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Summary. In this chapter we present a unified approach for modelling the dif-
fusion of alternative choices within a population of individuals in the presence of
social externalities, starting from two particular discrete-time dynamic models —
Galam’s model of rumors spreading [10] and a formalization of Schelling’s binary
choices [7]. We describe some peculiar properties of discrete-time (or event-driven)
dynamic processes and we show how some long-run (asymptotic) outcomes emerging
from repeated short time decisions can be seen as emerging properties, sometimes
unexpected, or difficult to be forecasted.

1 Introduction

A classical theme in the mathematical modelling of social systems is the
description of how the collective behavior affects the individual choices and,
vice versa, how repeated choices of interacting individuals give rise, in the long
run, to the emergence of collective behaviors and social structures. In other
words, the mutual dependencies between “Micromotives and Macrobehavior”
[25] or between “Individual Strategy and Social Structure” [27].

In this chapter we present two models describing the diffusion of alternative
choices within a population of individuals in the presence of social externali-
ties. The first model we consider is the Galam’s model of rumors spreading, as
published in [10]. The diffusion of a given opinion by word-of-mouth mecha-
nisms can be considered as a particular case of individual decisions (believing
or not in a given opinion) affected by the opinion prevailing in the society. Sev-
eral mathematical models have been used in sociological, mathematical, and
physical literature (see, e.g., [12,15,26]). Starting from the pioneering works by
Galam (see, e.g., [13]) opinion dynamics has become one of the main streams
of sociophysics, an expanding field with hundreds of papers published in lead-
ing physical (and nonphysical) journals. It emerged in the 70s of last century
and since then the number of topics covered has been increasing, see, e.g., [12]
for a review.
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The second model we present is a mathematical formalization of a pioneer-
ing qualitative model proposed in [24], where a class of binary choice games
with externalities is considered to model how individual choices are influenced
by social externalities. In this famous seminal paper Schellirig assumes that
each agent’s payoff depends only on the number of agents who choose one way
or the other and not on their identities; he provides qualitative explanations of
several every-day life situations, as well as a general framework that includes
some well known game-theoretic situations, such as the n-players prisoner’s
dilemma or the minority games.

Following this approach, in [7] an explicit discrete-time dynamic model
is proposed; there a population of bounded rationality players is assumed to
be engaged in a game where they repeatedly choose between two strategies
through an adaptive adjustment process. This allowed the authors to study
the effects on the dynamic behavior of different kinds of payoff functions that
represent social externalities, as well as the qualitative changes of the asymp-
totic dynamics induced by variations of the main parameters of the model.
The adaptive process by which agents switch their decisions depends on the
difference observed between their own payoffs and those associated with the
opposite choice in the previous turn; the switching intensity is modulated
by a parameter A representing the speed of reaction of agents: small values
of such X imply more inertia while, on the contrary, larger values of )\ im-
ply more reactive agents. This one-dimensional discrete dynamic model gives
rise to different asymptotic dynamics, including convergence to steady states,
periodic and even chaotic oscillations, as well as particular the structure of
basins of attraction when several coexisting attractors are present. This latter
effect is obtained in the case of non-monotonic payoff functions, a quite in-
teresting situation in sociological applications (as explained by [24] and [15])
that in our mathematical framework leads to a dynamical system represented
by an iterated noninvertible map. Moreover, in the limiting case of impulsive
agents, represented by A — 00, a discontinuous dynamical system is obtained.
In this case, border collision bifurcations cause the creation and destruction
of periodic attractors as some parameters are varied.

We finally illustrate a recent unified dynamic model, proposed in 8],
which embeds these two models into a general discrete-time dynamic model
for studying individual interactions in variously sized groups. In fact, while
Galam’s model of rumors spreading considers a majority rule for interactions
in several groups, Schelling’s framework considers individuals interacting in
one large group, with payoff functions that describe how collective choices in-
fluence individual preferences. The general model proposed in [8] incorporates
these two approaches and allows one to analyze how the social dynamics may
differ depending on the size of the group they are taking place in.

The chapter is organized as follows. In Sect.2 Galam’s model of rumors is
described, in Sect. 3 the formalization of Schelling’s model of binary choices, as
given in [7], is summarized, together with the main results obtained in the case
of monotonic and nonmonotonic payoff functions. In Sect. 4 the same model
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is considered in the limiting case of impulsive agents; some of the results
concerning the global dynamic properties of piecewise linear discontin.uous
maps with the related problem of border collision bifurcations are provided.
Finally, in Sect. 5, the unified model proposed by [8] is described; Sect. 6 con-
cludes.

