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Abstract

In Bischi and Lamantia [4] a two-stage oligopoly game has been proposed to describe networks of firms that invest in cost-
reducing R&D activity with the possibility of sharing R&D results with partner firms as well as gaining knowledge for free through
spillovers, and an adaptive dynamic mechanism is proposed to describe how firms repeatedly update their R&D efforts over time.
In that paper existence and stability of equilibria have been analyzed given a fixed structure of the collaboration network, divided
into sub-networks. In this paper we analyze the influences of the degree of collaboration and spillovers on profits, social welfare
and, more generally, on overall efficiency. We first consider two relevant benchmark cases, for which analytical results are provided,
and then numerical experiments are performed to stress the role of the level of connectivity (i.e. the collaboration attitude) inside
networks as well as the effects of involuntary knowledge spillovers inside each network and among different competing networks.
© 2012 IMACS. Published by Elsevier B.V. All rights reserved.
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1.  Introduction

In a companion paper by Bischi and Lamantia [4], Part I henceforth, a two-stage oligopoly game has been proposed
to describe networks of firms that invest in cost-reducing R&D activity with the possibility of sharing R&D results
with partner firms as well as gaining knowledge for free through spillovers (see [9,6,14,1]). If the system is out of
equilibrium, an adaptive dynamic mechanism regulates how firms repeatedly update their R&D efforts over time.
In [4], existence and stability of equilibria have been analyzed, given a fixed structure of the collaboration network
divided into sub-networks. Moreover, some insights on the global dynamics of the system are provided mainly through
numerical simulations.

In this paper we analyze, for the same model, the influences of the degree of collaboration and spillovers on
profits, social welfare and, more generally, on overall efficiency. We first consider two relevant benchmark cases, for

which analytical results are provided, and then numerical experiments are performed to stress the role of the level of
connectivity (i.e. the collaboration attitude) inside networks as well as the effects of involuntary knowledge spillovers
inside each network and among different competing networks.
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Although we focus on examples where equilibrium efforts are always achieved, the dynamic formulation helps us
n getting many interesting insights. In particular, multiple stable equilibria may exist, i.e. problems of equilibrium
election arise. In these cases, the dynamic adjustment of efforts as well as the initial actions of players are of crucial
mportance. In this context, we show two important results through the analysis of transverse stability of equilibria.
ne, when only some unlinked agents invest in R&D and others just produce, the latter firms would be better off by

tarting their own R&D investments, and, two, the firms in a dominant group could create a barrier preempting fringe
rms in the creation of their own R&D investments/network. Moreover, we present a numerical example with two
egular networks and a bistability regime induced by the amount of spillovers.

In addition to simulation in the case of two symmetric R&D sub-networks, we also develop similar simulations for
he case in which the probability to establish a link between firms in the same sub-network is a random variable. These
nalysis with random networks confirms the results obtained in the simplified setting of symmetric networks.

The plan of the paper is the following. In Section 2 it is given a short summary of the basic assumptions and the
ain properties of the model proposed in Part I. Section 3 is devoted to the study of two opposite benchmark cases,

amely the competition between two empty or two complete networks, as well as some considerations on private and
ocial optimality. Numerical experiments on the long-run dynamics when the exogenous network structure is regular
r stochastic are reported in Sections 4 and 5 respectively. Section 6 concludes and indicates some paths for future
mprovements of the model.

. The  model

In this section, we briefly recall the set-up of the oligopoly game proposed in Part I, to which we refer the reader
or more details. For expository reasons, we consider below only the case of firms arranged in two disjointed R&D
etworks.

Let us consider N  ≥  2 quantity setting firms producing an homogeneous good whose price is determined by the linear
nverse demand function p  = a −  bQ, a, b  > 0, Q  being the total output in the market. The N  firms are ex-ante partitioned
nto two groups (called sub-network) such that two firms of the same sub-network are neighbors (i.e. they are linked)
f they establish a bilateral agreement for a full sharing of their R&D results. The two sub-networks, denoted s1 and s2
n the following, are formed by n1 and n2 firms, with N  = n1 + n2. Following [9], each sub-network sj is assumed to be
ymmetric of degree kj, with 0 ≤  kj ≤  nj −  1, i.e. every firm belonging to the same sub-network has the same number of
ollaborative links kj. Fixing the structure of the two groups, each firm decide R&D efforts and quantities to produce.
n addition, some R&D results may involuntarily spill over for free also to non-neighbors inside the same sub-network
j (internal spillovers) as well as to firms of the other sub-network sk with k /=  j  (external spillovers). Assuming that
rm i bears a linear cost ciqi for producing qi, a representative firm in sub-network sj has a marginal cost ci of the form

ci(sj) =  c  −  ei −  kjeli −  βjel−i [(nj −  1) −  kj] −  β−j

∑
m∈sk

em (1)

here c < a is the marginal cost without R&D efforts (equal for all firms), ei represents R&D effort of firm i,  kjeli

epresents the total effort exerted by firms with whom i  is linked in sj, βj ∈ [0, 1) are related to internal spillovers
ith non-neighbors in network sj, and regulate external spillovers, i.e. originating from non-neighbors out of sj toward
rm i. Following [6,9], all N  firms are rivals in the market place, and they calculate their optimal outputs by solving

ndividual profit maximization problems. The reduced-form profit for an oligopolist i  in sub-network sj can be written
s

πi(sj) =
⎧⎨
⎩a −  b

⎡
⎣qi(sj) +

∑
p /=  i

qp

⎤
⎦ −  ci(sj)

⎫⎬
⎭ qi(sj) −  γe2

i (sj)

here qi(sj) and ei(sj) are, respectively, the quantity and the R&D effort by agent i in sub-network sj, and γe2
i ,  γ  >  0,

s the cost of effort (see [6]). The optimal quantity of firm i in sub-network sj is
qi(sj) =
a −  Nci(sj) +

∑
p /=  i

cp

b(1 +  N)
(2)
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with corresponding optimal profit

πi(sj) =

⎡
⎢⎢⎢⎣

a −  Nci(ei) +
∑
p /=  i

cp

√
b(1 +  N)

⎤
⎥⎥⎥⎦

2

−  γe2
i (3)

Given this setting, each firm i tries to maximize its individual profit with respect to its own R&D efforts ei ∈ [0, c].
We refer the reader to Part I for the issues of existence of a Nash equilibrium E∗.

