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Starting from a seminai paper of Thomas. Scheiling (1969} we formalize a tve-
dimensio..al discrete time dynamical system to study segregatiou. The simple adaptive
rnechanism we propose may lead to the segregatioa oftwo different populations whose
members are charaeterized by a limited tolerance about the presente of individuals of
the other group. We previde a global analysis of the model, based on a computer-
assisted interplay of analytical, niunerical and geometrica) methods. This allows us to
emphasize the robe of the parameters that represent the distribution oftolcrance within
the pepulatidns and their merda in meving in or out of the system considered, as well
as the role of constraints imposed_ When several attractors are present, each with its
own basin of'attraction; the adaptive dytiamics can act as a path-dependent selection
device, i.e., the collective behavior tbet prevails in the long run depends on the starting
conditions and on the bistorical accidente occurring along the trajectories. The study
shows how simple adaptive rules, repeatediy applied over time, can be used te analyze
the evolutive paths Ieàding to the emergente of different collettive behaviors in the
long rum., i.e., the trade-off between myopic individuai behavior and the emergente of
sacial structures.
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7 3,1. Introductàon

In a celebrated seminai paper [l] (see àlsb the expanded version, [2]), Schelling proposed
two rnodels for the descriptiou ofresidential separation of a population fonned by two kinds
of inhabitaints, differing; e.gi., for ràcial or religious or cultura]. features. The separation into
exclusive districts ìs explained by Schelling in terms of individuai preferences, or tolerance
- following Schelling's terminology - on coexistence with neighbors of the opposite
kind. Schelling analyzed the, effects of local decisions on global behavior, and showed that
even if agente have mild preferences for same-tvpe neighbors, in the long run, the system
can evolve towards a complete separation, even if this is not the outcome preferred by the
individuala. In bis papers [I] and [2], Schelling.refers to blacks and vvhites that bave to
decide if they want to stay in a given city district or leave it, and denotes the phénomenon
of separation as segregation, to.stress the dramatic prablem of formation of ghettos. How-
ever, as stressed by other autb.ors (see e.g. [3]), individuals tend to categorize themselves
in severa! ways; this has consequences on severa].. situations, for example when they have
to decide on joining a given club, or entering an organization, or a political party or an

- academic group. Indeed, Schelling himseif begins his•paper with the sentente "Feople get
separated along many lines and in many ways. There is segregation by sex, age, income,
language, religion, color, toste

	

and the accidents of historical location"( [2, p. 143]).
The first model proposed by Schelling is a typical a gent-based simulation mode].. Ac-

cording to [4] it can.be considered as a migration model,_i.e., a cellular automata where
actors are not confined to a perticular celi. By contrast, the second one is formulated in
terms of a two-dimensional dynamical system, and, even if no explicit expression is given,
a qualitative graphical dynamical analysis is proposed to show that several equilibrio coex-
ist_ Moreover, no infonnation on basins of attraction is given, due to the Jack of an explicit
analytic formulation of the dynamical systean. ,

While the first model has inspired• a flou ishing-stream of literature, and many re-
searchers have developed extensions, refinements, computer and graphical implementations
of Schelling's agent-based simulation model, the second approach, based on the qualitative
theory of nonlinear dynamical systeins, has been rather neglected.

In this chapter we try to fili this gap, and propose an explicit analytic formulation of
the model described in [1] and [2]. This explicit formulation will aliow us to emphasize the
effects of the variations of the parameters that represent individuai bebavior of the members
of the two populations. Moreover, when the system has several different attractors, an
analysis of the extension and the shapes of their basins of attraction is possible. This will
allow us to give a more accurate description of the role of initial conditions on the system
evolution, and of the influence of their changes as consequences of small variations, as those
induced by particuiar laws or policies. In fast, as already stressed by Schelling; "In some
cases, smail incentives, almost imperceptible differentials, can lead to strikingly polarized
results"( [2, p. 146]). Finally, we shall study the effects of constraints on locai and global
stability analysis.