2 Galam’s model

The model Galam proposes in [10] explains the so called Pentagon French
hoaz, according to which, on September the 11th, no plane crashed on the
Pentagon. In this model individuals try to choose an opinion (true or false)

" on this rumor on the basis of repeated discussions in social gatherings. At each

iteration, small groups of people get together and within each group .the‘y l%ne
up with a consensual opinion in which everyone agrees with the majority 1_ns.1de
the group. The process is formalized as follows. The probability to be s1tt}ng
at a group of size 7 is denoted by a;, 2 = 1,2, ..., L; obviously the constraint

L

holds. In Galam’s model, the inclusion of one-person groups makes the
assumption “everyone gathering simultaneously” realistic. At each sovfial
meeting, given the social spaces, individuals distribute among them according
to probabilities a;

Consider a N person population and assume two possible opinion.s, 'de—
noted® by “A” and “B”; assume that at time ¢ everyone is holding an opinion,
i.e., N4(t) individuals are believing to opinion A and Np(t) persons are shar-
ing the opinion B; it holds N4(t) + Ng(t) = N. It is immediate to compute
the probabilities to hold on A or B, respectively

PA(t):Ef}V(Qand PB(t)=1—PA(t). (2)

From this initial configuration, people discuss the issue at each social meet-
ing; each cycle of multisize discussions is marked by an unitary time ipcreme.nt.
The opinion modification process is the following. In any group of size k with
j agents sharing opinion A and (k — j) sharing opinion B, if j > k/2 then all
k members adopt opinion A; vice versa, if j < k/2, then everybody adF)pt;s
opinion B. Finally, in the symmetric case j = k/2 the outcome is fletermmed
assuming a bias in favor of one of the two opinions. For a generic group of
size k, the majority rule dynamics is formalized as:

k
. o
Pi(t+1)= Y  CFPa(tY (1-Pa(t))"”, 3)
=154
8 Actually, in [10] opinions are denoted by + and —; the notation we use here is
to uniform the notation across all the models.
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where |k/2 + 1] indicates the Integer Part of k/2 + 1 and C} = k!/(k — j)!j!
are binomial coefficients. Considering as initial index of thé sum |k/2 + 1J.
models the bias in favor of opinion B in case of a local doubt is obtainedi
As a r.natter of fact, when k is odd the sum starts considering the minimum
majority, while when k is even the sum starts at k/2 4 1.

Aggregating all groups of size kK = 1,..., L, the overall updating process
becomes

L
Pa(t+1)=) axPi(t+1) (4)
k=1

with P% (t + 1) given by (3), that is, the dynamics of P, is

L k
Pa(t+1)= ax Y, CEPa(t) (1—Pa(t))"™. (5)

=5

A‘ single step of the opinion dynamics can be illustrated as the example pro-
vu?efl in Fig.1. Assume there are three individuals among which two have
opinion A and one opinion B; they can gather at a 2-size and a 1-size groups.
For each individual the probability of sitting at a size 2 is 2/3 and the prob-
ability of sitting at the size 1 group 1/3.

A=A B A ERA

b A
4 ] £ "1 4
Empty social spaces Social gathering Social gatherili i
. « & g = 4 h
Before discussion After discussion Empty soclal spaces

Fig. 1. 'A one-step opinion dynamics. First stage, people sharing the two opinions
are moving around. Grey have A opinion while black have opinion B. No discussion
is occurring with 2 grey and 1 black. Second stage right, people is partitioned in
groups (?f various sizes from one to two and no change of opinion occurs. Third
stage, within each group consensus has been reached. As a result, they are now 1
grey and 2 black. Last stage, people are again moving around with no discussion

In this case, Galam’s formalization provides

2 .
Pi(1)= Y C2P4(0)Y (1-Pa(0)*7 =C3P4(0)’(1 - Pa(0))** =
i=|%+1]

NeRis

(6)
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and
1 2
. - =]
Pi()=" Y. C}P4(0Y (1—Pa (O™ = C1P4(0)! (1 — Pa )~ = %
j=|3+1]
(M
And finally
2
24 12 14
PA(l)’—‘ZakPﬁ(l)Zg'g"i‘gg:E‘- (8)
k=1

In the course of time, the same people keeps meeting in different groups in
the same cluster configuration of size groups. The process and (5) is iterated
to follow the time evolution of Pa.

This model, explains how the propagation of “absurd” rumors from initial
tiny minorities may be explained by the bias driven by the tie effect. In par-
ticular, in [11] provides an analysis of how group shared belief may favor one
opinion against the other.

Finally, it must be observed that Galam’s model assumes implicitly that
the number of agents is large. This is evident when considering the example
discussed in Fig. 1, and labeling the agents as illustrated in Fig. 2.

Here, the three individuals are identified as Iy, I, and I3; they have re-
spective opinions A, A, and B, therefore, the probability P4 (0) =2 /3. They
can gather at a 2-size and a 1-size groups. For each individual the probability
of sitting at a size 2 is 2/3 and the probability of sitting at the size 1 group
1/3.

~ All the possible evolutions depend on the gathering configurations yet the
final probabilities are, respectively, 2 /3,1/3, and 1/3, therefore, we have

P 1_12 11 11 _1/2 1 1 4
Al )_3§+§3+§§_3(3+3+3)‘9
which is different from the result predicted by (8). By simple computations
it is easy to find that when individuals are six, four with opinion A and two
with opinion B, it holds P4 (1) = 22/45.

When the number of agents is large the model becomes more accurate;
when the number of agents is small, [9] provides a different formula, yet,
according to the same authors, the formula addresses this issue only partially.