In Part I, we argued that, due to the complex network structure of R&D collaborations and spillover externalities, it
is unlikely that agents are able to play the Nash equilibrium strategy in one shot. Consequently, an adaptive system is
proposed where firms adjust their efforts over time toward the ‘optimal’ strategy, following the direction of the local
estimate of expected marginal profits, according to the so called “gradient dynamics”

ej(t  +  1) =  ej(t) +  αj(ej)
∂πj

∂ej

; j  =  1,  2 (4)

where ej(t) represents the R&D effort at time period t  of a representative firm belonging to the sub-network sj; αj(ej)
are positive functions that represent speeds of adjustment. Nash equilibria are also equilibrium points for the dynamic
process (4). If such an equilibrium is stable, then we can say that the adaptive agents are able to learn, in the long run,
how they can choose R&D efforts in an optimal way. However, we have seen that these equilibria are not always stable
under the gradient dynamics (4).

Assuming linear speeds of adjustment αj(ej) = αjej, the dynamical system becomes

ei(t  +  1) =  ei(t) + αiei(t)

b(1 +  ni +  nj)2 [Ai +  Biej(t) +  Ciei(t)],  i,  j  =  1,  2; i /=  j  (5)

where:

Ai = 2(a − c)[(ni − ki)(1 − βi) + βi + nj(1 − β−j)]

Bi = 2nj[(1 − βi)(ni − ki) + βi + nj(1 − β−j)] · [−βj(nj − kj − 1) + β−i(nj + 1) − kj − 1]

Ci = 2{(−ki + βi(1 + ki − ni) + N − β−jnj) · (1 + ki + nj + kinj − β−jninj − βi(1 + ki − ni)(1 + nj)) − bγ(1 + N)2}
(6)

with Ai > 0 for all economic meaningful parameters, Ci < 0 being equivalent to (∂2πi/∂e
2
i ) <  0 so that the profit

function πi(ei) is strictly concave and the necessary condition for a maximum is also sufficient. The dynamical model
(5) always admits three boundary equilibria and

O =  (0,  0),  E1 =
(−A1

C1
, 0

)
, E2 =

(
0,

−A2

C2

)
, (7)

located on the invariant coordinate axes, with nonzero coordinate strictly positive if and only if the corresponding profit
function πi(ei) is strictly concave, and a unique interior equilibrium

E∗ =
(

A2B1 −  A1C2

C1C2 −  B1B2
,
A1B2 −  A2C1

C1C2 −  B1B2

)
(8)

provided that C1C2 −  B1B2 /=  0. The main results from standard local stability analysis obtained in Part I are summed
up in the following:

Proposition  1.  For  the  map  (5):

•  O  = (0, 0) is  a  repelling  node;
• Ei,  i  = 1, 2,  is  attracting  along  the  ei axis  as  long  as  Ai < 2b(1 + N)2/αi, and,  in  the  direction  transverse  to  ei, Ei is

stable if  condition
−2 <
αj(AjCi −  BjAi)

Cib(1 +  N)2 <  0



•
•

a
q

3

e
i
r
i
c

3

a

a

i
t
a

o
t
c
o
d
i
t

P
l

P

f
s
t

G. Italo Bischi, F. Lamantia / Mathematics and Computers in Simulation 84 (2012) 66–82 69

holds;
at  AjCi = BjAi a transcritical  bifurcation  occurs  at  which  equilibria  Ei and  E∗ merge;

 if C1C2 ≥  B1B2,  with  Ci < 0,  i  = 1, 2 a necessary  condition  for  the  stability  of  E∗ is

4 + α1C1e
∗
1 +  α2C2e

∗
2

b(1 +  N)2 ≥  0 (9)

In Part I we have also shown that for sufficiently high values of the parameters αi or low values of ki all the equilibria
re unstable and periodic or chaotic dynamics can be obtained in the long run. Moreover, coexisting attractors with
uite intermingled basins of attraction have been numerically observed, thus giving a strong path dependence.

. Two  opposite  benchmark  cases

In this section we show how the sub-network structure influences fixed points coordinates and their stability prop-
rties for two opposite benchmark cases. In the first one it is posited that all firms compete in the market and possibly
nvest in R&D, but no ties are established among them (empty  network). Thus, individual effort has never the effect to
educe costs to competitors, neither in form of agreements nor in form of involuntary spillovers. The second benchmark
s, in some sense, the opposite case, represented by two competing networks that are fully connected, i.e. each firm
ompletely shares its R&D cost-reducing results within its network (complete  networks).

.1. Empty  sub-networks

Let us assume that no ties are present: ki = 0 as well as βi = β−i = 0, i = 1, 2. In this case the equilibria E1, E2 and E∗
re given by

E1 =  (p1, 0) and E2 =  (0,  p2),  with pi = (a −  c)N

bγ(1 +  N)2 −  (1 +  nj)N
(10)

nd

E∗ =  (q,  q) with q  = (a  −  c)N

bγ(1 +  N)2 −  N
(11)

We observe that boundary equilibrium values pi are increasing functions of nj, i.e. the number of agents that compete
n the market but do not invest in R&D. This has an immediate economic intuition: if it is reduced the number of firms
hat only compete in the marketplace without investing, then R&D investing firms can safely reduce their R&D efforts,
s a result of a decrease in competition.

