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Abstract

In this chapter we propose an oligopoly mode] where firms invest in cost zeducing
R&D for producing homogeneous goods that are sold in a market. In particular, we
assume that R&D efforts build up a "stock of lmowledge", which, in tura, redúces
margina] costs of production. Moreover, though ail firms are competitors in the mar-
ketplace, they can decide to collaborate through cooperation agreements in a network
for sharing their R&D results.

14.1. Introduction

In traditional models of dynamie oligopolistic competition, it is often accepted that a sin-
gle decision variable (quantity or prive) can summarize all strategie decisions of firms (see
e.g. [1-4]). This often leads to models that are analytical tractable but too simplified for real-
isti[ applications. However, when dealing with the production of tecbnological goods, other
dynamic variables become of para:mount importante, such as R&D investments and knowl-
edge (see e.g. [5-9]). Here we propose a generai framework for describing an industry
where firms strategically interact and choose severa: decision variables with interrelated ef-
fects at discrete times. In particular, we consider an oligopoly where n competitors produce
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homogeneous goods and invest in R&D. These R&D efforts are (irreversible) investments
that firms decide for increasing their overall knowledge level, otherwise subject to obsoles-
cence (see [10-12]). Knowledge has a positive impact on unit production costs, through a
so-called R&D production function, see [9]. Moreover, firms can be organized in na R&D
network, i.e., they can cooperate and share R&D results, even if they remain competitors
on the marketplace, as proposed in [7]. However, R&D investments are not entirely private,
as a fraction of them can spii over for free to competitors (see also [13-15] on this point).
Hence, in our model, at each time period, each firm has two different choices to maket the
level of R&D effort to exert, and then the quantity to produce. However, for reducing the
complexity of the problem, we assume that at each time period firms are able to "salve" the
problem of optimal production choice, according to the R&D efforts, by backward induc-
tion. in this way, the model becomes a repeated two stage game, so .that the choice of an
R&D effort strategy is a1wàys followed by ari "optimal" subsequent choice of qùantities. In
order to keep the setting analytically traetable, we introduce some simplifying assumptions,
which allow us to set up the model in terms of a representative firm. First of ali, we assume
that firms are homogeneous, so that also total knowledge is a homogeneous quantity within
the industry. In addition, the network strutture is fixed, so that firms have to decide the
level of théir R&D efforts and the quantity to produce within a given network strutture. We
discuss briefly the effect of a change in the level of collaboration activity. With this respect,
firms' agreements for sharing R&D results are more aliiances (long-terra instances) than
coalitions (short-lived instances), as it is often the case when agreements originate from
Joint Ownership relationship (see [16]). After describing the generai framework of the
model, we give a specific functional form for the R&D production function. So we propose
a dynarnie formulation of the model, in terms of gradient dynamic (see [17-20]). As a con-
sequence of the assumption on agents' homogeneity, this dynatnic model is bidimensional.,
with dynamic variables given by R&D effort and knowledge. In particular, the equilibrio
of the dynamic model are also equilibrio for the corresponding static model. In this way
the proposed dynamic model is useful for two different purposes: first, it describes the "out
of equilibrium" decisions of a representative firm that engages the competition over time.
Second, in case of convergence to an equilibrium point, the dynamic model is a numerical
tool for finding these equilibrio, that, in generai, cari not be found algebraically. In fact, we
derive analytical results on, existence, uniqueness and stability of an R&D effort equilib-
rium with a strict concave R&D production function, i.e., when the marginai productivity
of knowledge is decreasing. When the R&D production function obeys the "Iàw of variable
proportions", some insights can be given by numerical methods. The chapter is organized
as follows. In Section 14.2 the static model is derived, both in generai terms and for •a
specific R&D production function. For the lattee a dynamic version is developed in Section
14.3, where also some specific questions on existence, uniqueness and stability of equilibrio
are addressed. Section 14.4 concludes.

