the corresponding piecewise
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linear map with one discontinuity point conditions for the creation and the destruc-

tion of periodic cycles, as well as the analytic expressions of the bifurcation curves,

have been derived. In this paper the same limiting case of impulsive agents is con-

sidered under the realistic assumption of non monotonic payoff curves (see Schelling,

[40], page 414, Granovetter, [18], page 1438) that describe situations where both

a low diffusion as well as an excessive diffusion of a given collective choice induces

an extreme form of over-reaction leading to fast transition to the opposite choice,

i.e. we assume that A(x) > B(x) for d1 < x < d2 and A(x) < B(x) otherwise.

So, in this paper we are interested in extending the results given in [7] to the case

with two discontinuities, by using methodologies similar to those used in [48] for a

different model with two discontinuities.

The structure of the paper is the following. In section 2, starting from the one

discontinuity map, we introduce the map with two discontinuities and provide a

formal analysis of the bifurcation curves; in section 3 we show how the map we

analyze can be obtained as the limiting case of a continuous map. Finally, the last

section is devoted to some concluding remarks.

2. A family of piecewise linear maps with two discontinuities

The family of iterated maps T : [0, 1] → [0, 1] considered in the present paper

has the form:

(3) x′ = T (x) =





(1− δB)x if x < d1 or x > d2

x if x = d

(1− δA)x + δA if d1 < x < d2

with parameters subject to the following constraints ([6]):

0 < d1 < d2 < 1

0 < δA < 1, 0 < δB < 1

Defining m1 = 1− δB and m2 = 1− δA the map can be rewritten as:

(4) x′ = T (x) =





TR(x) = m1x if x < d1 or x > d2

x if x = d

TL(x) = m2x + 1−m2 if d1 < x < d2
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The cases with one discontinuity point occur if either d1 = 0 or d2 = 1, as in these

cases the map (3) becomes

(5) x′ = M1(x) =





(1− δA)x + δA if x < d2

x if x = d2

(1− δB)x if x > d2

or

(6) x′ = M2(x) =





(1− δB)x if x < d1

x if x = d1

(1− δA)x + δA if x > d1

respectively. These two maps, characterized by a decreasing jump and an increasing

jump, respectively, have been recently studied in [7] where an analysis of the so-

called ”principal tongues” ([28], [29], [30], [12], [13], [4], [1], [2]) or ”tongues of first

degree” (Leonov, [26], [27], Mira [31], [32]) is provided. We recall that the principal

tongues are regions, in the parameters’ space, where a periodic cycle of period k

exists, with one periodic point on a side of the discontinuity point and the remaining

(k − 1) points on the other side (for any integer k > 1).

For the case with two discontinuities, considered in this paper, let us start from

the description of the possible attractors of the map. Two examples are shown in

Fig. 1, where two different cases of coexisting attractors are shown, respectively

given by the fixed point x = 0 and a stable cycle of period 3 (Fig. 1a) or the

same fixed point with a stable cycle of period 2 (Fig. 1b). It is worth noticing

that in this model the origin is always an attractor: It may be the only one or it

may coexist with an attracting cycle of period k > 1, according to the values of the

four parameters d1, d2, δA and δB . In the following we shall prove the existence of

stable periodic cycles in analytically defined regions of the space of the parameters,

as well as the analytic conditions for their creation/destruction through border

collision bifurcations.

In the case of coexisting attractors, it is also important to bound the sets of initial

conditions that generate trajectories that converge to one or to the other, i.e. the

respective basins of attraction. Indeed, we only have the two following possibilities:
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Figure 1. Map (4), coexistence of two attractors. (a) With pa-

rameters m1 = 0.75, m2 = 0.6, d1 = 0.55, d2 = 0.8, the two

attractors are the origin and a cycle of period 3. (b) With parame-

ters m1 = 0.5, m2 = 0.2, d1 = 0.4, d2 = 0.7 the two attractors are

the origin and a cycle of period 2.

