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Abstract

In this chapter we propose an oligopoly model where firms invest in cost reducing
R&D for producing homogeneous goods that are sold in a market. In particular, we
assume that R&D efforts build up a “stock of knowledge”, which, in turn, reduces
marginal costs of production. Moreover, though all firms are competitors in the mar-
ketplace, they can decide to collaborate through cooperation agreements in a network
for sharing their R&D results.

14.1. Introduction

In traditional models of dynamic oligopolistic competition, it is ofter accepted that a sin-
gle decision variable (quantity or price) can summarize all strategic decisions of firms (see
e.g. [1-4]). This often leads to models that are analytical tractable but too simplified for real-
istic applications. However, when dealing with the production of technological goods, other
dynamic variables become of paramount importance, such as R&D investments and knowl-
edge (see e.g. [5-9]). Here we propose a general framework for desctibing an industry
where firms sirategically interact and choose several decision variables with interrelated ef-
fects at discrete times. In particular, we consider an oligopoly where » competitors produce
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homogeneous goods and invest in R&D. These R&D efforts are (irreversible) investments
that firms decide for increasing their overall knowledge level, otherwise subject to obsoles-
cence (see [10~12]). Knowledge has a positive impact on unit production costs, through a
so-calied R&D production fimction, see [9]. Moreover, firms can be organized in na R&D
_ network, i.e., they can cooperate and share R&D resulis, even if they remain competitors
on the marketplace, as proposed in [7]. However, R&D investménts are not entirely private,
as a fraction of them can spill over for free to competitors (see also [13—15] on this point).
Hence, in our model, at each time period, each firm has two different choices to make: the
level of R&D effort to exert, and then the quanfify to produce. However, for reducing the
complexity of the problem, we assume that at each time period firms are able to “solve™ the
preblem of optimal production choice, according to the R&D efforts, by backward induc-
tion. In this way, the model becomes a repeated two stage game, so that the choice of an
R&D effort strategy is always followed by an “optimal” subsequent choice of quantities. In
order to keep the setting analytically tractable, we introduce some simplifying assumptions,
which allow us to set up the model in terms of a representative firm. First of all, we assume
that firms are homogeneous, so that also total knowledge is 2 hormogeneous quantity within
the industry. In addition, the network structure is fixed, so that firms have to decide the
level of theéir R&D efforts and the quantity to produce within a given network structure. We
discuss briefly the effect of a change in the level of collaboration activity. With this respect,
firms” agreements for sharing R&D results are more alliances (Iong-term instances) than
coalitions (short-lived instances), as it is often the case when agreements originate from
Joint Ownership relationship (see [16]). After describing the general framework of the
model, we give a specific functional form for the R&D production function. So we propose
a dynamic formulation of the model, in terms of gradient dynamic (see [17-20]). As a con-
sequence of the assumption on agents” homogeneity, this dynarhic model is bidimensional,
with dynamic variables given by R&D effort and knowledge. In particular, the equilibria
of the dymamic model are also equilibria for the corresponding static model. In this way
the proposed dynamic model is useful for two different purposes: first, it describes the “out
of equilibrium™ decisions of a representative firm that engages the competition over time.
Second, 1 case of convergence to an equilibrium point, the dynamic model is a numerical
tool for finding these equilibria, that, in general, can not be found algebraically. In fact, we
derive analytical results on existence, uniqueness and stability of an R&D effort equilib-
rium with a strict concave R&D production fiunction, i.e., when the marginal productivity
of knowledge is decreasing. When the R&D production function obeys the “law of variable
proportions™, some insights can be given by numerical methods. The chapter is organized
as follows. In Section 14.2 the static model is derived, both in general terms and fora
specific R&D production function. For the latter a dynamic version is developed in Section
14.3, where also some specific questions on existence, uniqueness and stability of equilibria
are addressed. Section 14.4 concludes. '
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14.2. The Static Model

14.2.1. General Formulation

‘We consider a2 homogenous-product oligepoly where # quantity setiing firms operate in a
market characterized by a linear inverse demand function p=a— 50, a,b > 0, where O is
the total output in the market. These » firms are assumed to form a symmetric network! of
degree k, with 0 < & < »— 1, inside which firms can form bilateral agreements for sharing
R&D results. So every firm has the same number of collaborative ties , a parameter that
represents the level of collaborative attitude of the network {level of collaboration activity).
In this model we assume that the network structure is given; however efforts and quantities
are dynamically chosen by firms at each (discrete) time period. Every eurc spent by firms
concurs to form the knowledge gain of firm i at time ¢ {also called effective R&D level) as