The non-zero coordinate of Ei is strictly positive provided that γ  > ((1 + nj)N/b(1 + N)2), corresponding to Ci < 0;
n the other hand, the inner equilibrium E∗ is in the positive quadrant if γ  > (N/b(1 + N)2). It is useful to observe
hat condition γ  ≥  (1/b) > (N/b(1 + N)) > ((1 + ni)N/b(1 + N)2) ensures that the boundary equilibrium Ei has positive
oordinate and this in turn implies that also E∗ has strictly positive coordinates. Moreover, by comparing the coordinates
f Ei and E∗, it is straightforward to observe that R&D equilibria levels decrease as the number of firms investing in it
ecreases; again by (10) and (11), we deduce that R&D efforts at equilibrium are always lower when both sub-networks
nvest in R&D than when only one group invests. Stability analysis of equilibria can be carried out by particularizing
he results recalled in Proposition 1 (see Part I for additional details).

roposition 2.  Assume  that  γ  ≥  (1/b) and  ki = βi = β−i = 0, i = 1, 2.  Then  the  equilibrium  Ei is  stable  along  ei axis  as
ong as  a  −  c  < (b(1 + N)2/Nαi) and  it is  always  unstable  along  the  direction  transverse  to  ei.

roof. See Appendix A.
From an economic point of view this result is quite interesting: without network structure and spillovers, starting
rom an equilibrium where only ni firms invest in R&D and nj do not, if a representative firm from the second group
tarts R&D investments, even for very small amounts, then it will be better off by continuing these investments over
ime.
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With respect to E∗ =  (q, q), we observe that q > 0 as long as bγ  /=  (N/(1 + N)2) so that condition γ  ≥  (1/b) ensures
its existence and positiveness; moreover, with C1,C2 < 0 and C1C2 > B1B2 (see (A.2)), we can apply directly the results
of Proposition 1 to obtain suitable intervals of stability for E∗. In particular, we observe that the stability condition (i)
in (B.2) is always satisfied. In the case α1 = α2 = α  > 0, by applying the results in Part I, Section 3.2, conditions (ii) and
(iii) in (B.2) hold, and so E∗ is stable, as long as a  −  c < (b(1 + N)2/αN) (that coincides with the stability of Ei along ei).
At a − c = (b(1 + N)2/αN) condition (ii) in (B.2) holds as an equality so that the equilibrium looses stability through a
flip bifurcation. No other bifurcations are possible in this case.

3.2. Complete  sub-networks

The second benchmark case is obtained by assuming that both sub-networks are fully connected. As a consequence,
all firms in the same sub-network fully share their R&D efforts, so it is unnecessary to consider internal spillovers. For
the sake of comparison, we also disregard the presence of external spillovers, i.e. in this case ki = ni−  1 ; β−i = 0, i = 1,
2.

The aggregate parameters are given by

Ai =  2(a  −  c)(1 +  nj) >  0

Bi =  −2n2
j (1 +  nj) <  0

Ci =  2ni(1 +  nj)2 −  2γb(1 +  N)2

whence Ci < 0 holds provided that γ  > γ̃i =  (ni(1 +  nj)2/b(1 +  N)2), also ensuring that the quantity

−Ai

Ci

= (a −  c)(1 +  nj)

bγ(1 +  N)2 −  ni(1 +  nj)2 = p̃i,  (12)

the nonzero coordinate of the boundary equilibrium Ẽi, is strictly positive.
By confronting p̃i with pi in (10), we have that p̃i <  pi when γ  > ((1 + nj)2N/b(1 + N)2), whereas if γ̃i <  γ  <

(N(1 +  nj)2/b(1 +  N)2) then p̃i >  pi. Hence, if only one group (empty or complete network) invests in R&D and this
is very expensive, then equilibrium investment is lower with a complete network than with an empty R&D network;
the opposite holds when R&D efforts are cheap.

By Proposition 1, Ẽi is stable along the ei axis for b  > ((a  − c)(1 + nj)αi/(1 + N)2), so we conclude that under full
connection, it is possible to observe convergence to a boundary equilibrium for an interval of b  that is larger here than
with empty networks. More interestingly and differently to the previous case, it is possible for Ẽi to be stable in the
direction transverse to ei. In fact by applying again Proposition 1, it is possible to show that stability of Ẽi transverse
to ei is obtained if γ̃i <  γ  <  (ni(1 +  nj)/b(1 +  N)) and αi is sufficiently low.

These results on transverse stability have an immediate economic translation: in the empty network case, a non-zero
boundary equilibrium corresponds to a situation where only some individuals invests in R&D and others just produce.
Since in this case this equilibrium is always transversally unstable, the latter firms would be better off by starting their
own R&D investments. In the complete network case, a non-zero boundary equilibrium corresponds to a case where
there is a group of fully linked firms while the rest of the firms are isolated, i.e. the N agents form a network with
the dominant  group  architecture  (see [8]). In this case, depending on R&D costs, fringe firms could be worst off by
starting their own R&D investments. Thus, the existing dominant group can create a barrier that prevents other firms
to start their own R&D network.1 For an analysis of the inner equilibrium E∗ see Appendix B.