14.2. The Static Model

14.2.1. Generai Formulatimi

We consider a homogenous-product oligopoly where n quantity setting firms operate in a
market characterized by a Iinear inverse demand . function p = a - bQ, a, b > 0, where Q is
the rotai output in the market. These n firms are assumed to form a symmetric network l of
degree k, with O < k < n - 1, inside which firms cari forni bilateral agreements for sharing
R&D results. So every firm has the saure number of collaborative ties k, a parameter that
represents the level of collaborative attitude of the network (level of collaboration activity).
In this model we assume that the network strutture is given; however efforts and quantities
are dyna.micaliy chosen by firms at each (discrete) time period. Every curo spent by firms
concurs to forni the knowledge gain of firm i at time t (also called effective R&D level) as

Ei(t) = xi(t)kxl(t)+[3ixi(t) [(n-1)-k],

	

( 14.1 )

where xi (t) is the R&D effort by firm i at time t and [3i E [0, I) is the absorptive capacity
related to the ability of firm i to gain knowledge for free from non-coinected nodes in the
network (i.e. spillovers, see [9]). The second terra in the right hand side of (14.1) represents
the total effort exerted by Iinked firms, whereas the third terni represents the efforts by non-
linked ones. As present investments in R&D can produce effects for subsequent periods,
with a suitable discount factor, we model the time t total (or accumulated) knowledge of
firm i as

zi (t) `Tef ^p t-kEi (k) = Ei(t)+PI
pt-l-kEi(k) = Ei(t)+pzi(t- l)

	

(14.2)
k=0

	

k=0

where p E [0,1) gives a measure of how rapidly information becomes obsolete: values close
to I represent a system where even the results of very old R&D efforts contribute to current
knowledge, whereas values close to 0 imply that only very recent efforts give significant
contributions to the total knowledge zi. For similar formulations of knowledge accumula-
tion see [6, 9,10]. An inerement of total knowledge can reduce individuai production costs;
for this respect, we assume that firm i has a marginai cost fiction at time t of the forra

ci (t) = co - coi (zi(t)) ,

	

(14.3)

where co is the marginai cost without R&D efforts (equa] for all firms) and f (ai ) is the
R&D production function that we assume (see also [9]):

(i) 0 < < 1 with ji(O) = 0 and lini af̀ (Zl = 0;

(ii) f = fi (zi ) twice continuously differentiable with P > 0; and

0, such that ae > 0 Vz < and a2à (Z)
< 0, Vz > z.r

1 We recali that in a synimetric network ali nodes (firms) have the same number of links.
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Notice that, by assumption (ii), firms ' knowledge has a benefit impact , on its unit pro-
duction cost_ Moreover, by (iii), for 2 = 0, the R&D production function is always concave
and it obeys the so-called law of diminishing marginai productivity; on the other hard,
fori > O (and a nonlinear f (.)) the R&D production function obeys the "law of variable
proportions". The latter can be easily justified in many economie situations. For instane,
let us suppose that the firms are developing a new computer software and R&D effort are
represented by programmers working on the project. If too few programmers are involved,
they Nave to solve all possible issues. By hirìng more programmers, one can assign them
to deal with specific parts of the project, up to a point where they indeed are too many and
diminishing marginai productivity is reached. In the following we assume that a > co, i.e.,
a minimum level of profitability exists to attract firms in the market. Note that taking the
identityf (x) =x as R&D production function and without knowledge accumulatimi (p = O)
the cost fimction simply reduces to the one proposed in [8] 2 . In any case, ali firms are rivals
in the market piace, and they calcolate their optimal quantity by solving a profit maximiza-
tion problem. Then, given optimal quantities as functions of efforts, they can assess how
R&D efforts increase their individuai profits; due to the R&D network of collaboration and
spillovers, each fina calculates these cost-reducing efforts taking irto account not only the
network structure it belongs to (number of firms in the network and number of linked part-
ners) but also the average cost strutture of other firms_ Following [8], we assume that each
oligopolist i in the network maximizes its own profit function

qi + rgpJ -
ci } qi

POi J

	

J

where qi is the quantity produced (and sold) by agenti and yx?, y> O, is the cost of R&D
effort (see [7,21]).

The optimal quantity of firm i is

a-nci+ cp
Ahi

b (1+n)

with corresponding optimal expected profit (see the Appendix for details)

a-nci (xi,x_i)+ Ecp (xp,x_p)
P� i

.\/Ti (l +n)

Given this setting, each fino tries to maximize the optimal individuai profit with respect
to its own R&D effort xi. Substituting the cost functions (14.3) of representative agents in
the network, we can reformulate (14.5) as fit (xli x_i), which is a functions of R&D efforts
only.