Ei{ty =x;(1) + Foeg (8) + By (£} [(n— 1) — K], (14.1)

where x;(¢) is the R&D effort by firm 7 at time ¢ and B; € [0,1) is the absorptive capacity
related to the ability of firm i to gain knowledge for free from non-connected nodes in the
network (i.e. spillovers, see [9]). The second term in the right hand side of (14.1) represents
the total effort exerted by linked firms, whereas the third term represents the efforts by non-
linked ones. As present investments in R&D can produce effects for subsequent periods,
with a suitable discount factor, we mode! the time # total (or accumulated) knowledge of

firm i as
: 1—1 .
2(0) Y S PR = B +p X0 ER) = B +pale— 1), (142)
k=0 k=0

where p € [0,1) gives a measure of how rapidly informatior becomes obsolete: values close
to 1 represent a system where even the results of very old R&D efforts contribute to current
knowledge, whereas values close to 0 imply that only very recent efforts give significant
contributions to the total knowledge z;. For similar formulations of knowledge accumula-
tion see [6,9, 10]. An increment of total knowledge can reduce individual production ¢osts;
for this respect, we assume that firm 7 has a marginal cost function at time ¢ of the form

eilt) = eo— cofi (5(1)), (14.3)

where ¢; is the marginal cost without R&D efforts (equal for all firms) and f(z;) is the
R&D production function that we assume (see also [9]):

(@) 0< fi < 1 with £(0) =Oa“dz£i,$“a1‘f"z(,-i] =0
(i1) fi= fi(z:) twice continuously differentiable with %zﬁ > 0; and

(i) T>0, suchthat%ﬁfﬂzovZQand%go,vZﬁ.

19 recall that in a symmetric network all nodes (firms) have the same number of links.
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Notice that, by assumption (if), firms’ knowledge has a benefit impact on its unit pro-
duction cost. Moreover, by (iii), for Z = 0, the R&D production function is always concave
and it obeys the so-called law of diminishing marginal productivity; on the other hand,
for z > 0 (and a nonlinear f;(.)) the R&D production function obeys the “law of variable
proportions™. The latter can be easily justified in many economic situations. For instance,
let us suppose that the firms are developing a new computer software and R&D effort are
represented by programmers working on the project. If too few programmers are invelved,
they have to solve all possible issues. By hiring more programmers, one can assign them
to deal with specific parts of the project, up to a point where they indeed are too many and
diminishing marginal productivity is reached. In the following we assume that a > ¢, i.c.,
a minimum level of profitability exists to attract firms in the market. Note that taking the
identity f;(x) =x as R&D production function and without knowledge accumulation (p =0}
the cost finetion simply reduces to the one proposed in [8]2. In any case, all firms are rivals
in the market place, and they calculate their optimal quantity by sclving a profit maximiza-
tion problem. Then, given optimal quantities as functions of efforts, they can assess how
R&D efforts increase their individual profits; due to the R&D network of collaboration and
spillovers, each firm calculates these cost-reducing efforts taking into account not only the
network structure it belongs to (number of firms in the network and number of Linked part-
ners) but also the average cost structure of other firms. Following [8], we assume that each
oligopolist 7 in the network maximizes its own profit function

M= {a—b {qz'-l-qu} —Ci} g — v,
P#

where g; is the quantity produced (and sold) by agent i and yx?, ¥ > 0, is the cost of R&D
effort (see [7,21]).
The optimal guantity of firm 7 is
‘a—nei+ 2cp
P

g4i= "‘—‘W (14.4)

with corresponding optimal expected profit (see the Appendix for details)
2

— . (14.5)

a—ne;(x; %)+ X cplxp,x—p)
Vil

VB{1+n)

e (xg,X—g) =

Given this setting, each firm tries to maximize the optimal individual profit with respect

to its own R&D effort x;. Substituting the cost functions (14.3) of representative agents in

the network, we can reformulate (14.5) as m;(x;,x—;), which is a functions of R&D efforts
only.