3 A mathematical formalization of Schelling model

In [24], a simple model which analyzes how individual choices are influenced
by social interactions (social externalities), is proposed. In this model, agents
face binary choices and are assumed to interact impersonally, i.e., each agent’s
payoff depends only on the number of agents who choose one way or the other
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Fig. 2. A one-step opinion dynamics, when individuals follow different path. Each
path has probability 1/3

and not on their identities. This model provides a qualitative explanation of
a wealth of every-day life situations, and is general enough to include several

games, such as the minority game and the well known n-players prisoner’s
dilemma.
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A formalization of Schelling’s approach is proposed in [7]; there, a popula-
tion of players is assumed to be engaged in a game where they have to choose
between two strategies, A and B, respectively.® The interaction is repeated
over time in a discrete-time dynamic model.

A continuum of agents is normalized to the interval [0, 1], and the real
variable z € [0,1] denotes the fraction of players choosing strategy A. The
payoffs associated to strategies A and B are function of z, say A: [0,1] — R,
B :[0,1] — R; they are denoted by A(z) and B(z), respectively. As binary
choices are considered, when fraction z is playing A, then fraction 1 — z is
playing B. Therefore, £ = 0 means that the whole population is playing B
and £ = 1 means that all the agents are playing A.

Agents are homogeneous and myopic, that is, each of them is only inter-

" ested to increase its own next period payoff. The dynamic adjustment is mod-

eled assuming that z increases whenever A(z) > B(x) whereas it decreases
when the opposite inequality holds. In this process all the agents update their
binary choice at each time period t = 0,1,2,..., and z; represents the fraction
of those playing strategy A at time period t.

At time (t + 1), z; becomes common knowledge, therefore each agent is
able to compute (or observe) payoffs A (z;) and B (z;). If A(z;) > B (z¢) then
a fraction d4 of the (1 — z;) agents that are playing B will switch to strategy
A in the following turn; similarly, if A(z;) < B (z:) then a fraction dp of the
z; players that are playing A will switch to strategy B. Formally, at any time
period t, agents decide their action for period t 4+ 1 according to:

. el t Ty — 639 [)\ (B (.’Et) —A (.’L't))] Tt if A (It) < B (.’Et)(, )
9

where

e g:R,—0,1] is a continuous and increasing function such that g(0) = 0
and lim,_, g(2) = 1; it modulates how the difference between the previ-
ous turn payoffs affects the fraction of switching agents.

e 04, 6p € [0,1] represent the fraction of agents switching to A and B,
respectively. When §4 = d, the propensity to switch to either strategies
is the same. On the contrary, 64 # 6 represents a form of bias; in fact,
given any payoff difference |A () — B (z)| > 0, 64 > 6 implies that when
A(z) > B(z) switching from choice B to choice A is favored over switching
from A to B when A(z) < B(zx).

e )\ isa positive real number that represents the switching intensity (or speed
of reaction) of agents as a consequence of the difference between payoffs.
Small values of X imply more inertia, i.e., anchoring attitude, of the actors
involved, while, on the contrary, larger values of A can be interpreted in
terms of impulsiveness, see Sect. 4.

“In [24] and [7] the two choices are denoted, respectively, R and L.
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The dynamics of model (9) has been examined in [7]- In particular, when
the payoff functions have a single internal intersection point z*, depending
on which choice is preferred on the left and right neighborhood of z*, the
following propositions can be proved.

Proposition 1. Assume that A: [0,1] —» R and B : [0,1] — R are continuous
functions such that

o A(0) < B(0)
o A(l)> B(1)
e there exists unique z* € (0,1) such that A(z*) = B(z*),

then dynamical system (9) has three fized points, x =0, £ = z*, and z = 1,
where T* is unstable and constitutes the boundary that separates the basins of
attraction of the stable fized points 0 and 1. All the dynamics generated by
(9) converge to one of the two stable fixed points monotonically, decreasing if
To < z¥, increasing if o > T*.

This proposition mathematically formalizes the qualitative results Schelling
provides in [24]. By contrast, in the other case, the behavior is different; the
discrete-time setting may give rise to oscillating behavior.

Proposition 2. If A: [0,1] — R and B : [0,1] — R are continuous functions
such that

o A(0) > B(0)
e A(l) < B(1)
e there exists unique z* € (0,1) such that A(z*) = B(z*),

then the dynamical system (9) has only one fized point at = z*, which is
stable of f' (z*) > -1 and fi(z*) > —1, and is unstable (in the sense of
Lyapunov) if at least one of these two slopes is smaller than —1. Both slopes
decrease as A or 64 or 0p increase, i.e., if the propensity to switch to the
opposite choice increases.

This result differs from the description given in [24], where oscillations are
ruled out as continuous time is implicitly assumed. Instead, in a discrete-time
setting, overshooting (or overreaction) phenomena may occur for sufficiently
large values of A. Schelling [24] also describes interesting cases in which the
payoff functions are nonmonotonic; in this case there may be more than one in-
tersection and also two or more interior equilibria may exist. Several examples
are discussed in [24]; more recently, [7] provides an analysis of the resistance
to antibiotics phenomena in terms of payoff functions with two intersection
points.