(a) each of the two basins is made up of only one interval, separated by the

discontinuity point d1 (as in the case shown in Fig. 1a), so we have that the basin

of the origin is the first interval: B(O) = [0, d1[ while the other points converge to

the attracting cycle: B(C) =]d1, 1];

(b) each of the two basins is made up of two or more intervals (an example

is shown in Fig. 1b), separated by the two discontinuity points d1 and d2 and

their preimages. The immediate basin of the origin is clearly the segment [0, d1[

so that the whole basin is given by this segment and all its preimages: B(0) =

∪j≥0T
−j([0, d1[), while the complementary region in [0, 1] gives the basin of the

cycle: B(C) = [0, 1] \ B(0).

We notice that for the example in Fig. 1b the basin of the origin B(O) is made

up of the two intervals: B(O) = [0, d1[∪]d2, d
−1
1 [ where d−1

1 = T−1
R (d1) = d1/m1,

and the complementary region gives the basin of the cycle: B(C) =]d1, d2[∪]d−1
1 , 1].

From the above description it is plain that the qualitative change in the structure

of the basins depends on the position of the rank-1 preimage of d1, denoted by d−1
1 : if

it does not exist we have the situation (a), as shown in Fig. 1a; if it exists, we get the
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situation (b), hence the global dynamics are quite different. The bifurcation leading

from situation (a) to (b) (or vice-versa) occurs when d−1
1 appears (disappears)

through a so called ”border collision bifurcation”, occurring when d−1
1 = T−1

R (d1)

has a contact with d2, i.e. when d1/m1 = d2, or, equivalently, when m1 = d1/d2,

i.e. δB = (d2 − d1) /d2.

If we define

(7) δ∗B =
d2 − d1

d2

then the following proposition easily follows from the arguments given above:

Proposition 1. (a) When δB < δ∗B then there are two coexistent attractors, the

origin and a k−cycle Ck for some integer k, and each basin of attraction is formed

by one interval: B(O) = [0, d1[ and B(C) =]d1, 1].

(b) When δB > δ∗B then either the origin is the only attractor with basin B(O) =

[0, 1] or there are two coexisting attractors, the origin and a k−cycle Ck for some

integer k. The basins of the origin is given by B(0) = ∪j≥0T
−j([0, d1[), while the

complementary region in [0, 1] gives the basin of the k−cycle: B(Ck) = [0, 1]\B(0).

According to this Proposition, when the origin is not the only attractor, it co-

exists with a stable cycle of period k. Indeed, we shall see that stable cycles Ck

of any period k > 1 can exist, and we shall also distinguish several qualitatively

different cycles among those that have the same period k. In fact, the existence

of a k−cycle is associated only with a portion of the map, and precisely with the

two parts of the map located on the right of the first discontinuity point. For ex-

ample, in the range of parameters considered in part (a) of Proposition 1, we have

two qualitatively different dynamics separated by the discontinuity point d1, and

in the interval ]d1, 1] our model is qualitatively the same of ”a discontinuous map

with only one jump of decreasing type”, whose dynamic behaviors are similar to

those studied in [7]. So, for initial conditions taken in the interval ]d1, 1] we already

know that all the possible cycles Ck, k > 1, may exist, with periodic points in the

intervals ]d1, d2[∪]d2, 1]. Instead, in the parameter range considered in part (b) of

Proposition 1 we may have either coexisting cycles or not. In the first case, i.e.,

when two different attractors coexist, then the periodic points of the k−cycle are

all included in ]d1, d2[∪]d2, 1]. An example of the different periods which may exist

is shown in the two bifurcations diagrams of Fig. 2.
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Figure 2. Two-dimensional bifurcation diagrams in the plane

(δA, δB) of the map T. In (a) d1 = 0.0 and d2 = 0.7. In (b)

d1 = 0.4 and d2 = 0.7.