2From the point of view of spillovers, we could also assume that the ahsorptive capacity B; in (14.1) depends
on accumulated knowledge, with properties similar to the ones of the R&D production function (see [9]). For
the sake of simplicity, here we assume that spillover parameters are constant.
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14.2.2. An Example with a Specific R&D Production Function

From now on we consider the following speciﬁc functional form of the R&D production
function: -
Jilz)= ——-1 ,

where the parameter » > 0 models the effectiveness of R&D investments. This function sat-
isfies the assumptions (i)—(iif) listed in the previous section. We observe that f; (z:) is strictly
concave for 0 <r <1, i.e., marginal productmty of lmowledge is always decreasing accord-
ing to the “law of diminishing marginal productivity”; for values r > 1, fi(z;) is convex for
low values of knowledge and then concave with an inflection point at z= /= (stnctly
increasing in » > 1) that corresponds to the level of maximum marginal produchmty In the
second case the R&D production function obeys the “law of variable praportions™.

With this specific functional form, we can rewrite (14.3) as .

(#1} .
clt) = . 14.6
( ) 1+ (i) + Fog (£) + By — E— Dx()+pz(e—-1))" (14.6) ‘
By the assumption of symmetry of the nétwork, we can write the effective R&D level
for a firm J; # # that is linked to 7 in the network as ’
E () = hexr(8) +xs+ Bra(n) [(m— 1) — K],
and analcgously the effort for a firm /_; not linked to 7 as
Ep (1) ={&k+ Dx; () + B, () (n—-2-K) +x,]
with cost functions ¢;, and ¢;_; derived from (14.6).

Now, due to the symmetry of the network, we can impose that the R&D effort by a
generic firm (different from i) is simply x;. Se, for the firm /, the terms that represent the
total cost of production for the rest of the industry, to be included in (14.5), are given by

Yeplt) =kes () + (n—1—-Ker ()
s P ;

Substituting all these cost functions into (14.5) and assuming the same spillover param-, '
eters across the industry (8; = B,i=1,...,n) also total knowledge is homogeneous, thus we
simply write z instead of z; and z;. All in all, the expected profit function for firm  can be
written as -

' _ B 1 / co(n—k)
e = ey e e ey e A

eo(n—k—1) :

T = R

where x; and x; here represent the R&D effort expected for next time period. Note that

(14.7) also depends on z, the current stock of knowledge. With naive expectations 4la

Coumot, i.e. x; = x;(¢), we can express the expected profit for time # + 1 in function of state
variables at time ?#, i.e., R&D effort x;{¢) and total knowledge z(¢).

Assuming interior optimum, it is possible to write the F.O.C. for maximum profit of firm

i, le., a’tﬁ("’“") = 0°. By the assumption of symmetry of the network, each agent trivially

38econd order conditions are satisfied for sufficiently high costs of R&D efforts .
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solves the same problem and so she exerts the same effort (i.e. after taking the derivative
w.rt. x; we can simplify the expression by imposing x; = x; = x). The expression for the
F.O.C. of a representative firm is

on¥ _ 2eo(—k+B+k—n)+mrd " (a—cy+ad)

o — 2y =0 14.9
0% 1=z, b(1+m)2 (1+47)° L (14.9)

where A = (1 —B)x;(1+ k) + Brn + pz
In particular, a change of R&D efforts influences:

# the current cost of effort;

e the unitary cost reduction through the R&D production function for the firm and for
linked competitors;

¢ the unitary cost reduction for competitors through spillovers.

Expression (14.9) represents the tocl to mode]l how R&D efforts exerted by the zep-
resentative firm changes over time according to the gradient dynamic, as explained in the
next section. As we already noticed, the static model is a two stage game, so the choice of
an R&D effort strategy induces an “optimal” subsequent choice of quantities, according to
(14.4). It is interesting to observe that in the homogeneous case the ex-post marginal cost
is equal overall the indusiry, and by (14.4) the realized quantity is always strictly positive.