Nonmonotonic payoff functions may lead to thé existence of more than
one intersection, i.e., two or more interior equilibria may exist, see Fig.3 and
the dynamic scenery may become more complicated.
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0 ’ x 1

Fig. 3. Payoff functions with two intersections, and the relative map obtained with
g(-) = 2/marctan(-), 64 =05 =0.5, A =6

Some interesting examples are discussed in [24]; among the others we men-
tion the one about the local use of insecticides. While everyone benefits the
use of insecticides by the others, the value of insecticides gets dissipated unless
some neighbors use insecticides too. When others use it moderately it becomes
cost-effective but when almost everybody uses there are not enough bugs to
spray it, and they become cost-ineffective. The importance of nonmonotonic
payoff functions is also highlighted in [15].

In this case, the results of the analysis can be formalized as

Proposition 3. If R: [0,1] —» R and L : [0,1] — R are continuous functions
such that

A(0) < B(0)

A(1) < B(1) ) )
there exist two points x3 < x4 both in (0,1) such that A(z}) = B(z}),
g =112

then dynamical system (9) has three fized points x = 0, © = =7, and T =
x5, where 0 is always stable, x§ is always unstable, and T3 may be stable or
unstable. When 3 is unstable, then a cyclic (periodic or chaotic) attracz.tor
S(z3) C [f(cMax), CMax] exists around it and is bounded inside the trapping
set [f(cMax), CMax], provided that f(cmax) > x7. The unstable fired point x3
is both the upper boundary of the immediate basin of the stable fized point 0,
and the lower boundary of the immediate basin of x5 (or S(x3) if it exists);
furthermore, if (1 —6p) x5 > x3 then as A increases non-connected portions
of the basins are created.
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The proof of this result goes beyond the scope of this chapter; it is re-
ported in [7]. Intuitively, this can be explained observing that the map f is
.noninvertible, i.e., there exist at least a pair of distinct points that are mapped
into the same point, see Fig. 5. Following the notation introduced in [20], we
denote by Zj the subset of points, in the range of f, that have k preimages.

In the particular case of the map f represénted in Fig. 4, Z1 = [0, ¢min),
Zz = (CminsCMaz), and Zg = (€prez,1), Where cmin and cprqz, respectively,
represent the relative minimum and maximum values. In addition, as it con-
cerns the unstable fixed point 2} (located on the boundary that separates the
two basins) it can be observed that z} < cmin; as a consequence T} € 743
and the point itself is its unique preimage as in Proposition 1. This is the
reason why z7 is the unique point that forms the boundary separating the
two basins of attraction. However, any parameter variation such that cpmi,
becomes lower than z] as illustrated in Fig. 5a, brings z} in region Z,.
Therefore, there exists more than one preimage, say zI(_l), belonging to the
basin boundary as well. Therefore, any initial condition z, € :c;(_l), 1) is

first mapped below (0,z}) and then converges to the fixed point z = 0. In
other words, the basin of the stable fixed point z = 0 (everybody is choosing

L) is now B (0) = (0,z}) U (a:;(_l),l), i.e., a nonconnected set, with the

“hole” B (z3) = (m’{, z;(_l)) “nested” inside. We recall that the widest com-

ponent of the basin that contains the attractor is called immediate basin of the
attractor.

0 x 1

Flg 4. Map f obtained with the same parameter values as Fig.3 but A = 10; the
trajectory starting from zo = 0.9 converges to 3

For this kind of map there exists a value A such that the topological struc-
ture of the basins exhibits a qualitative change; this value is characterized by
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the contact cmin = = between a critical point (relative minimum value) and
an unstable fixed point. This global bifurcation leads to a counterintuitive
behavior of the system. In fact, as the initial fraction of the populations of
players choosing strategy R (the initial condition zo) increases from 0 to 1,
we first move from the basin of the lower equilibrium z = 0 into the basin of
the upper one 3, to finally re-enter into the basin of attraction of 0; that is,
while when many players initially choose R the process will evolve toward a
final equilibrium such that a large fraction of population chooses R, on the
contrary when even more players initially choose R then nobody will end up
playing R in the long run.

The situation may become even more involved when the position of the
minimum is shifted horizontally so that global shape of the map f implies a
new zone Zsz. This is illustrated in Fig. 5b, where parameters are bp =10 =
0.4, A = 40. In this case =} € Z3, actually as A increases a global bifurcation
occurs: from cmin > T} t0 cmin = ] where the contact bifurcation occurs
and, finally, cnin < 7% as depicted. At this stage, there exist three distinct
preimages of the boundary point z7: zj itself and two more preimages denoted

*

by :1:1("1)’1 and mi(—l)’z in the same figure. The result is that so that both
basins consist of two disjoint portions:

B (0) = (0,z7) U <z’{(’1)’1’z’1‘(‘1)12)
and
B (A(x3)) = (m’{,x;(_l)’l) U (z;(_l)’27 1) .

In Fig. 6 three different trajectories can be observed; they are generated
by initial conditions zo = 0.8, zo = 0.91, and zo = 0.95, respectively (of
course, any o < T} generates a trajectory converging to 0). We also notice
that, for this set of parameters, the larger fixed point z3 is not stable as
around it there may exist a chaotic or high-period periodic attractor. However,
we can observe that the occurrence of the global bifurcation that changes
the topological structure of the attractors is not influenced by the kind of
coexisting attractors.