Fig. 2a shows the bifurcation diagram in the case d1 = 0 and d2 = 0.7, i.e. when

the map has only one discontinuity point with decreasing jump. In this case stable

cycles Ck exist for any k > 1, which involve the two branches of the map around

d2, say the left branch TL(x), for 0 < x < d2, and the right branch TR(x), for

d2 < x < 1. By contrast, in Fig. 2b we show the dynamic effect associated with

the introduction of the other discontinuity point, d1, i.e. another branch which

includes the stable fixed point at the origin. In Fig. 2b it can be seen that for

0 < δB < δ∗B the two bifurcation diagrams are identical, and changes only occur

for δB > δ∗B . The meaning of the gray tonalities is that when the parameters are

taken in the white region the origin is the only attractor, while in the grey-shaded

regions the origin coexists with a k−cycle, whose period k is different in regions

with different grey tones. In Fig. 2 only a few periodicity tongues are visible,

but we shall demonstrate that infinitely many exist, as periodicity tongues of all

periods k > 1 exist, bounded by bifurcation curves corresponding to the occurrence

of border-collision bifurcations. We shall also give the analytic expression of the

bifurcation curves that bound the principal tongues.

In Fig. 3 we show a one-dimensional bifurcation diagram showing the state

variable x as the parameter δB is decreased along the line shown in Fig. 2b, i.e. at
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Figure 3. One-dimensional bifurcation diagram of the state vari-

able x as the parameter δB is decreased along the line shown in

Fig.2b, with a fixed value δA = 0.2.

the fixed value of δA = 0.2. Even in this picture, only a few k-cycles are detectable,

however if the scale is enlarged, i.e. after a zoom-out of any portion of the bifurcation

diagram, more and more different cycles appear between any pair of the main cycles

visible in Fig. 3.

Before entering the detail of the border collision bifurcations that cause the

creation and the destruction of the cycles, we want to stress that any cycle, when

it exists, is asymptotically stable. In fact, the stability of a k−cycle is given by the

slope (or eigenvalue) of the function T k = T ◦ ... ◦T (k times) in a periodic point of

the cycle, which is also a fixed point of the map T k. Then, by the chain rule, the

eigenvalue in any one of the periodic points is given by the product of the k slopes

of the map in the k periodic points, and assuming that the cycle has p points on the

left side and (k − p) on the right side, the eigenvalue is given by mp
1m

(k−p)
2 which,

in our assumptions, is always positive and less than 1.

We also stress that a periodic cycle can only exist with periodic points belonging

to the two linear pieces in the range [d1, 1], that is, they are associated with TL(x),
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in the range d1 < x < d2, which we shall call left side L henceforth, and of the map

TR(x), in the range d2 < x < 1, which we shall call right side R. As we shall see, a

k−cycle with k > 1 may have p points on the left side L and (k − p) on the right

side R, for any k > 1 and p < k. In particular, a ”main” or ”principal” k−cycle

is a cycle having period k with one point on one side and (k − 1) points on the

other side, whose periodicity regions are also called as ”tongues of first degree of

complexity” (Leonov, [26], [27], Mira [31], [32]).

Let us start with the determination of the border-collision bifurcation curves

associated with the existence of a ”principal k−cycle”, with one point on the left

side, L, and (k − 1) points on the right side, R. The condition that starts the

existence is that the discontinuity point x = d2 is a periodic point to which we

apply, in the sequence, the maps TL, TR, ..., TR. For example, the starting condition

related with the 3−cycle (k = 3), is TR ◦ TR ◦ TL(d2) = d2. Then the k−cycle with

periodic points x∗1, ..., x
∗
k, numbered with the first point on the left side (i.e. x∗1 < d2,

x∗i > d2 for i = 2, ..., k) satisfies x∗2 = TL(x∗1), x∗3 = TR(x∗2), ..., x
∗
1 = TR(x∗k). The

border collision which starts the periodicity region occurs when x∗1 = d2 and this

cycle, in standard conditions, ends to exist when the last point, x∗k, merges with the

discontinuity point, that is, x∗k = d2, which may be stated as the point x = d2 is a

periodic point to which we apply, in the sequence, the maps TR, TL, TR, ..., TR.