2From the point ofview ofspillovers, we could also assume that the absorptive capacity [l1 in (14.1) depends
on accumulated knowledge, with properties similar te the ones of the R&D production function (see [9]). For
the sake of simplicity, here we assume that spillover parameters are constant.

f(Z) = lzr;

where the parameter r > O models the effectiveness of R&D investments. This function sat-
isfies the assumptions (i)-(iii) liste-ci in the previous section. We observe that f (zi) is strictly
concave for O < r < i, i.e., marginai productivity of knowledge is always decreasing accord-
ing to the "law of diminishing marginai productivity"; for values r > 1, fi (zi ) is convex for

low values of knowledge and then. concave with an inflection point at -z-= V r+ (strictly

increasing in r > l) that corresponds to the leve]. of maximum marginai productivity. In the
second case the R&D production function obeys the "law of variable proportions " .

With this specific functional form, we can rewrite (14.3) as .

co	

	

ci (t).
_

1+(x,(t)+Irxi(t)+Pr(n-k-1)xi(t)+pz(t-1))'

	

(14.6)

By the assumption of symmetry of the network, we can write the effective R&D level
for a firrn li i that is linked to i in the network as // r

E4 (t) =kxi(t)+xi+ R1;xl( t) [(n-1) -k] ,

and analogously the effort for a firm not linked to i as

EI_; (t) = (k+ 1 )xl (t) + R1_, [xi (t) (n - 2 - le) +xi]

with cost functions .and cl_; derived from (14.6).
Now, due to the symtnetry of the network, we can impose that the R&D effort by a

generic firm (different from i) is simply xi. So, for the firm i, the terms that represent the
total cost of production for the rest of the industry, to be included in (14.5), are given by

L,cp(t) =kci,(t)+(n-1-k)c1.,(t)
Fai

Substituting alt these cost functions finto (14.5) and assuming the saure spillover param- .

eters across the industry ([3 i = G3, i = 1, ..., n) also total knowledge is honiogeneous, thus we
simply write z instead of zi and zi. All in ali, the expected profit function for firm i can be
written as

1

	

co(n - k)

b(1+n)2
(a-

l+(xi +x i (k+j3(n-k-1)).+pz) r

cc(n-k-1)

	

2
2

	

{14.8)+
l+(xi+Irxi+(xi+xi(n - k- 2))+ pz)r

where xi and xi here represent the R&D effort expected for next time period. Note that
(14.7) also depends on z, the current stock of knowledge. With naive expectations la

Cournot, i.e. xi = xi (t), we can express the expected profit for time t + 1 in function of state

variables at time t, i.e., R&D effort xi (t) and total knowledge z(t).
Assuming interior optimum, it is possible to write the F.O.C. for maximum profit of firm

i, i.e., a r xr1 = 03. By the assumption of symmetry of the network, each agent trivially
az,

3 Second order conditions are satisfied for sufciently high costi efR&D efforts y.

qi = (14.4)

(xi, x_ t) =

2

-yx?.

	

(14.5)

14.2.2. An Example with a Specific R&D 1Productìon Function

From now on we consider the following specific functional forra of the R&D production
function:

Tek=,x1) (14.7)
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as

solves the sarde problem and so she exerts the same effort (i.e. after taking the derivative
w.r.t. xi we can simplify the expression by iruposing xt - xI = x). The expression for the
F.O.C. of a representative firm is

an;X

	

_ 2c0 (-k+13(1+k-n)+n)rAr-I (a-ep+cui')
axr -

	

b(1+n) 2 (1+A')3

	

- 2ix: 0
i-Tt=z^

where A= (1-[3)x(1+k)+[3x,n^-pz
In particular, a change of R&D efforts influences:

• the current cost of effort;

• the unitary cost reduction through the R&D production function for the firm and for
linked competitors;

• the unitary cost reduction for competitors through spillovers.

Expression (14.9) represents the tool to model how R&D efforts exerted by the rep-
resentative firm changes over time according to the gradient dynamic, as explained in the
next section. As we already noticed, the static model is a two stage game, so the choice of
an R&D effort strategy induces an "optimal" subsequent choice of quantities, according to
(14.4). It is interesting to observe that in the homogeneous case the ex post marginai cost
is equal overall the industry, and by (14.4) the realized quantity is always strictly positive.