Furthermore, the global analysis of the dynamic properties of the model
reveals the occurrence of a global bifurcation that causes the transition from
connected to nonconnected basins of attraction. This implies that several basin
boundaries are suddenly created; they may be seen as a possible mathematical
description of an extreme form of path dependence, observed in social systems,
which is responsible of irreversible transitions from one equilibrium to another
(and distant) one as final outcome.

The choice of a discrete time scale, allows the occurrence of overshoot-
ing and cyclic phenomena in social systems. In particular, with monotonic
payoff functions, the model proposed in this paper allowed us to study the
occurrence of oscillatory time series (periodic or chaotic). As it is well known,
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a b

Z 5
cMax zo

Z, "2,

Crnin 23
Z1

r 2, 4
0 x 1 0 x 1

Fig.. 5. Map f with different parameter values. (a) The parameters are the same
as Fig. 4; the trajectory starting from zo = 0.9 converges to 5. (b) 6r = 6L = 0.4
A =40. In this case =} € Z3 ’

a b . c

0 10 x 1 0 e 1

Fig. ‘6.. Three trajectories for the map illustrated in Fig. 5 (b) with respective initial
condition zo = 0.8 (a), xo = 0.91 (b), and zo = 0.95 (c)

discrete-time adaptive processes may lead to oscillations, often related to over-

(sihogt'mg effects that are quite common in the presence of emotional human
ecisions.

4 The case of impulsive agents

The effects of impulsivity are examined in [5] as the parameter ) increases
up to the limiting case obtained as A\ — +o0. In fact, according to the Clin-’
ical Psychology literature [23], impulsiveness can be separated in different
compqnents such as lack of planning and acting on the spur of the moment.

This case is equivalent to consider g (-) = 1, i.e., the switching rate only
depends on the sign of the difference between payoffs, no matter how much
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they differ. The dynamical system assumes then the form of the following
discontinuous map

(5A + (1 — 5A)$t lfB(It) < A($t)
Ti41 = foo(lft) = Tt if B (.’I:t) = A(J;t) (10)
(1—6B)It lfB(Q?t) >A(It). :

Any interior intersection between the payoff curves A (z) and B (z) generates
a point of discontinuity.

In the following, we summarize the results of the analysis of 1-discontinuity
and 2-discontinuity cases.

4.1 Piecewise linear maps with one discontinuity

In [5] the case of impulsive agents with payoff functions A(z) and B(z) with
one and only one internal intersection z* € (0,1) has been examined. The
family of iterated maps f : [0,1] — [0,1] we analyze in the case of impulsive
agents can be expressed either

(L-46a)x ifrx<d
' =Ti(z)=( = ifr=4d (11)
(1-9dp)z+opifz>d

or
(1-0a)z+daifz<d
T =T(z)=(z ifr=d (12)
(1—6p)c ifz>d

according to the situations described in Propositions 1 and 2, respectively.
The parameter d € (0,1) represents the discontinuity point located at the
interior equilibrium, i.e., d = z*, and, as usual, the parameters da, 0p are
subject to the constraints 0 <64 <1, 0<ép <1.Itis worth noticing that
the value of the map in the discontinuity point, = d, is not important for
the analysis which follows, therefore it will often be omitted.

The study of the dynamic properties of iterated piecewise linear maps with
one or more discontinuity points has been rising increasing interest in recent
years, as witnessed by the high number of papers and books devoted to this
topic, both in the mathematical literature (references to this huge literature
are provided in [5] and [6]).

The bifurcations involved in discontinuous maps are often described in
terms of the so called border-collision bifurcations, that can be defined as
due to contacts between an invariant set of a map with the border of its
region of definition. The term border-collision bifurcation was introduced for
the first time in [22] and it is now widely used in this context. However the
study and description of such bifurcations was started several years before
by Leonov in [16] and [17], who described several bifurcations of that kind
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and gave a recursive relation to find the analytic expression of the sequence
of bifurcations occurring in a one-dimensional piecewise linear map with one
discontinuity point. His results are also described and used by Mira in [18]
and [19].

By applying the methods suggested in [16] and [17], see also [18] and [19],
to the map T, it is possible to give the analytical equation of the bifurcation
curves where stable periodic cycles are created or destroyed. The boundaries
that separate two adjacent periodicity regions in the space of parameters are
also called periodicity tongues. They are characterized by the occurrence of a
border-collision, involving the contact between a periodic point of the cycles
existing inside the regions and the discontinuity point. To better formalize
and explain our results it is suitable to label the two components of our map
z' = Ty(z) as follows:

TL(IE) =mrT + (1 - mL) ifr<d
g’ =Ty(z) = (13)
Tr(z) = mpz ifz > d,

where mp = (1 — §4) and mg = (1 — 6p).

First of all, notice that all the possible cycles of the map T5 of period k > 1
are always stable. In fact, the stability of a k-cycle is given by the slope (or
eigenvalue) of the function 7§ = Ty o ... o Ty (k times) in the periodic points
of the cycle, which are fixed points for the map T¥, so that, considering a
cycle with p points on the left side of the discontinuity and (k — p) on the
right side, the eigenvalue is given by m’img_p )
always positive and less than 1.