The strutture of the chapter is the following. In section 13.2 we present the formai
dynamic model and thé assumptións ati which it is based. In section 13.3 we desolale all
the possible equilibrium points and in section 13.4 we examine, through nurnerical explo-
rations, the stnicture of the basins and the kind of dynamic evolutions generated by the
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model, as well as the influente of the main parameters and constraints in the case of linear
distribution of tolerance. In section 13.5 we introduce a distribution of tolerance different
fronti the linear one, and stress the effeets of this new assumption on the dynamic behav-
iors of the mode]. Section 116 concludes the chapter and gives some directions for future
extensions of the proposed model.

13.2. The Moda

Following [2], we assume that individuala ere partitioned in turo classes Ci and C2 (say
"color 1" and "color 2") of respective numerosity Nl and N2, and postulate that the indi-
viduals of each group care about the color of the people in the district they rive in or -
according to the different interpretations attached to the modeled system - in the associa-
don they belong te, orpolitical party and so óii_.

Any individua) of color i, i = 1, 2, can observe the ratio of the two types at any moment,
and can decide to move in (out) depending on its (dis)satisfaction with the observed pro-
portion of opposite color agents to its own color. As in [2], this can be expressed through
the definition of a distribution of :Tolerance, Ri -= R i (xi) for each population i. This distri-
bution represents a cumulative density function giving the maximum rafia Ri of individuals
of population Cj to individuala of population Ci which is tolerated by a fraction x i/Ni of
population Ci. As suggested by Schelling (see [1] and [2]), the simplest assumption is a
linear cumulative distribution (see Figure 13.1a): .

R,=tir
1_ xt \

j}
. mai!

where ti is a parameter giving the maximum ratio of tolerance of individuala of color C.

B

Figure 13.1. (a) L.inear distribution of tolerance, 0 < xi < Ni individuai of colar C, can
tolerate at most a ratio Ri = xf/xi of individuals of different colar C1, where nobody can
tolerate a ratio a, or more of different individuala. All can tolerate O different individuala.
(b) The two functìons xiRi (xi), i = 1, 2 considered in [2].

(13.1)i=1,2,
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Foliowing the qualitative àmaments of Schelling (see [I] , and [2]), ietxi (t) be the num-
ber of individuals of color C present in the system at time period t = 0,1;2.... They can
tolerate at most xi (t)R, (x, (t)) individuals i of color Cf, j s i. If this number is larger Urano
the current nnmber xf(t) of individuals of color CI in the system, then we assume that, at
time t, some individuals of color•C will enter the system, and consequentlyx i will increase
in the next time period t+ I; vice versa, if the opposite inequality holds, i.e. xj(t) is greater
than x, (t) R,1(xi.(t)), then some individuala of color C will leave the system, and xi will de-
creasse (see the arrows in Figure 13.lb, reproduced frana [2]). In order to obtain an explicit
dynamic model, we assume that this differente timer yi (the speed ofadustment), gives the
relative variation of class C individuals. Formally:

x; (t+ 1) -xi (t)

x, (t)

	

1i[xi(t)Ri(xi(t))-(t)]

where we adopt a discrete time scale in order to allow a comparison with the agent based
simulation model proposed by [2]. Notice that iow values iaf the speed of reaction yi dente
inertia, or patience, whereas high values represent strong reactivity and fast decisions.

Of course, we also have to consider the natural constraints 0 < xi (t) < Ni for each t > 0.
However, in some situations, it may be interesting to introduce even stronger restrictions
on the upper limits for the number of individuals of a given cólor that are allowed to enter
the system: say 0 < xi (t) < KK ,.with K1 < Ni,. as possible exogeuous controls imposed by an
authority in order tao rea late the system. Putting together all these assumptions we obtain
the following piecewise differentiable dynamical system

if F1 (x 1 (t),x2(t)) < 0
if Fi (x] (t), x2 (t)) > Ki .
otherwise

D
x2(r +1) = Kl

F2 (xl ( t), x2(t))