14.3. Dynamic Adjustment of R&D Efforts and Knowledge

We assume that, due to the network strutture of R&D collaborations and spillover extemal-
ities, agents are not able to coordinate themselves and optimize their profits with respect to
R&D effort levels in one shot; this assumption is fully justified by the faci that the equation
specifying a Nash equilibrium is nonlinear and not analytically solvable in generai cases.
So, it is reasonable to assume that even a skilled player is unable to select at once alt opti-
mal effort leve]. Consequently, firms are assumed to behave myopically, i.e., they adaptively
adjust their efforts over time towards an optimal strategy by following the direction of the
local estimate of expected profits gradient, according to the so called "gradient dynamics"
(see [17-20]). In order to keep low the dimension of the dynamic system, we assume that
firrns are homogeneous, so a single equation can model the dynaruic choices of effort over
time for a representative firm, and the other equation keeps track of the total knowledge of
this agent, so that the dynamic mode! assumes the form o

x' = max [0, x

	

(x ) ax (x,z)]

	

(14.10)
=x{1-i-k+R[(n-1)-k)}+pz

where ' is the unit time advancement operator, x represents the R&D effort at time period
t of the representative firm (we henceforth suppress the subscript i) and a(.) is a positive

4Note that we assume irreversible R&D efforts, i.e., x ? O. In principle one can formulate the model with
reversible investments, but then a constraints on positivity of knowledge must be introduced.

function that represents the speed of adjustment. Note that, given the initial effort x0, due
to (14.2), the initial condition on total knowledge is forced to be

z(0) = x(0) {1 +k+13 [(n - 1) - k]}.

	

(14.11)

In other words, the dynamic model is represented by the iterated 2-dimensional map (14.10)
with initial condition (i.c. henceforth) taken on a 1-dimensional submanifold of the phase
space. At each time period the representative firm decides the R&D effort to be exerted in
the next period, consequently changing the accumulated knowledge as well. Notice that a
choice in the R&D effort also implies a choice . of optimal quantity to produce, according

to (14.4). To simplify the mode! we assume a constant speed of adjustment a(x) = a, i.e.,
the absolute increments or decrements of R&D efforts are direetly proportional to marginai
profits.

14.3.1. Frxed Point Analysis

From the first equation in (14.10), it is immediate to notice that an equilibrium of the dy-
namical system is a point where vanishes, indicating that it corresponds to a Nash equi-
librium level of R&D effort. Moreover, if the effectiveness of R&D vanishes, r --a O, we
also get that optimal effort f - O and the model reduces to a standard Coumot Oligopoly
with marginai cost given by t. The case r = 1, where knowledge capitai follows the law
of diminishing marginai productivity, is particularly interesting, because the more involved
cases with 0 < r < 1 oliare similar qualitative properties, e.g., the same properties of ex-
istence and uniqueness of a positive equilibrium. For this particular case, we show the
following

Proposition 14.1 Let us consider the model (14.10) when r = 1. For ali economie mean-

ingful parameters, the system (14.10) has exactly one eguilibrium E = (x*,z*) with strictly

positive coordinates.

Proof. From the second equation in (14.10) we get the stationary level of total knowledge

z- slx- {1+k+[3 [(n- l) -k]}x

1--p

which, substituted back in d z 1xri, identi.fies a positive equilibrium point of (14.10) as.a

zero of the following function (well defined for r > 0):

g(x;r) =
2c 0 (n-k+13(1+k-n))r(1-p) (xll)r(a-c0+a(xrl)')

-2yx.

	

(14.13)
b(1 +n)2 (1 + k+ R(n - 1 - k))x (1 + (x1) T )3

For the case r = 1, existence of a strictly positive equilibrium then follows, by noticing that:

s g(x;r) is continuous in (0,+sa);

((n-k2(1l-S)+R) > 0;o lim0+ba(x1) = ?(a-co)co
b(1+n)

• 1im g(x;r) _ -".

(14.9)

(14.12)
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Moreover, it is possible to show (by some easy but quite cumbersome algebraic manip-
ulations) that g(x; l) = 0 is equivalent to the research of the mots of a concave fourth degree
polynomiàl in (0,+o), thus ruling out the case of three positive equilibrio..