The standard conditions refers to the portion of the bifurcation diagram in which

we are sure that the discontinuity point d1 is not influencing the analysis, that is,

this certainly occurs for δB < δ∗B . But when we have δB > δ∗B then the ”start-

ing condition” no longer occurs, which means that a periodicity tongue cannot be

created any longer, and those already created (for δB < δ∗B) have a closure which

behaves differently: instead of the standard closing condition (x∗k = d2) the cycle

ends to exist when the last point, x∗k, merges with the boundary of the basin of

the origin, that is, when x∗k = d−1
1 , that is, when x∗k = d1/m1. The formalization

of the arguments given above allows us to get the analytic expression of the border

collision bifurcation curves. In fact, let us consider the discontinuity point d2 and



PERIODIC CYCLES AND BIFURCATION ... — JDSGT VOL. 7, NUMBER 2 (2009) 111

apply the maps TL, TR, ..., TR :

x1 = d2

x2 = TL(x1) = m2d2 + 1−m2

x3 = TR(x2) = m1(m2d2 + 1−m2)

x4 = TR(x3) = m2
1(m2d2 + 1−m2)

...

xk+1 = TR(xk) = m
(k−1)
1 (m2d2 + 1−m2)

and a k-cycle occurs when xk+1 = x1. i.e.

d2 = m
(k−1)
1 (m2d2 + 1−m2)

from which we obtain the analytic expression of the starting bifurcation curve:

(8) m2 =
d2 −m

(k−1)
1

m
(k−1)
1 (d2 − 1)

of a cycle with one point on the left side, L, and (k − 1) points on the right side,

R, which holds for δB < δ∗B . From the above expression we can also explicitly write

the periodic points as follows:

x∗1 =
m

(k−1)
1 (1−m2)

1−m2m
(k−1)
1

x∗2 = m2x
∗
1 + 1−m2

x∗3 = m1(m2x
∗
1 + 1−m2)

x∗4 = m2
1(m2x

∗
1 + 1−m2)

...

x∗k = m
(k−2)
1 (m2x

∗
1 + 1−m2)

This cycle exists as long as x∗k satisfies x∗k > d2 in the standard conditions, and the

border collision x∗k = d2 gives the standard closure condition. To find a simpler

expression of x∗k let us proceed as follows: we apply to the discontinuity point d2,
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in the order, the functions TR, TL, TR, ..., TR :

p1 = d2

p2 = m1d2

p3 = m2m1d2 + (1−m2)

p4 = m1(m2m1d2 + 1−m2)

...

pk+1 = m
(k−2)
1 (m2m1d2 + 1−m2)

thus the standard final border collision bifurcation curve (collision of x∗k with the

discontinuity point d2) has the following equation:

d2 = m
(k−2)
1 (m2m1d2 + 1−m2)

or, rearranging:

(9) m2 =
d2 −m

(k−2)
1

m
(k−2)
1 (m1d2 − 1)

We also have the following expressions for the periodic points:

x∗1 = m1x
∗
k

x∗2 = m2m1x
∗
k + (1−m2)

x∗3 = m1(m2m1x
∗
k + 1−m2)

x∗4 = m2
1(m2m1x

∗
k + 1−m2)

...

x∗k−1 = m
(k−3)
1 (m2m1x

∗
k + 1−m2)

x∗k =
m

(k−2)
1 (1−m2)

1−m2m
(k−1)
1

so that the final border collision bifurcation curve occurring for δR > δ∗R and due to

the collision of the periodic point x∗k with the boundary of the basin of the origin,

has the following equation:

m
(k−2)
1 (1−m2)

1−m2m
(k−1)
1

=
d1

m1
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that is, rearranging:

(10) m2 =
d1 −m

(k−1)
1

m
(k−1)
1 (d1 − 1)