where
F1 (xi (t), x2(t)) `x] (t) [l+ yl (xl (t)R I (xl (t)) -x2 (t))1

F2 (xl (t),x2( t)) =x2 (t) [i +72 (X2 (t) R2(x2 (t)) -xi ( t))]
T be presente of the constraints gives rise to a piecewise differentiable dynamical system,
i.e., the phase space of the dynamical system can be divided itito disjoint regions where the
dynamical system, is smooth, whereas it is not differentiable along the boundaries that sep-
arate these regions. In the presence,of piecewise smooth dynamical systems the adjustment
process may reveal the occurrence of so-called border-collision b rcations, which are re-
lated to the crossing of invatiant sets through the borders of non differentiability. These
bifurcations may cause sudden stability switches and/or the appearance/disappearance of
periodic cycles or chaotic attraetors (see [5, 6]). Moreover, (13.3) is a noninvertible (or

IIf IZ, is the maximum toierated ratto of C to Cr individuals, then x,R, represents the absolute number of C1
inditi iduals tolerated by C; ones.
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many-to-one) map, that is, if we solve the system (13.3) with respect to the variables xl (t)
and x2 (t) in terms of xi (t -I- I) and x2 (t 1) we obtain several solutions, Le. distinct points
of the piane exist that are mapped by (13.3) irto the some point. Mais property may have
i -̂nportant consequences on the .global dynamic behaviour of the model, see, e.g., [7, 8]. In
tlxis chapter we will not deal with such advanced global dynamic properties of (13.3), how-
ever the reader should be aware that these features are underlying many of the numerical
results that vvill be illustrated in the following.

13.3. Eq librium Points

The equilibrium points of the model (13.3), expressed by the steady state conditions
xi(t + 1) =xi (t), i = 1, 2, include the trìvial equilibriuni Eo == (0,0), the "segrégation7 (or
"ghetto's") equilibria El = (Ki , 0) and E2 (0,1(2 ), and some "coexistence "equilibria
E = (xj,x2) where x2 > 0, i = 1, 2, which Ore either the solutions (if any) of

x2 = x1Ri. (xt )
-a = xzR2 (x2)
x7 <Ki ;x2 <K2

or xi = K1 and x2 solution" (if any) of x4Ra (x2) = Kt, or x2 = K2 and xl solution (if any)
of xiR 1 (x7) = K2, or, finaily, xa = Kl and x2 = K2 provided that K2R2 (K2 ) > .K). and
K1 Ri (K] ) >K2•

Some situations, obtained with two linear tolerance functions (13.1) are illustrated in
Figure 13.2.

Figure 13.2. Coexisting equilibria (black circies) assuming linear tolerance distributions
and different values of the parameters 'r1 , i = 1, 2, and constraints Ki, i = 1, 2. (a) Kl = Ni,
K2 = NT, and curves x1Ri (xs), i = 1, 2, intersecting in three points; (h) Kt < Ni and K2 = N2;
(c) K1 < K2R2 (K2 ) and K2 < K1 R 1 (K1 )•

Given the existence of so many equilibrium points, the first question to be investigated
is their stability and, when several stable equilibrium points are present, the delimitation of
their basins of attraction. A deeper analytic study of existence and stability of the equilibrio
is out of the goals of the present chapter, and will be given elsewhere. In the next sec ions, in

(13.2)

' x t(t -i-l) =	Kl

Fi(xI(t), x2(t))

if F2 (xi(t),x2(t)) < O
if F2 (xl (t),x2(t)) > K2
otherwise

(13.3)

(13.4)
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order to investigate these questiona, as we11 as the influente of the parameters of the model,
we present the results of some numerical explorations obtained with different combinations
of parameters.