When r > 1, more scenarios are possible, as we can have, depending on the parameters,
cases without any equilibrium, with one positive equilibrium or with coexistence of mul-
tiple (e.g., two) equilibria. In particular, the function g(x; r) in (14.13) is continuous, with
IimY g(x; r) = 0 and limX_,+„g(x; r) = -s; moreover for r > 3, we can prove analyti-
cally that limx^p+

agu = -2y < 0, so (except some non generie singular cases) either zero
or an even number of equilibria éxist. These varions situations are shown in Figure 14.1,
obtained for parameters a = 5; b = l; n = 20; k = 10; p = 0.55; R = 0; co = 2; y = 5. In
Figure 14.l a, a typical case with r = I is depicted, where existence and uniqueness of the
positive equilibrium is analytically shown in Piroposition 14.1. For r > 1 ali possible config-
utations are shown in Figure 14.1: one positive equilibrium with r = 1.5 in Fig. 14.lb; no
positive equilibrium with r = 3 in Fig. 14.Ic; two positive equilibria with r = 5 in Fig. 14.1 d.

Figure 14.1. Representation of (14.13), whose zer0es n are positive R&D effort equilibria,
with a= 5; b = l ; n = 20; k = 10; p = 0.55; 3 = 0; co 2; y = 5. (a) Uniqueness whenever
r -1; (b) with these fixed parameters, a unique equilibrium exists for r = 1.5; (c) no positive
equilibrium for r = 3; (d) multiple equilibria for r = 5.

	

.

14.3.2. Stability of Ftxed Points

Given the computational difficulty of the model, an equilibrium value of effort x* (with
corresponding knowledge z*) is unlikely to be chosen by firms at the onset of the game. For
this reason it is also important to get some insights on the stability of fixed points.

By Proposition 14.1, in the benchmark case r = i (whose importante has been stressed
in the previous section) there is a unique fixed point E = (x*,z°).

In generai, we recali that the stability conditions for an equilibrium of a bidimensional
map can be expressed by

1-Tr+Det > 0 (Divergente boundary)
1 +Tr-f-Det > 0 (Flip boundary)
1-Det > O (Flutter boundary)

where Tr andDet dente the tace and the determinant of the Jacobian matrix of (14.10) at
the unique fixed point E = (x*,f), see, e.g., citeML01. Under the constraints on parameter
values, these conditions can be written respectively as:

y^(x
A (x

< (1+p) +'2

2y+ lpap >0

where the quantityA(x*) = n	 (1+ka(i+ja(l,xsa(xkp )4+pZ )). In. any case, the third condi-
tion is always satisfied, and so Neimark-Sacker bifurcations are ruled out for all parameter
values. Condition A(x*) > 0 implies that also the first condition for stability is satisfied,
and so a destabilization of the fixed point E = (x*,z*) could take placa only through flip
bifurcations far sufficiently high values of y. Otherwise, for A (x*) < 0 also transcritical or
pitchfork bifurcations are, in principle, possible for iow values of y. More detailed analytical
conditions can be obtained in particular sub-cases. For instante when f3 = 0 (no spillovers),
by (14.12), we have that condition A (x*) >.0 is always satisfied whenever x*

> ' 2 11+k) ; oth-

erwise for 0<x * < i-p that condition is equivalent to 2a> (3c)(1-(p)
+x) Under these- 2(1+x =

circumstances, only flip bifurcations are possible.
New we examine the cases with r > 1. Analytical conditions for stability are not easy

in the generai case, so we mainly rely on numerical simulations. However, we remark that
all cases described below will exemplify scenarios which are observable for broader ranges
of parameters.

Let us inspect, in detail, the situation of Figure 14.1d, where, besides the nuli equilib-
riura xó = 0, two positive equilibria values of effort are present, labeled xi ati 0.03006 and
xz 0.04338. Numerically we have that E2 = (xZ,r1x2), see (14.12), is a stable fixed point
for all a E [0, 0.15032), and for higher speed of adjustment, E2 looses stability through a
flip bifurcation; on the other hand, E1 = (x1,tix7) is an unstable fixed point for ali values of
a. Now we fix a speed of adjustment far which E1 is stable, namely a = 0.1, and we change
the spillover parameter R. As (3 is increased, the equilibrium values of effort and knowledge
of E1 ((3) and E2 ((3) increase and decrease, respectively. At [3 ti 0.4192 a saddle-node bi-
furcation occurs, at which the two positive equilibria merge and disappear (see Fig. 14.2a).
Consequently, the only attractor of the system for higher spillover values is the zero level,
where no R&D efforts are exerted. The asymptotic values of R&D efforts are shown as
thick lines in the bifurcation diagram of Figure 14.2b, where [ E [0, 1]. Bere the dashed
curve represents the unstable equilibrium level of R&D efforts as a function of (3.
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From an economie point of view, this can be easily justified: in fact, measures the
fraction of R&D efforts spilling over from free to non-linked competitors, so it is not sur-
prising that the steady leve) R&D investments are decreasing in it. More interestingly,
when r > 1, so that the R&D production function follows the "law of variable proportions",
a spillover threshold level could exist (J3 in our example), such that long run equilibria
investments are discontinuous in spillovers, Le., the representative firm stops investing in
R&D. Note that the consequence of this bifurcation is irreversible. In fact, the reduction
of J3 below Ji (for instante by a regulator imposing a strieter law on intellectual properties