Similarly we can reason for the other principal k−cycles. Let us write here only the

bifurcation curves, since the proof is quite similar to the one given above: they only

differ in the order of application of the maps, that is we use TR, TL, ..., TL instead

of TL, TR, ..., TR. The starting bifurcation curve of a k−cycle, for δB < δ∗B , has

equation

d2 = m
(k−1)
2 m1d2 + (1−m

(k−1)
2 )

or, rearranging:

(11) m1 =
d2 − 1 + m

(k−1)
2

d2m
(k−1)
2

The standard final bifurcation curve (collision of x∗k with the discontinuity point

d2) is given by:

d2 = m
(k−2)
2 (m1m2d2 + m1(1−m2)) + (1−m

(k−2)
2 )

or, rearranging:

(12) m1 =
d2 − 1 + m

(k−2)
2

(m2d2 + 1−m2)m
(k−2)
2

Instead, the border collision bifurcation curve, occurring for δB > δ∗B due to the

collision of the k−cycle with the boundary of the basin of the origin, differently from

the previous case, is now detected by the collision of the periodic point x∗1 with the

boundary (d−1
1 = d1

m1
), as the periodic points are now given by x∗1 > d2, x∗i < d2 for

i = 2, ..., k. This border collision curve has the following equation:

x∗1 =
1−m

(k−1)
2

1−m1m
(k−1)
2

=
d1

m1

that is, rearranging:

(13) m1 =
d1

1−m
(k−1)
2 (1− d1)

By using the bifurcation curves given above we have drawn all the bifurcation

curves of the principal k−cycles for k = 2, ..., 15 reported in Fig. 4. For k = 2 the

formulas (8) and (9) give the same bifurcation curves of the formulas in (11) and

(12), which is obvious as the 2−cycle is the unique one with one point on the right
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Figure 4. Map ((a) Bifurcation curves of first degree in the pa-

rameter plane (δA, δB), for d1 = 0.2 and d2 = 0.7, for cycles of

periods 2, ..., 15, obtained by the analytical expressions calculated

for the map T . (b) The tongues of periodicity, bounded by the

same bifurcation curves as in (a), are numerically obtained with

gray tonalities associated with the different periods.

and one on the left of the discontinuity d2, and can be detected by labelling the

periodic points as x∗1 < d2 and x∗2 > d2 in the first case, or labelling as x∗1 > d2 and

x∗2 < d2 as in the second case. So, what is called initial and final in the first case,

can be called final and initial, respectively, in the second one. The border collision

of the cycle with the boundary of the basin of attraction of the origin may thus

involve both the periodic points of the 2−cycle: it is given by the collision x∗2 = d1
m1

in the first case (from the equation in (10)) and the collision x∗1 = d1
m1

in the second

case (from the equation (13)).

Instead, for k = 3, ..., 15, all the bifurcation curves in Fig. 4 located above the

tongue of the 2-cycle can be drawn by the formulas in (8), (9) and in (10), and

those below the period-2 tongue can be drawn by (11), (12) and (13). Notice that

the formulas given in (8), (9) and in (10), as well as those in (11), (12) and (13),

hold whichever are the positions of the discontinuity points d1 and d2. In Fig. 5 we

show the bifurcation curves for k = 2, ..., 15 in a different case. It is worth noticing

that reasoning in the same way it is possible to find also the boundaries of the other
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Figure 5. (a) Bifurcation curves of first degree of complexity for

cycles of periods 2, ..., 15, in the parameter plane (δA, δB), obtained

by the analytical expressions for the map T with d1 = 0.7 and

d2 = 0.7. (b) The tongues of periodicity, bounded by the same

bifurcation curves as in (a), are numerically obtained with gray

tonalities associated with the different periods.

bifurcation curves. In fact, besides the regions associated with the ”tongues of first

degree” there are infinitely many other periodicity tongues.

Indeed, between any two tongues having periods k1 and k2 there exists a tongue

having period k1 + k2 (see the numbers in Fig. 4). Moreover, all the periodicity

tongues are disjoint, i.e. no overlapping occurs, which means that we can at most

have only one k−cycle, with k > 1, for each fixed set of parameters.