14.3. Dynamic Adjustment of R&D Efforts and Knowledge

We assume that, due to the network structure of R&D collaborations and spillover external-
ities, agents are not able to coordinate themselves and optimize their profits with respect to
R&D effort levels in one shot; this assumption is fully justified by the fact that the equation
specifying a Nash equilibrium is nonlinear and not analytically solvable in general cases.
So, it is reasonable to assume that even a skilled player is unable to select at once an opti-
mal effort Jevel. Consequently, firms are assumed to behave myopically, i.., they adaptively
adjust their efforts over time towards an optimal strategy by following the direction of the
local estimate of expected profits gradient, according to the so called “gradient dynamics”
(see [17-20]). In order to keep low the dimension of the dynamic system, we assume that
firms are homogeneous, so a single equation can model the dynamic choices of effort over
time for a representative firm, and the other equation keeps track of the total knowledge of
this agent, so that the dynamic model assumes the form*

¥ =max |0,x+ Ot(x)ag—:(x,z)

Z=x{1+k+B[(n—1)—A}+pz

where ’ is the unit time advancement operator, x represents the R&D effort at time period
t of the representative firm (we henceforth suppress the subscript #) and o) is a positive

(14.10)

#Note that we assume irreversible R&D efforts, i.e., x > 0. In principle one can formulate the model with
reversible investments, but then a constraints on positivity of knawledge must be introduced.
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function that represents the speed of adjustment. Note that, given the initial effort xp, due
1o (14.2), the initial condition on total knowledge is forced to be

2(0) =x(0) {1 +k+PB[(n—1)—A]}. (14.11)

In other words, the dynamic model is represented by the iterated 2-dimensional map (14.10)
with initial condition (i.c. henceforth) taken on a 1-dimensional submanifeld of the phase
space. At each time period the representative firm decides the R&D effort to be exerted in
the next period, consequently changing the accumulated knowledge as well. Notice that a
choice in the R&D effort also implies a choice of optimal quantity to produce, according
to (14.4). To simplify the model we assume a constant speed of adjustment (x) = o, f.e..
the ghsolute increments or decrements of R&D efforts are directly proportional to marginel

profits.

14.3.1. Fixed Point Analysis

From the first equation in (14.19), it is immediate to notice that an equilibrium of the dy-
namical system is a point where ag“—; vanishes, indicating that it corresponds to a Nash equi-
librium level of R&D effort. Moreover, if the effectiveness of R&D vanishes, r — C, we
also get that optimal effort x* — 0 and the model reduces to a standard Cournot Oligopoly
with marginal cost given by 9. The case = 1, where knowledge capital follows the law
of diminishing marginal productivity, is particularly interesting, because the more involved

cases with 0 < r < 1 share similar qualitative properties, e.g., the same properties of ex-

" istence apd uniqueness of a positive equilibrium. For this particular case, we show the

following

Proposition 14.1 Let us consider the model (14.10) when r = 1. For all economic mean-
ingful pavameters, the system {14.10) has exactly one equilibrium E = (x,2%) with strictly
positive coordinates.

Proof. From the second equation in (74.70) we get the stationary level of total knowledge
as -

z=mx= {1+k+ﬁ[(n_1)—k]}x, (14.12)
. 1-p
which, substituted back in %lx’ _,.» identifies a positive equilibrium point of (14.10) as.a

zero of the following function (weli defined for » > 0):

gler) = 2co(n—k+B(1+E—m)r{1—p) ()" {a—co -i-raa(m)') Cow. (4.13)
b1 4+n2(1+k+Br—1—&))x(1+(m)")

For the case » = 1, existence of a strictly positive equilibrium then follows, by noticing that:

e g(x:r) is continuous in {0, +s);

. Ili%l+g(x; )= 2(“—60)9017(((1’:’1:)}2(‘1"5)‘?'3) > 0;

. I]__x)ﬂmmg(x; r)=—se.
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Moreover, 1t is possible to show (by some easy but quite cumbersome algebraic manip-
ulations) that g{x; 1) = 0 is equivalent to the research of the roots of a concave fourth degree
polynomial in (0,+e<], thus ruling out the case of three positive equilibria. |

When 7 > 1, more scenarios are possible, as we can have, depending on the parameters,
cases without any equilibrium, with one positive equilibrium or with coexistence of mul-
tiple (e.g., two) equilibria. In particular, the function g(x;7) in (14.13) is continuous, with
lim, .5+ g(x;7) = 0 and limy—, .. g(x;7) = —so; morgover for r > 3, we can prove analyti-
cally that Him,_q+ B_ggc_r) = —2y < 0, so (except sonie non generic singular cases) aither zero
or an even number of equilibria exist. These various situations are shown in Figure 14.1,
obtained for parameters a=5; b=1;n=20; k=10, p=0.55;f=0; cp =2;y=5. In
Figure 14.1a, a typical case with » = 1 is depicted, where existence and uniqueness of the
positive equilibrium is analytically shown in Proposition 14.1. For » > 1 all possible config-
urations are shown in Figure 14.1: one positive equilibrium with » = 1.5 in Fig. 14.1b; no
positive equilibrium with » = 3 in Fig. 14.1¢; two positive equilibria with = 5 in Fig. 14.1d.

r=1
st .
\f’.