protection), does not restore the previous R&D equilibrium leve) that remains zero. This
"path-dependence" property of R&D effort originates a hysteresis effect in the model. It is
clear that spillovers introduces a free-riding problem: as a consequence of absence ofR&D
investments, knowledge also reduces to zero, due to its obsolescente rate; and marginai
costs, according to (14.3), are maximized, so that at the end all firms are worst off.

Figure 14.2. Parameters as in Figure 14.ld, but J3 ae 0.4192. (a) Graph of (14.13) at the
bifurcation point, showing the merging of equilibria xÌ and x5; (b) bifiarcation diagram with
f3 e [0, 1]. The thick Iines represent stable equilibria, the dashed ones unstable equilibria.

Next, we consider the influente of the leve) of collaboration activity k on the system. In
generai, our numerical experiments (valid for both concave and convex-concave production
functions) confirm that the long run leve) of R&D effort x is decreasing in the number of
collaboration ties k, as shown for a particular case in Figure 143a, obtained with parameters
a= 10;b=1;n=20;r=4;p=0.9; [3= 0.15; co = 1.5; y= 4.5, a=0.15,ke [0,19]n7Z,
with initial conditionx(0) = 0.4 and, according to (14.11), z(0) = 3.52.

This is in accordance with proposition 4 in [8], as the result of two counterbalancing
effects: In fact, when a firm has more collaborators, an increase in its own R&D efforts not
only lowers its production costs (beneficiai effect), but also it reduces the costs for collab-
orators that, in turn, become tougher competitors (disadvantageous effect). If we inspect
the corresponding long run level of knowledge, we notice that it is maximized for an in-
tercediate level of collaboration activity. In our numerical example, the maxiraum level of
knowledge is reached for le = 8, as shown in the bifurcation diagram for z in Figure 14.3b.

Note that by (14.3) and the monotonicity of f (z), the maximnm level of knowledge corre-
sponds to the minimum Ievel of firms' marginai cost. This is also in lire . with proposition
5 in [8], stating that "cost reduction is maximum when each firm is linked with roughly hall
of the other firms".

x

Figure 14.3. Sequence of asymptotié equilibria varying k E [0,19] n Z. Remaining parame-
tersaregivenbya=l0;b=1;n20;r=4;p=0.9;J3=0.15;co=1.5;y=4.5,a=0.15.
(a) R&D effort equilibria x*; (b) knowledge equilibrià z*.

We end our analysis by discussing the long run dynamic behavior of the system as the
parameter r varies, i.e., regulating the inflection point of the R&D production function.
For low level of r (inflection of R&D production function for low levels of knowledge), we
mainly observe convergente to the stable ftxed point, wheréas for high levels of r (inflection
of R&D production function for high levels of knowledge), the dynamics are characterized
by high period cycles or chaotic motion. In Figure 14.4, obtained with parameters a = 10;
b = z ; n =20; k = 5; p = 0.9; j3 = 0.2; ce = 1.5; y= 2.5, a = 0.18 and r E (0,20], with
initial condition (x(0),z(0)) = (0.4, 3.52), a bifurcation diagram is depicted with varying
R&D efforts, showing the well-known route to chaos through a period doubling cascade of
bifurcations.