To be more specific, in the description of the periodicity tongues we can asso-

ciate a number to each region, which may be called ”rotation number”, in order to

classify all the periodicity tongues. In this notation a periodic orbit of period k is

characterized not only by the period but also by the number of points in the two

branches separated by the discontinuity point (denoted by TL and TR respectively).

So, we can say that a cycle has a rotation number p
k if a k-cycle has p points on the

L side and the other (k − p) on the R side. Then between any pair of periodicity
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regions associated with the ”rotation number” p1
k1

and p2
k2

there exists also the peri-

odicity tongue associated with the ”rotation number” p1
k1
⊕ p2

k2
= p1+p2

k1+k2
(also called

Farey composition rule ⊕, see for example in [21]).

Then, following Leonov ([26], [27]) (see also Mira [31], [32]), between any pair of

contiguous ”tongues of first degree”, say 1
k1

and 1
k1+1 , we can construct two infinite

families of periodicity tongues, called ”tongues of second degree” by the sequence

obtained by adding with the Farey composition rule ⊕ iteratively the first one or

the second one, i.e. 1
k1
⊕ 1

k1+1 = 2
2k1+1 , 2

2k1+1 ⊕ 1
k1

= 3
3k1+1 , ...and so on, that is:

n

nk1 + 1
for any n > 1

and 1
k1
⊕ 1

k1+1 = 2
2k1+1 , 2

2k1+1 ⊕ 1
k1+1 = 3

3k1+2 , 3
3k1+2 ⊕ 1

k1+1 = 4
4k1+3 ..., that is:

n

nk1 + n− 1
for any n > 1

which give two sequences of tongues accumulating on the boundary of the two

starting ones.

Clearly, this mechanisms can be repeated: between any pair of contiguous ”tongues

of second degree”, for example n
nk1+1 and n+1

(n+1)k1+1 , we can construct two infinite

families of periodicity tongues, called ”tongues of third degree” by the sequence ob-

tained by adding with the composition rule ⊕ iteratively the first one or the second

one. And so on. All the rational numbers are obtained in this way, giving all the

infinitely many periodicity tongues.

Besides the notation used above, called method of the rotation numbers, we may

also follow a different approach, related with the symbolic sequence associated to a

cycle. In this notation, considering the principal tongue of a periodic orbit of period

k constituted by one point on the L side and (k− 1) on the R side, we associate to

the cycle the symbol sequence LR..(k − 1 times).R. Then the composition of two

consecutive cycles is given by:

LR..(k − 1 times).R⊕ LR..(k times).R = LR..(k − 1 times).RLR..(k times).R

that is, the two sequences are just put together in file (and indeed this sequence

of bifurcations is also called ”boxes in files” in [32]), and the sequence of maps to

apply in order to get the cycle are listed from left to right. More generally, it is true

that given a periodicity tongue associated with a symbols’ sequence σ (consisting of

letters L and R, giving the cycle from left to right) and a second one with a symbols’
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sequence τ, then also the composition of the two sequences exists, associated with

a periodicity tongue with symbols’ sequence στ :

σ ⊕ τ = στ

It is worth to notice that these periodicity tongues never overlap, and this implies

that coexistence of different periodic cycles is not possible.

3. The discontinuous map as limiting case of a family of continuous

maps

The map so far considered can be seen as the limiting case of the continuous map

(1) as λ → +∞ when the payoff functions A,B : [0, 1] → R are such that

A (x) > B (x) if d1 < x < d2

A (x) = B (x) if x = d1 or x = d2

A (x) < B (x) if x < d1 or x > d2

In this section we are interested to analyze the behavior of the continuous map (1)

for increasing values of λ up to the limiting case λ → +∞.