Figure 14.1. Representation of (14.13), whose zeroes are positive R&D effort equilibria,
witha=3; b=1; n=20; k= 10; p = 0.55; B=0; co=2; y= 3. (a) Uniqueness whenéver
r=1; (b) with these fixed parameters, a unique equilibrium exists for » = 1.5; (c) no pesitive
equilibrivm for » = 3; (d) multiple equilibria for » = 5. .

14.3.2. Stability of Fixed Points

Given the computational difficulty of the model, an equilibrium value of effort x* (with
corresponding knowledge z*) is unlikely to be chosen by firms at the onset of the game. For
this reason it is also important to get some insights on the stability of fixed points.

By Proposition 4.1, in the benchmark case » = 1 (whose importance has been stressed
in the previous section) there is & unique fixed point £ = (x*,z*). - '
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In generzl, we recall that the stablhty conditions for an equilibrium of a bidimensional
map can be expressed by

1 — Tr+ Det > 0 (Divergence boundary)
1+ Tr-+Det > 0 (Flip boundary)
1 = Det > 0 (Flutter boundary)

where 7r and Det denote the trace and the deterrninant of the Jacobian matrix of (14.10) at
the unique fixed point £ = (x*,7%}, see, e.g., citeML{1. Under the constraints on parameter
values, these conditions can be written respectively as:

where the quantity 4(x*) = C“(l+kb€’1:'3(ﬁ‘l}__j“_(;;’i;f;f"pz‘D In any case, the third condi-
tion is always satisfied, and so Neimark-Sacker bifurcations are ruled out for all parameter
values. Condition 4(x*) > 0 implies that also the ﬁrst condition for stability is satisfied,
and so & destabilization of the fixed point £ = (x*,z*) could take place only through flip
bifurcations for sufficiently high values of . Othemuse for 4(x*) < 0 also transcritical or
pitchfork bifurcations are, in principle, possible for low values of y. More detailed analytical
conditions can be obtained in particular sub-cases. For instance when B = 0 (no spillovers),
by (14.12), we have that condition 4(x*) >.0 is always satisfied whenever x* > '2—(1%; oth-

erwise, for 0 < x* < 2(11 -y that condition is equivalent to 2a > %. Under these
circumstances, only flip bifurcations are possible.

Now we examine the cases with » > 1. Analytical conditions for stability are not casy
in the general case, so we mainly rely on numerical simulations. However, we remark that
all cases described below will exernplify scenarios which are observable for broader ranges
of parameters.

Letus mspect in detail, the situation of Figure 14.1d, where, besides the null equilib-
rium xj = 0, two positive equilibria values of effort are present, labeled x] = 0.03006 and
x; ~ 0.04338. Numerically we have that B> = (x},mx3), see (14.12),is a stable fixed point
for all o € [0,0.15032), and for higher speed of adjustment, Z» looses stability through a
flip bifurcation; on the other hand, Ey =: (x},T\x{) is an unstable fixed point for all values of
o. Now we flx a speed of adjustment for which E) is stable, namely o = 0.1, and we change
the spillover parameter B. As f is increased, the equilibrinm values of effort and knowledge
of E1(B) and £»(p) increase and decrease, respectively. At B 0.4192 a saddle-node bi-
furcation oceurs, at which the two positive equilibria merge and disappear (see Fig. 14.2a).
Consequently, the only attractor of the system for higher spillover values is the zero level,
where no R&D efforts are exerted. The asymptotic values of R&D efforts are shown as
thick lines in the bifurcation diagram of Figure 14.2b, where B € [0,1]. Here the dashed
curve represents the unstable equilibrium Jevel of R&D efforts zs a function of .
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From an economic point of view, this can be easily justified: in fact, p measures the
fraction of R&D efforts spilling over from free to nen-linked competitors, so it is not sur-
prising that the steady level R&D investmenis are decreasing in it. More interestingly,
when # > 1, so that the R&D production function follows the “law of variable proportions™,
a spillover threshold level could exist (B in our example), such that long run equilibria
investments are discontinuous in spillovers, i.e., the representative firm stops investing in
R&D. Note t that the consequence of this blﬁJrca'aon is irreversible. In fact, the reduction
of B below ﬁ (for instance by a regulator imposing a siricter law on intellectual properties
protection}, does not restore the previous R&D equilibrium level that remains zero. This
“path~-dependence” property of R&D effort originates a kysteresis effect in the model. It is
clear that spillovers introduces a free-riding problem: as a consequence of absence of R&D
investments, knowledge also reduces to zero, due to its obsolescence rate; and marginal
costs, according to (14.3), are maximized, so that at the end all firms are worst off.