3.3. Some  consideration  on  private  and  social  optimality
In the previous subsections, we showed that proper subsets of the parameters’ space exist where the inner effort
equilibrium E∗ is positive and stable for the two main benchmark cases. For these cases, it is interesting to carry out

1 This results is similar to the one stated in [9] (Proposition 6) stating that in an empty network it is convenient to form bilateral agreements
whereas it is not the case in a complete network. However in that paper the focus is on link formation rather than decisions on effort exertion.
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ome consideration on welfare analysis at the positive equilibrium. For the Cournotian game without network structure,
his detailed analysis is examined in [13]. In particular we would like to assess whether an high degree of collaboration
ctivity of the networks is beneficial. Notice that the results for the case with a single network (e.g. n2 = 0) corresponds
xactly to proposition 7 and 8 in [9]. For sake of simplicity in this subsection we set b = 1.

In case of empty sub-networks, by making use of E∗ given by (11), we can write equilibrium quantity and individual
rofits of a representative firm, with consumer surplus2 respectively as

qE = (a −  c)γ(1 +  N)

γ(1 +  N)2 −  N
; πE = (a −  c)2g(γ(1 +  N)2 −  N2)

(γ(1 +  N)2 −  N)2 ; CE
S = (a −  c)2γ2N2(1 +  N)2

2[γ(1 +  N)2 −  N]2 (13)

here the index E  stays for “Empty”.
Correspondingly, for the case of complete sub-networks,3 we obtain by (B.4) equilibrium quantity and individual

rofits of a representative firm with consumer surplus respectively as

qC = (a  −  c)γ(1 +  2n)

γ(1 +  2n)2 −  n(1 +  n)
; (14)

πC = (a −  c)2γ(γ(1 +  2n)2 −  (1 +  n)2)

(n  +  n2 −  γ(1 +  2n)2)2 ; (15)

CC
S = 2(a −  c)2γ2n2(1 +  2n)2

[n  +  n2 −  γ(1 +  2n)2]2

here the index C  stays for “Complete”. Moreover, in the following we denote the total welfare by WT =  Nπ  +  CS =
N
i=1πi +  (1/2)

(∑N
i=1qi

)2
.

By direct comparison of the previous quantities we can prove the following

roposition 3.  Assume  that  b  = 1, n1 = n2 = n and  no  knowledge  spillovers.  Then  the  following  relations  hold:

πE <  πC; CE
S <  CC

S ; WE
T <  WC

T .

Under these circumstances, it is preferable, both from a private and a social point of view, to have a competition
etween two complete networks than two empty ones. Three main factors concur to determine this result. First, greater
ost reduction is achieved in the complete network by (1); second, by concavity of profit functions, individual efforts
t equilibrium are greater in an empty network than in the complete network [see (11) and (B.4)], so that in the empty
etwork firms spend more in R&D activities; third, efforts of unlinked firms are strategic substitutes (see Part I), so
hat, in empty networks, firms are penalized by the higher R&D effort by competitors; however, as previously shown,
his effect is reduced as the degree increases and it vanishes completely in a complete sub-network. Stated differently,
t is possible to show that efforts by same network non-neighbors are negative externalities (see [7]), which are fully
nternalized within a complete sub-network. With respect to consumer surplus and total welfare, the conclusion in
roposition 3 follows from the fact that equilibrium quantities are lower in the empty network than in the complete
ne [see (13) and (14)].

These results are also confirmed in our numerical simulations with random networks, as outlined below. Of course,
roposition 3 does not rule out that more efficient solutions can be achieved for intermediate levels of collaboration
ctivity in the sub-networks. These topics, as well as the impact of knowledge spillovers, are explored in the next

ections, where some typical numerical examples are considered.

2 In this case, assuming linear demand, consumer surplus reduces to (b/2)Q2

3 For sake of simplicity here we only consider the case n1 = n2 = n, where agents in different sub-networks are homogeneous.
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4.  Symmetric  networks:  global  analysis  and  numerical  simulations

In this section, we present some numerical experiments on long-run levels of efforts, individual and collective profits
and total welfare, as some of the underlying parameters of the model (5) are changed, namely the sub-networks degree,
internal or external spillovers. The main example of this section is then revisited with randomly generated networks
in the next part of this paper. For all examples presented, it has been also verified that the other relevant quantities
(productions, prices and costs) are nonnegative. In order to avoid any ambiguity on the concept of the “solution” of the
game, here we focus on cases where only convergence to steady states in the effort space is achieved, with quantities
given in (2). However, as shown in Part I, other attractors of (5) are possible, such as cycles or chaotic attractors that
characterize the long-run behavior of the model. But a detailed analysis of such disequilibrium cases and the influence
of the structure of networks on them, are left to future works.

4.1. Varying  the  level  of  connectivity

In this part, we fix the degree of one sub-network while increasing the degree of the other one. The main finding is
that efforts are not necessarily decreasing in networks’s degree, and profits are not maximized for intermediate degrees,
in contrast to the results with only one network in [9]. In fact, an increment in the degree of a sub-network sj brings
several counterbalancing effects on profits. From a local network point of view, it lowers marginal revenues and the
magnitude of strategic complementarity of any neighbor, thus lowering marginal profits (see (5) in Part I); however,
from a global network point of view, it reduces the non-neighbor’s strategic substitutability, thus increasing marginal
profits (see (6) and (7) in Part I).

In the leading example of this section, an overall beneficial effect to firms of a specific sub-network is granted as its
degree is increased; this is a consequence of the cost reduction to firms of that sub-network and is clearly a particular
global network effect, as firms outside that sub-network are penalized by the increased degree of non-neighbors in the
sub-network. These results are also confirmed in the case of competition between two randomly generated networks,
as shown in the next section.