In [5], the study of the conditions for the existence of the periodic cycles
are limited to the analysis of the bifurcation curves of the so-called “principal
tongues,”or “main tongues” [4] or “tongues of first degree” [16-19], which
are the cycles of period k having one point on one side of the discontinuity
point and (k — 1) points on the other side (for any integer k > 1). Let us
begin with the conditions to determine the existence of a cycle of period k
having one point on the left side L and (k — 1) points on the right side R. The
condition (i.e., the bifurcation) that marks its creation is that the discontinuity
point = d is a periodic point to which we apply, in the sequence, the maps
TL,TR,...,Tr. For example, the condition for the creation of a 3-cycle, i.e.,
k =3,is TRoTgroTL(d) = d. Then the k-cycle with periodic points z, ..., T,
numbered with the first point on the left side, satisfies zo = Tr(z;), 3 =
Tr(z2), ..., 21 = Tr(zk), and this cycle ends to exist when the last point ()
merges with the discontinuity point, that is, zx—; = d which may be stated
as the point © = d is a periodic point to which we apply, in the sequence,
the maps Tr, Ty, TR, ..., Tr. The closing condition related with the 3-cycle is,
TroTr 0Tr(d) = d. Notice that both these conditions express the occurrence
of a border collision bifurcation, being related to a contact between a periodic
point and the boundary (or border) of the region of differentiability of the

which, in our assumptions, is
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corresponding branch of the map. In general, for a cycle of period k > 1, the
equation of one boundary of the corresponding region of periodicity is:
m%_l) —d

1 —dym$%Y o

mrp =mr; =
while the other boundary, i.e., the closure of the periodicity tongue of the
same cycle, is given by:

m%_g) —d

1- de)’mg_z)

mp =mrfy = (15)

The proof of these two equations is reported in [5]. Thus the k-cycle exists for
m'}{z > d and my, in the range

mps <mp <mpy (16)

and the periodic points of the k-cycle, say (z3, 73, ...,x)) where 2 < d and
zf > d for i > 1, can be obtained explicitly as:

 _ m(3k~l)(l—m/,)

T1 = F=D)
—mLmp
zy =Tr(z}) =mpzi +1—-myg
5 = Th(z}) = mp(meai +1 - m) a7)

zy = Tr(z}) = mi(mpzf+1—my)

; " = .
zp =Tr(z}_y) = m% 2)(mLa:1 +1—mp).
An illustration of the periodicity tongues together with their boundaries is
provided in Fig. 7.

a
1

8

0 TS R

Fig. 7. (a) The bifurcation curves obtained by the analytical expressions calculated
for the map 7', with the discontinuity point d=0.8, for cycles of periods 2,...,15.
(b) The tongues of periodicity relative to case considered in (a)
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4.2 Piecewise linear maps with two discontinuities

As discussed in Sect. 3, when the payoff functions are nonmonotonic there may
be more then one intersection point. In [6] the case of two internal intersection

has been examined. In this case the family of iterated maps T : [0,1] — [0,1]
has the form: ’

(1-ép)x ifz<dyorz>dy
g=T()=<z ifr=d
(1—5,4).2-1-(5,4 ifd; <z <ds

with parameters subject to the following constraints:
0<di<dy<1

0<da<1,0<dp <.

It is easy to realize that the origin is always an attractor; it may be the only
one or it may coexist with an attracting cycle of period ¥ > 1, according
to the values of the four parameters dy, da, 04, and d5. Also in this case
it is possible to prove the existence of stable periodic cycles in analytically
defined regions of the space of the parameters, as well as the analytic con-
ditions for their creation or destruction through border collision bifurcations
(see [1-4]).

In the case of coexisting attractors, it is also important to bound the sets
of initial conditions that generate trajectories converging to either one or to

the other, i.e., the respective basins of attraction. Indeed, we only have the
two following possibilities:

1. Each of the two basins consists of a single interval, separated by the dis-
continuity point di; as a consequence, the basin of the origin is the first
interval: B(O) = [0, d;[ while the other points converge to the attracting
cycle: B(C) =]dy, 1J;

2. Each of the two basins consists of two or more intervals, separated by the
two discontinuity points d; and dp and their preimages. The immediate
basin of the origin is clearly the segment [0, d1[ so that the whole basin is
given by this segment and all its preimages: B(0) = U;»oT~7([0, d; [), while
the complementary region in [0,1] gives the basin of the cycle: B(C) =
[0, 1]\ B(0).

In [6], the authors provide the analytic description of the bifurcations oc-
curring in a piecewise linear map T [0,1] — [0,1] formed by three portions
with two different slopes separated by two discontinuity points 0 < d; < dy <
1. The problem is approached as the generalization of a simpler map with
only one discontinuity. They show how both the bifurcation diagram and the
analytic expression of the periodicity tongues of first degree maintain some
important aspects of the map with only one discontinuity point; also the ef-
fects, on the structure of the border collision bifurcation curves — induced
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bl
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0 54 1

Fig. 8. (a) The tongues of periodicity, in the parameter plane (64,6B), for cycles
of periods 2, ...,15 when di = 0.2 and dz = 0.7. (b) The bifurcation curves relative
to the tongues depicted in (a) obtained by the analytical expressions calculated for
the map T'

by the introduction of the second discontinuity point — are examined. An il-
lustration is provided in Fig. 8. The methods followed to obtain the analytic
expressions are quite general and can be easily generalized to cases with dif-
ferent linear functions, several discontinuities, and with slopes different from
the ones considered in the model studied in this chapter.