N . Fe=iy posp
oL (X5 i
-005f ) N
)
o f g
“haap -.h“"’“'b'u-.w.-t.
-0t 1 # !
~basE
S .
L)
—axsk 5 N
¢ (a) e — - ¥
(v) -7

Figure 14.2. Parameters as in Figure 14.14, but E /2 0.4192. (a) Graph of (14.13) at the
bifurcation point, showing the merging of equilibria x} and x73; (b} bifurcation diagram with
B € [0,1]. The thick lines represent stable equilibria, the dashed ones wnstable equilibria.

Next, we consider the influence of the level of collaboration activity & on the system. In
general, our numerical experiments (valid for both concave and convex-concave production
functions) confirm that the fong run level of R&D effort x is decreasing in the number of
collaboration ties %, as shown for a particular case in Figure 14.32, obtained with parameters
a=10;b=1;n=20,r=4;p=0.9; p=0.15; cp =1.5; y=4.5, 2 =0.15, k€ [0,19] N Z,
with. initial condition x(0) = 0.4 and, according to (14.11), z{0) = 3.52.

This is in accordance with proposition 4 in [8], as the result of two counterbalancing
effects: In fact, when a firm has niore collaborators, an increase in its own R&D efforts not
only lowers its production costs (beneficial effect), but also it reduces the costs for collab-
orators that, in turn, become tougher competitors (disadvantageous effect). If we inspect
the corresponding long run level of knowledge, we notice that it is maximized for an in-
termediate level of collaboration activity. In our numerical example, the maxiraum level of
knowledge is reached for k= 8, as shown in the bifurcation diagram for z in Figure 14.3b.
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Note that by {14.3) and the monotonicity of £ ( ) the maximum ievel of knowledge corre-
sponds to the minimum level of firms’ marginal cost. This is also in line with proposition
5 in [8], stating that “cost reduction is maximum when each firm is linked with roughly half
of the other firms™,

Bl z

Figure 14.3. Sequence of asymptotic equilibria varying & € [0, 19] N Z. Remaining parame-
tersare givenbya=10;b=1;n=20;r=4;p=0.9; =0.15; ¢p = 1.5; y=4.5, . = 0.15.
(a) R&D effort equilibriz x*; (b) knowledge equilibria z*.

We end our analysis by discussing the long run dyhamic behavior of the system as the
parameter r varies, i.c., regulating the inflection point of the R&D production function.
For low level of » (inflection of R&D production finction for low levels of knowledge), we
mainly observe convergence to the stable fixed point, wheréas for high levels of » (inflection
of R&D production function for high levels of knowledge), the dynamics are characterized
by hlgh period cycles or chaotic motion. In Figure 14.4, obtained with parameters g = 10;
b=3n=20k=5p=09p=02c=15y=25, =018 and 7 € {0,20], with
initial condition (x(0),2(0)) = (0.4,3.52), a bifurcation d1a°ram is depicted with varying
R&D efforts, showing the well-known route to chaos through a period doubling cascade of
bifurcations.