A typical example is shown in Fig. 1. Here, we consider a case where the whole industry is constituted by two groups
of ten firms (n1 = n2 = 10) and firms in the second group form a symmetric network of degree 5 (k2 = 5); the demand
function is characterized by parameters a  = 200 and b  = 1; unitary effort cost is γ  = 6 and unitary production cost without
R&D is c  = 80. Moreover, spillovers are absent (β1 = β2 = β−1 = β−2 = 0), and we set equal speed of adjustment of the
gradient process for all firms α1 = α2 = 0.05 . In all simulations we took an initial condition (i.c.) (e1(0), e2(0)) = (0.5,
0.5). With these parameters, we let the level of connectivity of the first network assume all possible values k1 ∈  [0,
9] (for graphical purposes we plotted k1 as a continuous variable). First notice that the equilibrium effort level inside
network 1 is non-monotonic in k1 (see Fig. 1a). Clearly, the increment in the level of connectivity in the first network
weakens the competitors of the second network, whose profit is progressively reduced (see Fig. 1d). In particular we
observe that in this situation, firms in network 1 are better off when they form a complete network (see Fig. 1c),
whereas an intermediate level of collaboration in both networks (k1 = k2 = 5) brings a minimum of total profits and
social welfare (see Fig. 1d and e). This is in contrast to what happens when only a single network exists, as analyzed
in [9], Proposition 8. With different sets of parameters, it is possible to exhibit examples showing that when the first
network is fully connected the second network is completely out of the market, i.e. firms from the second network do
not sell any good, and the system converges to the boundary equilibrium where efforts of network 1 are given by p̃i in
(12).

4.2. Varying  the  degree  of  knowledge  spillovers

Let us consider a case of two homogeneous sub-networks and no spillovers, so that a representative firm in each
sub-network exerts the same effort and gains the same profit of its rivals. Now we are interested in the effects of
increasing internal and external spillovers between sub-networks.
To start with, consider the case depicted in Fig. 2 where parameters are given as α1 = α2 = 0.05 ; n1 = n2 = 10 ;
k1 = k2 = 5 ; β2 = β−1 = β−2 = 0 ; a  = 200 ; c  = 80 ; γ  = 6 ; b = 1, and β1 ∈ [0, 1) and i.c. (e1(0),  e2(0)) =  (0.5,  0.5).
Obviously for β1 = 0, the two networks are homogeneous. An increase in the internal spillovers within network 1,
i.e. in parameter β1, leads to a greater average cost reduction for firms in network 1, so that they become tougher
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Fig. 1. For varying degrees of collaboration in network 1, k1 ∈ [0, 9] ∩ Z: (a and b) asymptotic levels of efforts in both networks; (c and d) asymptotic
l
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evels of profits in both networks; (e) corresponding total industry profits; (f) corresponding total welfare. Parameters are given as α1 = α2 = 0.05 ;

1 = n2 = 10 ; k2 = 5 ; β1 = β2 = β−1 = β−2 = 0 ; a = 200 ; c = 80 ; γ = 6 ; b = 1, i.c. (e1(0), e2(0)) = (0.5, 0.5).

ompetitors against firms of networks 2. As a consequence, we observe an increment of efforts by a representative firm
n network 1, as long as it serves to weaken competitors on the other network. Firms in network 1 enjoy a greater cost
eduction than rivals and, consequently, an higher profit. On the other hand, R&D’s investments of firms in network 2
nduce low cost reduction, so they progressively reduce their efforts as β1 is increased (see Fig. 2b). Observe that R&D
nvestment inside network 1 reaches a maximum level exactly at a point β1 ≈  0.586, corresponding to the spillover
evel at which R&D efforts pass from strategic complements to strategic substitutes, as explained above. As a result,
e observe an inflection point in the overall industry profit and total welfare, which are nonetheless maximized when

pillovers are the highest possible (see Fig. 2e and f).
Now we consider the same case, but we increment the external spillovers β−2, which regulate the fraction of R&D

ffort from network 1 that spills over for free to competitors in network 2. All parameters are given as in Fig. 2,
ut β1 = 0 and β−2 ∈ [0, 1). Clearly, the higher the parameter β−2 is, the more an unit of effort exerted in network

 advantages firms in network 2. Consequently, firms in network 1 keep reducing their effort so that the advantage
o competitors in network 2 lowers. As a consequence we observe that there exists an intermediate level of external
pillover β such that profits in network 1 and 2 are, respectively, minimized and maximized (see Fig. 3c and d) and
−2
otal industry profit has a local but not global maximum at β1 (see Fig. 3e). The final outcome is thoroughly explainable
ithin the framework we are dealing with. In fact, high levels of external spillovers reduce the advantage to invest in
&D for the firms from which spillovers originate. As a consequence, these firms reduce their investments and switch
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Fig. 2. For varying degrees of spillovers internal to network 1, β1 ∈ [0, 1): (a and b) asymptotic levels of efforts in both networks; (c and d) asymptotic
levels of profits in both networks; (e) corresponding total industry profits; (f) corresponding total welfare. Parameters and i.c. are given as in Fig. 1,

with k1 = k2 = 5.

to a kind of competition based on poor innovation, where higher profits go to firms that innovate less and produce
more. It is possible to show that similar phenomena are also associated with intermediate levels of internal and external
spillovers.

To end this section, we slightly modify our leading example, for exploring a case where network 2 has a greater
connectivity level than network 1, but spillovers internal to network 1 are increased. All parameters are as in Fig. 2,
except γ  = 5 and k2 = 8. Analogously to the case described in Fig. 1, with such an high degree of connectivity, firms
in network 1 operate at very low levels, i.e. their R&D efforts and production is nearly zero. If the degree of internal
spillovers β1 within firms in network 1 is increased, we do not observe any consequence in the outcomes of the game,
up to the level β̃1 ≈  0.6765; in fact, firms in network 1 do not invest in R&D as they can not compete with network 2
because of their few ties; on the other hand, the equilibrium level of investments in network 2, E2, does not depend on
β1, as easily seen from (6) and (7).