Furthermore, differently from the case of only one discontinuity, when con-
sidering two discontinuities, cases of multistability can be obtained, i.e., the
coexistence of a stable fixed point and a stable periodic cycle, each with its
own basin of attraction. These basins may be either connected intervals, sep-
arated by a discontinuity point, or nonconnected sets formed by the union of
several disjoint intervals, separated by a discontinuity point and its preimages
of any rank.

Finally, the discontinuous map — which can be interpreted as a model of
the social behavior of impulsive agents — can be seen as the limit case of the
continuous map, that models agents with some degree of inertia in making
their choices. It is possible to show how the bifurcation curves of the limiting
case, characterized by periodic cycles only, can be obtained from those of the
continuous model, that also exhibit chaotic behavior, with a high value of the
parameter A.

5 A general model with different switching propensity

In [8] the two models described in Sects. 2 and 3 are merged into a single one
which includes each of them as a particular case. Furthermore, this general
model allows us to describe other situations which cannot be studied by any
of the original models described above.
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For each group of size k, d i ] j
where 0701’. , define two payoff functions Ay (j) and B ()

k)

| ..,k is the number of people in the group choosi
in Gala{n’s model, at each time ¢ indiviguall)s gather if gI‘OII)JI) aorlfzjlnf&g- tﬁz
Interaction, leave the group with an updated preference which depe;lds on the
outcome of the interaction, in the sense that in each group a fraction of the
agents.with lower payoff will switch to the choice that gives higher payoff.
rI.‘hls dynamic adjustment can be formalized as follows. A? each tim;a t
COn.Sldel‘ a size k group where 0 < j, < k agents are choosing A; after thé
social gathering, as a result of the intragroup interaction, indiviéiuals may

switch opinion. : : PR
will be: pinion. That is, at time ¢ + 1, the number of individuals choosing A

jt+1 = hk (jtaéAv(SB)

Je+ 164 (k= ji)) = |k6a+ (1 - 64) je] if Ak (Gi) > B (Gy)
s | (18)
Jt if Ag (jt) = B (jt)
gt — 68jt] = [4: (1 - 68)] if A (ji) < B (4:)
wh.ere 64,08 € [0,1] represent the probability according to which agents may
;WltCh to A am.i B, fespectively, depending on to the greater payoff observed.
1.urtherlrnore, since in each group the number of agents is integer, it makes
ittle sense to cons1d.er fraction of agents who are switching choices, therefore
we havg 1ntr.oduced integer parts in the right hand side of (18) are introduced
to consider integer number of agents.
) hIn .formulatlon (18) the Integer part has been considered; this indicates the
E .av1oral mome'ntur.n of agents, that is, how difficult is for agents to switch
choices w}.len facing inferior payoffs. Behavioral momentum is a well known
Psycbologlcal construct which has been examined for example in [14]. Finally,
in this model' the syvitching mechanism has no bias in the sense of [10].5 Ir;
order to obtain a bias toward B it is sufficient to consider, for example

ks ' RVAR 3 .
o = i k64 + ( 4) Ji) if Ak (4¢) > By (jz) -
Lje (1 - 6B)] if Ak (4:) < Bk (5t) -

Symmetr.ically, it is immediate to obtain a switching function biased toward
A.. In this formulation, such a bias — which is related to how local uncer-
tainty Ak'(_]t) = By (jt) is resolved- is combined to the bias, related to the
asymmetric switching propensity 64 # 65 as described in Sec7t. 3

5
Recall that in S : .
bmend B, in Sect.2, in the case of local doubt the choice was biased
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As in [10], it is possible to obtain the dynamics of the probability of choos-
ing A:

< £ k j k—j hi (§,04,08)
Pa(t+1) :ZakZCj Pa(t) (1—Pa(t)) — (20)

k=1 5=0

where the last term is the relative number of agents choosing option A in a
group of size k.

This model assumes that individuals are impulsive in the sense described
in [5). However, it is possible to model inertia in the agents’ reaction, as in
[7], by introducing a modulating function g as described in Sect. 3.

In [8] by the unified model, different situations besides the original ones
proposed in [10] and [24] have been considered. Two of them are particularly
interesting.