14.4. Conclusion .

In this chapter we have introduced a stylized model of an R&D network, with kmowledge
that accumulates over time and can spill over to competitors for free. In particular, we
have specified an R&D production function that regulates how total knowledge influences
production costs. Moreover, depending on a parameter, we consider both the case of a con-
cave R&D production-function and a convex-concave one. For the first case, we proved
that a unique equilibrium for R&D efforts exists with a corresponding stationary level of
total knowledge of the industry. For this benchmark case we also discussed sorme analytical
conditions for asymptotic stability of the unique equilibrium. Other interesting results are
obtained with a convex-concave production function. In this case it is possible to observea
discontinuous transition from a positive equilibrium to absence of investments as spillovers
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Figure 14.4. Period doubling route to chaos with » € (0,20] and a = 10; b = %; n=20;
k=5p=09;B=02¢p=1.57v=235,a=0.18.

are increased; this phenomenon shows hysteresis effects, so it can even be irreversible as
spillovers are reduced back to the previous level. This suggests that it is important to pro-

tect intellectual properties to limit the disincentive to invest in R&D as a consequence of

free rider hehaviors. Moreover, our numerical experiments suggest that, both in the case of
strictly concave or convex-concave production function, R&D efforts are decreasing as the
number of links in the network is increased. However, total knowledge appears to be always
maximized for intermediate levels of collaboration activity, These effects are in total ac-
cordance with anzalogous results of the literature on R&D networks, reported in [8]. To end
our discussion on the model, we observe that complex dynamic behavior can arise when
the R&D production function is characterized by an inflection point for very high values of
knowledge. Possible improvements of the model include spillovers dependence on accu-
mulated knowledge (or absorptive capacity, see [9]) and relaxing the assumption of myopic
behavior, like in [23], where a differential game with infinite time horizon is analyzed.

A. Alternative Derivation of Profit Function
Profit function for i-th cligopolist

ilg) = (a— Q) q: — csl4n), (A.14)

where @ is the total industry output, @, b > 0 and cost fanction ¢;{g;).
From F.O.C. we get

T — 480 b= @) =, (a.15)
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Le.,
bgi=a—b0—ci{g), i=1,..m - (Al8)

Summing up the # relations in' (A.16), it results

n . #H
by gi=b0=na—bnQ~ Y c;{4;),
i=1

=1

from which we get

na—3%_1 c4(g;)
I il e AP (A.17)
Be n+1l
Substituting (A.17} inte (A.16) we get

. _ L[ _ma=Fad) . A1s
¢ = 3o d) (418

a—nci(g:) + Zyric(q;)

b{n+1)

That is the Cournot-Nash equilibrium quantity for oligopolist . Now let us consider the
linear cost function of the form ¢;(g;) = e;g: for all agents with marginal costs ¢i{g:)} = cx.
In this case the profit function (A.14) at the equilibrium, using (A.17) and (A.18), becomes

m(g}) = (a—bQ) g ~cildi)

Q+Ci+2j#;0j CI-PIC;'—}-ZJ-?_L,-CJ')_c_&"ﬂci-}-zj#i(:j
B n+1 B(n+1) Yob(n+1)
@ +2a% ey + (Spics) — 20+ 20 T pmc + 172G
B b{n+1)?

_ [a—nci-{—zj#;cjr
L V(1) L

that coincides with the first part of (14.5).
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Chapter 15

ON MARKET INERTIA AND STABLE
COMPETITION

F. Szidarovszky and S. Yousefi’
Systems and Industrial Engineering Department, The University of
Arizona, Tucson, Arizona 85721-0020, USA
Centre for Advanced Research in Nature and Society, P. Box 20,
DK-5884, Denmark

Abstract

In this chapter we look into the asymptotic stability of dynamic competition in
markets operating under inertia. We derive stability conditions that are general and
apply them to classical models of duopolies. We also obtain conditions that are es-
tablished through an explicit discretization from continuous dynamics to discrete dy-
namics. Such an approach is suited to be incorporated in numerical procedures and
provides comparison between different stabilization regimes.

15.1. Introduction

Issues related to the stability of the equilibrium and to the existence and uniqueness of
the equilibrium are regarded as central to the cligopoly literature (see [1,2] for detailed
treatment of the topic). Although the literature on dynamic oligopolies deals with both dis-
crete and continuous systems, the issues related to the comparison of the different stability
regimes with the simultaneous study of asymptotical properties of these systems are rather
neglected (see [2, 3] for extensive treatment on the history as well as on recent studies in
dynamic oligopolies). In this chapter we intend to .address and fill up this gap.
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