At the level β̃1, we observe a jump of equilibrium effort levels of both networks (see Fig. 5a and b): firms of
network 1 invest at the level E1, that indeed depends on β1, whereas firms in the other network cease to invest. More

interestingly, the degree of internal spillovers determines which is the network that takes over the whole market, as
shown in Fig. 4c and d, where again β̃1 represents the point of jump for profits of both representative players; see also
Fig. 4e and f, for aggregate performances in this example.
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Fig. 3. For varying degrees of spillovers external to network 1, β−2 ∈ [0, 1): (a and b) asymptotic levels of efforts in both networks; (c and d)
asymptotic levels of profits in both networks; (e) corresponding total industry profits; (f) corresponding total welfare. Parameters and i.c. are given
a

a
t
i
b
E
a

s in Fig. 2, with β1 = 0.

From a technical point of view, with this set of parameters, the boundary equilibria E1 and E2, given by (7), are
ttracting fixed points, whereas E∗ is a saddle, whose stable set delimits the boundary of the basins of attraction of the
wo steady states. When β1 < β̃1, a trajectory that starts at the i.c. (e1(0), e2(0)) = (0.5, 0.5) is attracted to E2, as this
.c. belongs to the basin of attraction of E2. However, the parameter β1, even if does not influence the coordinate of the
oundary fixed point E2, it influences the stable set of the saddle point E∗, and consequently the basin of attraction of

2. Thus, a trajectory at the same i.c. as before is now attracted to the boundary fixed point E1. Nonetheless, E2 is still
n attractor also for level of spillovers above β̃1, but this increment of β1 leads to a progressive shrinking of the basin
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Fig. 4. For varying degrees of spillovers internal to network 1, β1 ∈ [0, 1): (a and b) asymptotic levels of efforts in both networks; (c and d) asymptotic
levels of profits in both networks; (e) corresponding total industry profits; (f) corresponding total welfare. Parameters and i.c. are given as in Fig. 2,

with k1 = 5 and k2 = 8.

of attraction of E2. This kind of bifurcation, which leads to the bistability of the system, is a typical global one, as it
cannot be detected by the eigenvalues of the Jacobian matrix at the fixed point.

5. Asymmetric  networks:  some  numerical  experiments

In this section, we relax some assumptions on network structure to perform a numerical treatment of the model
in a more realistic setting thus confronting the main results with the ones previously obtained. In particular, we are
interested in exploring the long run effort levels, and the corresponding profits, for a ‘large number’ of randomly
generated couples of competing networks, i.e. when a competition between two random networks takes place.

The generation of random networks is done as follows. First of all, a given number of N  firms is subdivided into two
groups with N  = n1 + n2. Within each group, a collaborative tie between any two of ni agents is formed independently,
with probabilities p and q  in the first and in the second group respectively. The structure of each group is usually referred
to as an Erdös-Rényi network and beliefs about neighbors’ degrees follow asymptotically a binomial distribution (see
[7]).

Each sub-network is then represented by an adjacency matrix, i.e. for sub-network i  a symmetric (agreements are

bilateral) ni ×  ni matrix Gi = {gi,kh}, where gi,kh = 1 implies that a tie between firms k  and h  in sub-network i is present.
We follow the convention of setting gi,kk = 1 .
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The natural extension of (1), i.e. the cost function for firm m  in network i  reads

cm =  c −  uT
m,ni

[Gi −  βi(Uni −  Gi)]ei −  β−iuT
1,nj

Unj ej,  i =  1,  2,  i /=  j  (16)

here:

 eT
i =  [e1,  e2, .  . .  , eni ] is the 1 ×  ni vector of efforts in network i (ej is the corresponding vector of efforts in network

j, with nj firms)
ui,n is the i-th fundamental column vector of length n  (with all elements equal to 0 but the i-th which is 1)

 Un is an n  ×  n  matrix with all entries equal to 1.

The assessment of asymptotic levels of efforts and profits for a given couple of probabilities (p, q) is obtained by
nspecting how these quantities change as a large number n  of couples of networks is generated with equal probability,
s described below.

.1.  Varying  the  probability  of  connections

Let us consider the case of two competing networks with, respectively, n1 and n2 firms. For assessing long-run
verage level of efforts and profits, we implemented the following Monte Carlo procedure:

. Select a number of meshes S and define two vectors p = {pi}Si=1 and q = {qi}Si=1 representing the probability grids to establish
bilateral links in the two networks;

. Choose initial conditions e1(0) and e2(0), i.e. the initial efforts exerted by firms in both networks and specify all the parameters of
the model;

. Do i = 1, S

. Do j = 1, S

. Do w = 1, n

) Generate two random networks, i.e. two adjacency matrices G1 and G2, where a link between any two agents of the same
group is formed independently with probabilities pi and qj respectively;

) Construct the industry profit functions with cost structure (16) and iterate the corresponding gradient dynamical system (4)
with i.c. e1(0) and e2(0); delete the transient and memorize the effort trajectory for each firm in the industry;

. End Do
) Calculate average efforts, profits and their variances over the n trials;
. End Do
. End Do