14.4. Conclusion .

In this chapter we have introduced a stylized mode) of an R&D network, with knowledge
that accumulates over lime and can spii] over to competitors for free. In particular, we
have specified an R&D production function that regulates how total knowledge influences
production costs. Moreover, depending on a parameter, we consider both the case of a con-
cave R&D production function and a convex-concave ona. For the first case, we proved
that a unique equilibrium for R&D efforts exists with a corresponding stationary leve! of
total knowledge of the industry. For this benchmark case we also discussed some analytical
conditions for asymptotic stability of the unique equilibrium..Other interesting results are
obtained with,a convex-concave production function_ In this case it is possible to observe a
discontinuous transition from a positive equilibrium to absence of investments as spillovers
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Figure 14.4. Period doubling tonte to chaos with r E (0,20] and a = 10; b = ; n = 20;
k= 5; p=0.9; f3 =0.2;co=1.5; y = 2.5, a = 0.18.

are increased; this phenomenon shows hysteresis effects, so it can even be irreversible as
spillovers are reduced back to the previous level. This suggests that it is important to pro-
tect intellectual properties to Timit the disincentive to invest in R&D as a consequenee of
free rider behaviors_ Moreover, our numerical experiments suggest that, botti in the case of
strictly concave or convex-concave production function, R&D efforts are decreasing as the
number of links in the network is increased. However, total knowledge appears to be always
maximized for intermediate levels of collaboration activity. These effects are in total ac-
cordance with analogous results of the literature on R&D networks, reported in [8]. To end
our discussion on the model, we observe that complex dynamic behavior can anse where
the R&D production function is characterized by are inflection point for very high values of
knowledge. Possible improvements of the model include spillovers dependence on accu-
mulated knowledge (or absorptive capacity, see [9]) and relaxing the assumption of myopic
behavior, like in [23], where a differential game with infinite time horizon is analyzed.

A. Alternative Derivation of Profit Function

Profit function for i-th oligopolist

rei (qi) = (a- bQ) qi - ci(qi), (A.14)

where Q is the total industry output, a, b > O and cost function ci (gi).
From F.O.C. we get

= a - bQ - bqi - ci (gi) = o, (A.15)
agrt

bqi = a-bQ-c(q i), i- 1,...,n.

Summing up the n relations in (A.16), it results

n
bEgi = bQ =na bnQE cij(gi),

í=1

	

j=1

`"
bQ

na

	

j-1cj(qj)
n+

Substituting (A.17) into (A_16)

rr

we get

i
L

a- na-

n

11
	 3(qj)

	

(qi)1

	

(A.18)- 1

a - ncé	 (qi)+	 cj (qi)

That is the Coumot-Nash equilibrium quantity far oligopolist i. Now let us consider the
linear cost function of the forra ci(gi) = cigi for all agents with marginai costs di (q 1) = ci.
In this case the profit function (A_14) at the equilibrium, using (A.17) and (A.18), becomes

(a-bQ)q; ci (q#)
a+ci+^j#i cj

	

a-nci + j*icj

	

a-- nci+E,j#i C1
n+1

	

)

	

b(n+l) }
- C

	

b(n+1)

a2 +2acj + (^15 i ci) 2 -lanci +2ci EiTi ci +r?c?

b(n+1) 2

[a- nci + -1,m ci -2
-5(n+ 1)

that coincides with the first part of (14.5).

fronti which we get

. (A.16)

(A.17)

q: =

b(n+1)

rci(q:)
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Chapter 15

ON MARKET INERTIA AND STABLE

COMPETITION

E Sziclarovszky and S. Yousefi*
Systems and Industriai Engineering Department, The University of

Arizona, Tucson, Arizona 85721-0020, USA
Centre far Advanced Research in Nature and Society, P. Box 20,

DK-5884, Denmark

Abstract

In this chapter we look finto the asymptotie stability of dynarnic competition in

markets operating under inertia. We derive stability conditions that are generai and
apply them to classical models of duopolies. We also obtain conditions that are es-
tablished through an explicit discretization from continuous dynamics to discrete dy-
namics. Such an approach is suited to be incorporated in numerical pzocedures and
provides comparison between different stabilization regimes_

15.1. latro duetto n

Issues related to the stability of the equilibrium and to the existence and uniqueness of
the equilibrium are regarded as centrai to the oligopoly literature (see [1,2] for detailed
treatment of the topic). Although the literature on dynamic oligopolies deals with botti dis-
crete and continuous systems, the issues related to the comparison of the different stability
regimes with the simultaneous stady of asymptotical properties of these systems are rather
neglected (see [2, 3] for extensive treatment on the history as well as on recent studies in
dynamic oligopolies). In this chapter we intend to .address and fili up thís gap.
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