For our analysis it is sufficient to notice that if both functions A and B are

continuous, then also the map f is continuous in the whole interval [0, 1], and its

graph is contained in the strip bounded by two lines, being (1 − δB)x ≤ f(x) ≤
(1− δA)x + δA. However, even if B(x) and A(x) are smooth functions, the map

f in general is not smooth in the considered interval, since f is not differentiable

where the functions A and B intersect.

In order to obtain some insight into the effect of increasing values of λ, we consider

the map (1) with g(z) = 2
π arctan (λz), as in ([6]), and then we gradually move to

the limiting case λ → +∞, equivalent to consider g (·) = 1, so that the dynamical

system (1) assumes the form (3). So, beyond its intrinsic interest, the map (3) we

have studied in this paper provides several insights into the asymptotic properties

of the continuous map for high values of λ and emphasizes the role the parameters

δA and δB play in the dynamics. For example, under some conditions on function

A and B, increasing values of λ cause the loss of stability of the equilibrium via

a a flip bifurcation that opens the usual route to chaos through a period doubling

cascade. However, as shown in [7], such a chaotic behavior can only be observed

for intermediate values of the parameter λ, as the asymptotic dynamics settles on
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a stable periodic cycle for sufficiently high values of λ. This can be numerically

observed for many different values of the parameters δA and δB , the only difference

being the period of the stable cycle that prevails at high values of λ. Fig. 6 illustrates

how the continuous map (1) changes as λ varies. It is also interesting to observe how

Figure 6. The map f defined in (1) with g(z) = 2
π arctan (λz)

and for three different values of parameter λ, compared with the

limiting map obtained for λ = ∞.

the corresponding two-dimensional bifurcation diagram in the parameters’ plane

(δA, δB) evolves as λ increases. The different gray tonalities shown in the three

pictures of Fig. 7, obtained with λ = 100, λ = 600, λ = 5000 respectively, represent

the kind of asymptotic behaviour numerically observed: convergence to the stable

fixed point or a stable periodic cycle of low period when the parameters are chosen

in the white or gray regions (with different tonalities representing different periods)

or the convergence to a chaotic attractor, or periodic cycle of very high period,

when the parameters are chosen in the white regions. It can be seen that chaotic

behavior becomes more common at intermediate values of λ whereas periodic cycles

of low period prevail for very high values of λ.
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Figure 7. Bifurcation diagrams in the parameters’ plane (δA, δB)

for the continuous map g(z) = 2
π arctan (λz) with (a) λ = 100 (b)

λ = 600 (c) λ = 5000. The grey shaded regions represent periodic

tongues of low periods, whereas in the white regions the asymptotic

behavior is periodic with high periods or aperiodic, i.e. chaotic, as

shown in the corresponding one-dimensional bifurcation diagrams

shown in the lower part of the figure, obtained with increasing

values of δA and a fixed value δB = 0.2.

4. Conclusions

The main goal of this paper was the analytic description of the bifurcations

occurring in a piecewise linear map T : [0, 1] → [0, 1] formed by three portions with

two different slopes, mi ∈ [0, 1], i = 1, 2, separated by two discontinuity points

0 ≤ d1 < d2 ≤ 1. Firstly we recalled how this piecewise continuous map which

depends on four parameters can be interpreted as the generalization of a simpler

map with one discontinuity. In fact, we showed how both the bifurcation diagram

and the analytic expression of the periodicity tongues of first degree maintain some

important aspects of the map with only one discontinuity point. Secondly, we

examined the different dynamic behaviors of the map and gave a characterization
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of the structure of the basins. In particular, by using methods already known in the

literature, we have then studied the effects, on the structure of the border collision

bifurcation curves, induced by the introduction of the second discontinuity point.

Finally we showed how the map we examined can be seen as the limit case of a

continuos map, and showed how close the bifurcation curves of the limiting case are

similar to those of the continuous model, with a high value of the parameter λ.

The methods followed to obtain the analytic expressions are quite general and

can be easily generalized to cases with different linear functions and several discon-

tinuities, and with slopes different from the ones considered in the model studied

in this paper.
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