In our numerical experiments we considered two groups of 10 firms each, i.e. N  = 20 with n1 = n2 = 10; the probability
pace [0, 1]2 is subdivided with equally spaced grid points with step 0.1, (i.e. S = 11), n = 2500 runs for each pair of
robabilities p and q. For comparison purposes with the main symmetric example of the previous section, we considered
he same parameters as for Fig. 1, i.e. n1 = n2 = 10 ; β1 = β2 = β−1 = β−2 = 0 ; a  = 200 ; c  = 80 ; γ  = 6 ; b = 1, αi = 0.05 and
.c. ei(0) = 0.5, i = 1, . . ., 20. The main results can be summarized in Fig. 5, where probabilities p  (to have a link in
etwork 1) are in the horizontal axis and probabilities q (to have a link in network 2) are the small numbers on each
lot. In Fig. 5a and b average R&D efforts in the first and second network respectively are depicted as the probabilities

 of establishing a link in the first network is increased. Consider Fig. 5a. On average, the lower q  is, the higher R&D
fforts in the first networks are. Moreover, if q  is low, these efforts are maximized for intermediate levels of p. This
s in perfect analogy with the symmetric example shown in Fig. 1a. However, when q  is high (q  > 0.7 in Fig. 5a), the
verage effort in network 1 is strictly increasing with the probability p  to make a tie. Analogously to Fig. 1b, efforts in
he second network are decreasing when firms in network 1 have an higher probability to establish bilateral links. In
ig. 5c and d average profits are depicted, respectively, for firms in network 1 and 2. Firms in network 1 are better off
hen firms in the competing network 2 have a low probability to be connected (see Fig. 5c); on the other hand, firms

n network 2 are better off when there is an high probability for them to have links and/or the competitors in network 1
ave a low probability to establish links (see Fig. 5d). Again, it is interesting to compare Fig. 5c and d with Fig. 1c and

, to conclude that, on average, employing this structure of randomly generated networks leads qualitatively to results
hich are similar to the ones obtained in the simplified setting of this paper with symmetric network.
Now, we look at the total welfare, see Fig. 6 (the figure for total profits is qualitatively identical). It is immediate to

bserve that the competition between two networks where firms have zero probability to be connected is less efficient
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Fig. 5. For varying link’s probability p in network 1: (a and b) asymptotic levels of efforts in network 1 and 2 respectively; (c and d) asymptotic
levels of profits in networks 1 and 2 respectively; parameters are given as in Fig. 1. The small numbers on each graphic are link’s probabilities q in
network 2.

Fig. 6. Total welfare of the example in Fig. 5.
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han competition between two networks where that probability is one, similarly to the result in the symmetric case of
roposition 3. However, total welfare is always maximized when only one network has the highest probability to be
onnected, whereas the other one has a low probability.

Essentially, all the results shown in Figs. 5 and 6 in terms of average efforts, profits and welfare are qualitatively
dentical to the ones in Fig. 1, where the simplified symmetric structure with fixed connectivity is posited (confront of
he graphs in Fig. 1 with Figs. 5 and 6 and q  = 0.5). The examples we carried out with varying spillover parameters
onfirm that the results are very similar if not identical to the ones we described earlier in the simplified symmetric
odel also when spillovers are present. However, we do not report them here, but we leave them to a future work

ocused on random networks.

. Conclusions  and  further  analysis

In this paper we have analytically and numerically analyzed some properties of a repeated two-stage game, proposed
n [4] and referred to as Part I in this paper, which describes the competition between firms constituting Research Joint
entures for sharing R&D results.

We first considered two relevant benchmark cases, namely the empty and the complete network cases, where the
ollaboration level is, respectively, absent and maximum. These benchmark cases allowed us to state that an empty
etwork of R&D share agreements is never preferable to a structure with an high degree of collaboration, both from a
rivate and social point of view.

By carrying out a typical numerical simulation, we showed the effects of introducing spillovers, both internal and
xternal to a network. When two networks with equal level of connectivity compete, spillovers that are internal to a
etwork can reduce progressively the market share of the other network. Furthermore, in cases where a network starts
ith the disadvantage of having less links than its competing network, internal spillovers can completely overturn the
ositions, with discontinuous changes in equilibrium investments levels and profits. This is due to the coexistence of
ifferent long run attractors, i.e. to coexisting fixed points in the space of efforts, each with its own basin of attraction,
eading to a situation of multistability. With respect to external spillovers, when they are low, they provide substantial
enefits to the network they are directed to, whereas above a threshold level, they turn out to be harmful for the receiving
etwork. For all these cases we explored also the effects of these parameters on social indicators of performance.

In the last part of the paper, we relaxed the assumption on networks’ symmetry, showing how the framework of
he paper can be adapted to perform numerical analysis with asymmetric networks, which are randomly generated.

e leave the detailed results to a future work, but we notice results very similar on average to the ones obtained with
egular networks.

All numerical examples with regular networks have been carried out for cases where only convergence to an equi-
ibrium level of efforts (with consequent optimal quantities) takes place, whereas examples where different attractors
rise (as shown by some numerical simulations in Part I) will be more deeply characterized and interpreted in future
orks.
In the general case of different sub-networks we provided examples where some conclusions of [9], obtained in

he case of only one collaboration network, no longer hold: in fact, in the case where only a network operates, as in
9], R&D efforts are not decreasing as the level of connectivity is increased, and profits in the network are indeed
aximized when the level of connectivity is the highest, provided that other firms sell the (homogeneous) good in the
arketplace. Indeed, when other firms sell the good, an higher level of connectivity inside the operating network can

rovide a winning tool to defeat outside competitors.
These results can be appraised in a stylized model with just two competing networks, and are confirmed in the case

f competition between randomly generated networks, as reported in the last part of the paper.
The model and the analysis given in this paper can be extended in several ways. First of all, the problem of network

ormation and strategic stability with multi-network competition has to be addressed and analyzed. It is also interesting
o perform simulations with asymmetric random networks and more general degree distributions. In a work focused

n spillovers, it would be more reasonable to assume that internal spillovers are not constant, but their effects fade with
etwork distance.