The first one considers the case of a single large group. This situation is
important from the theoretical point of view as it represents the case in which
all the groups merge into one. Furthermore, it illustrates how the size of the
group and the payoffs affect the dynamics. In fact, in the case of the majority
rule [10], it takes just one iteration for the population to reach unanimity
on the majority’s opinion, and the killing point for this model coincides with
the floor (i.e., the Integer Part) of N/2; by contrast, when considering differ-
ent payoffs the dynamics may become quite interesting. In fact, recall that,
given the necessity to maintain an integer number of agent in each group,
the fraction of agents switching choices must be rounded. In [8] we consider
floor, where |z] defines the largest integer n < ; ceiling, where [z] defines
the smallest integer n > z. Finally, we consider nearest integer, where |z],
defines the integer closest to z; as usual, to avoid ambiguity we adopt the
convention according which half-integer are always rounded to even numbers.
A situation similar to the one presented in [10] is analyzed and it is possible
to observe that, considering different rounding functions, the dynamics can
have a different evolution from the one predicted by Galam’s original model.

The second example consists of payoff functions with — using Schelling’s
terminology, see [24] — both contingent internality and contingent externality.
In this case it is possible to observe that an A choice benefits those who
choose B, and a B benefits choice those who choose A. Among the vivid
real life examples provided in [24], we quote® one situation related to traffic
congestion after a blizzard: ... let A be staying home and B using the car right
after a blizzard. The radio announcer gives dire warnings and urges everybody
to stay home. Many do, and those who drive are pleasantly surprised by
how empty the roads are; if the others had known, they would surely have
driven. If they had, they would all be at the lower left extremity of the B
curve.” ([24], page 405). This kind of games has been examined in [21] as
compounded dispersion game. The dynamics in dispersion games when agent

6Recall that we use, respectively, A and B instead of R and L.
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are allowed in finite size groups can be quite interesting depending on which

rounding function is considered. In particular in [8] the payoff functions are
assumed to be

Ax(J) =3
By, (]t) = k{_j

with switching propensities 64 = 0.3 and 6 B = 0.9. Also it is assumed that
when payoff are identical, agents have a bias toward A, that is those who have’
play_ed B will switch choice with propensity 4 4. Finally, the probabilities to
be sitting at the different sizes groups are defined as follows:

a2 = 0.1, a3 = 0.1, a, = 0.8, where & is fixed as any value greater than 3

all other groups have probability 0. The dynamics of choices as k varies in the
range [4,276] have been examined; considering the different rounding func-
thIIIS the differences in the dynamics are stark, vet these differences are to
b.e interpreted not as numerical artifacts rather as the result of the different
biases implicitly modeled by the rounding functions.

6 Conclusion

In this chapter we have described some discrete-time dynamic models used to
re'present adaptive mechanisms through which individuals perform repeated
bln'ary choices in the presence of social externalities. The long-run (asymp-
totic) F)utcomes emerging from repeated short time decisions can be seen as an
emerging property, sometimes unexpected, or difficult to be forecasted. More-
over, when there are several coexisting attractors each with its own basin of
:attraction, i.e., in the presence of so called multistability, the adaptive dynam-
ics can be seen as an equilibrium-selection device. In this case the long-run
outc9me becomes path dependent, and historical accidents may play a crucial
role in the selection of the social emerging behavior. This path dependence
can al§o be seen as an evolutionary approach to the explanation of collective
behavior as the result of repeated individual and myopic choices.

Starting from two particular discrete-time dynamic models — Galam’s
moc.lel of rumors spreading [10] and a formalization of Schelling’s binary
choices [7] — we have described some peculiar properties of discrete-time (or
even't—driven) dynamic processes. In particular, from a mathematical point
.of view, the kind of global dynamic analysis of the discrete time dynamics
1llustrz.1ted in this chapter, obtained through a continuous dialogue among
_analy@c, geometric and numerical methods, is based on the properties of non-
lnv.ertlble_ one-dimensional maps, see, e.g., [20]. Moreover, in the limiting case
qf impulsive agents, the global dynamic properties of piecewise linear discon-
tllnuous maps allowed us to illustrate some results concerning border collision
bifurcations, a topic that has been recently been at the center of a flourishing
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stream of literature, see, e.g., [1-4]. In other words, the models described in
this chapter allowed us to get some insight into the two kinds of complex-
ity, related to complex attracting sets and complex structure of the basins
of attraction. Both these kinds of complexity are related to the presence of
overshooting phenomena, typical of discrete-time adaptive systems, see, e.g.,
[21]. However, overshooting should not be seen as an artificial effect or a
distortion of reality due to discrete time scale. In fact, as stressed in [25],
overshooting and over-reaction arise quite naturally in social systems, due to
emotional attitude, excess of prudence, or lack of information. The extreme
form of agents’ impulsivity, represented by the limiting case of a switching
intensity that tends to infinity, i.e., actors that decide to switch the strategy
choice even when the discrepancy between the payoffs observed in the pre-
vious period is extremely small, may even be interpreted as the automatic
change of an electrical or mechanical device that changes its state according
to a measured difference between two indexes of performance.

Finally, the general model described at the end of the chapter, constitutes
a generalization and a synthesis of two models of social interaction of Galam
and Schelling, respectively. It may be further used to analyze other situations,
such as some of those considered in [24] for a single population that can be
extended to small groups. Other aspects of this model that can be investigated
concern, for example, the role of impulsiveness in small groups, and how some
social parameters, such as agents’ impulsiveness and population size, affect the
dynamics. In particular, it would be interesting to investigate what makes a
group large and how its dynamic behavior is different from that of a small one.
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