In addition, a remarkable improvement of the model can be obtained by assuming that knowledge gained through
&D efforts accumulates over time. Following [2], a first step in this direction can be found in [3], where an R&D
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network game with knowledge accumulation is analyzed. However, both the cost reduction effect and the capacity to
exploit spillovers (i.e. the “absorptive capacity”, see [5]) should be assumed to depend on the accumulated knowledge.

Finally, we stress that the framework we propose can be employed to formulate models with different objective
functions to be maximized at the second stage, in the spirit of [6,10]. We leave these topics, as well as the comparison
between the different models, to future works.
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Appendix A.  Proof  of  Proposition  2

The first part follows from the first part of Proposition 2 of Part I, where we considered the fact that the equilibrium
Ei is located on the invariant axis ei, along which the dynamics are described by the unidimensional map

ei(t  +  1) =  ei(t) + αiei(t)

b(1 +  N)2 [Ai +  Ciei(t)] (A.1)

topological conjugate to the well known Myrberg quadratic map q(x) = x2 −  c (see e.g. [11] or [12],
chapter 2) through the linear homeomorphism τ(x) = (αCi/b(1 + N)2)x  + (αAi/2b(1 + N)2) + (1/2), with
c = (1/4)(1 + (αAi/b(1 + N)2))2 −  (1/2)(1 + (αAi/b(1 + N)2)). The first flip bifurcation for q(x) at c  = (3/4) translate
for (A.1) to the condition aforementioned.

We also remark that b  > a  −  c  is sufficient for stability along ei. We observe that in this case (6) reduce to

Ai =  2(a  −  c)N  >  0

Bi =  −2njN  <  0

Ci =  2(1 +  nj)N  −  2bγ(1 +  N)2 <  0

(A.2)

As for stability along the direction transverse to ei, we observe that bγ  > (N/(1 + N)) implies that Ci < Bj, and so,
being Ci < 0 and Ai = Aj > 0, it is ((αj(AjCi −  BjAi))/(Cib(1 + N)2)) > 0 . By Proposition 1 we have that Ei is always
unstable.

Appendix B.  Inner  equilibrium  with  complete  sub-networks

The study of the local stability of the equilibria of model (5) starts, as usual, from the Jacobian matrix

J(e1,  e2) =

⎡
⎢⎢⎣

1 + α1

b(1 +  N)2 (A1 +  B1e2 +  2C1e1)
α1B1e1

b(1 +  N)2

α2B2e2

b(1 +  N)2 1 + α2

b(1 +  N)2 (A2 +  B2e1 +  2C2e2)

⎤
⎥⎥⎦ (B.1)

computed at E∗, given by:

⎡
α1C1e

∗
1 α1B1e

∗
1

⎤

J(E∗) = ⎢⎢⎣

1 +
b(1 +  N)2 b(1 +  N)2

α2B2e
∗
2

b(1 +  N)2 1 + α2C2e
∗
2

b(1 +  N)2

⎥⎥⎦
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ecessary conditions for stability of E∗ can be expressed by⎧⎪⎨
⎪⎩

1 −  Tr  +  Det  ≥  0

1 +  Tr +  Det ≥ 0

Det ≤ 1
(B.2)

here Tr  and Det  represent the trace and the determinant of J(E∗) respectively.4

These conditions become⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (i)

4 + 2α1C1e
∗
1

b(1 +  N)2 + 2α2C2e
∗
2

b(1 +  N)2 + α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (ii)

− α1C1e
∗
1

b(1 +  N)2 − α2C2e
∗
2

b(1 +  N)2 − α1α2e
∗
1e

∗
2

b2(1 +  N)4 (C1C2 −  B1B2) ≥  0 (iii)

(B.3)

hen ni = nj = n, the Nash equilibrium reads

E∗ =  (̃e∗, ẽ∗) withẽ∗ = (a  −  c)(1 +  n)

bγ(1 +  2n)2 −  (1 +  n)n
.  (B.4)

or this simple formulation and α1 = α2 = α, by applying the conditions for stability of E∗ in the homogeneous case,
e get that the Nash equilibrium E∗ has strictly positive coordinates and it is stable as long as γ  > (n(1 + n)/b(1 + 2n))

which holds true whenever γ  > γ̃i) and a  −  c  < (b(1 + 2n)2/α(1 + n)), whose violation destabilizes E∗ through a flip
ifurcation. Similarly to stability of boundary equilibria, we observe that the interval of parameters (a  −  c) ensuring
he stability of the Nash equilibrium is larger than in the empty network case.

Without loss of generality, we now assume that n1 > n2. Both components of E∗, as given in (8), are strictly positive
hen

γ̃2 = n2(1 +  n1)2

b(1 +  N)2 <  γ  <
(1 +  n1)n2

b(1 +  N)
or γ  >

n1(1 +  n2)

b(1 +  N)
(B.5)

Differently from the benchmark case of the empty network, when the first condition in (B.5) is verified, the Nash
quilibrium E∗ is unstable with strictly positive components of E∗. In fact, in this case it is Ci < 0 (strict concave profit
unctions) but C1C2 < B1B2 so that the second part of Proposition 3 applies.

When γ  > (n1(1 + n2)/b(1 + N)), condition (B.5) holds, Ci < 0 and it is also C1C2 > B1B2. Conditions 1 in (B.3) is
lways verified and so a lost of stability of E∗ for high values of γ , can be originated by flip or Neimark–Sacker
ifurcations.5
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