13.4. GlobaI Dynamies and Basins of Attraction: Ni merica1 Ex-

plorations

To start our numerical explorations, we consider the model (13.3) with linear tolerance
distributions (13.1) and two populations of the stime site that, without lesa of generai-
ity, we consider normalized to N1 = N2 = I. We do not consider further lintitations (ile.
Ki = K2 = I) and set the maximum tolerances to di = 3 and 'C2 = 3.5 and the speeds of
reaction to yi = 0.5 and y2 = 0.3 for population of color C1 and C2 respectively. A sim-
ple numerical computation of the eigenvaiues of the Jacobian matrix of the model (13.3)
at the equihibrium points shows that the trivial equilibrium Ep is a non-hyperbolic unsta-
ble equilibrium, whereàs the two "segregation" equilibrio EI = (1, 0), characterized by ali
color C1 individuals, and E2 = (0,1), characterized by ali color C2 individuals, are stable.
The unique "coexistence" equilibrium E3, is located at the positive intersection of the two
parabolas x1 = 12x2 (1-x2/N2) and x2 = r 1xi (I -xl /N1), and is a saddle point. Its stable
set constitates file boundary that separates the two basins ef attractoon (Ei ) and (E2 )

represented in Figure 13.3a by the light grey and darle grey regions respectively_ It is worth
to notice that the basin of E2 is more extended. This is related to the fact that 'c2 >

since the lesa tolerarit population has a liigher attitude te leave the system thus giving an
easier patti towàrds a "ghetto" completely occupied by the other one_ Notice also that, in
the situation illustrateci in Figure 13.3a, the lesa toierant population Ci also has a higher
speed of reaction, being yi > y2i this emphasizes evén more the segregation plienomenon.
However, by increasing the tolerance of populàtibn CI from = 3 to'r 1 = 3.8, due to the
contact and crossing of the two parabolas, a saddle-node bifurcation occurs, and both a sta-
ble node E5 and a saddle point E4 are created (Figure 13.3b)_ The boundary of the basin of
the stable "coexistence" equilibrium E5, represented by the white region in Figure 13.3b,
is now delimitated by the stable sets of two saddles - the already existing one E3 and the
newbona E4. The condition of tangency between the two parabolas; as well as the exact
coordinates of the equilibrio located at their intersectians, can. be analyticaliy computed by
the Cardano's formulati for à third degree algebraic equation_ Their expressions are quite
cumbersome and not useful far our purposes; therefore they will be omitted. What is inter-
esting for our analysis is the fact that by decreasing the differente between the parameters
of tolerance of the two populations a stable equilibrium is created. There, the coexistence
(or integration) of the two populations is possible, provided that the initial condition is taken
inside the basin (E5 ), i.e.. -i,f the system starts with a sufficiently bàlanced initial mixture
of the two populations. By contrast, starting from an initially unbalanced situation, i.e. a
marked prevalente of one of the two populations so that the initial condition belongs to
one of the two grey regions, the evolution is different. In this case, the endogenous long
run evolution of the system will enhance the initial differente and finaily move towards a
completely segregatèd situation; we can observe convergente to a segregation equilibrium,
either E1 or E2, according to the initial bias. y

Figure 13.3. Equilibria , and basins of attraction: the light grey regions represent the basin
of E1, the darle grey regions represent the basir ofE2 , the white region répresents the basin
of the coexistence equ4librium E5; for the following seta '.of parameters: (a) NI = N2 = 1,

YI = 0.5, y2,= 0.3, t1 =.3, Z2 = 3.5, K1 = 1, K2 =_1; (b) Some values as in (a) except
ti = 3.8.

In the dynamic sìtuations described above, the eigenvalues of the Jacobian matrix com-
puted in the equilibrium points are reni and positive, and only monotonie motions are ob-
served. However, sitiiations of oscillatory convergente towards to the coexistence equi-
librium E5 can be .easily observed by increasing the speéds of reaction yI and/or y2. In
fact, high reactivity may imply overshooting effects, which are quite common in the pres-
ente of emotional human decisions. As stressed by [9, eh. 3; p. 86) "The phenomenon of
overshooting is a familiar one at the level of individuai" and consequently "Numerous so-
cial phenomena display cyclical, beiavior". The coexistence equilibrium E5 may even be
destabilized via a fiip (or .period doubling) bifurcation 2is the speeds of reaction increase.
This is "illustrated in Figure 13.4a;. with parameters tii = 3.3, z2 = 3.5 and high speeds of
reaction yi = y2 = li; there E5 has become a saddle point alter a fiip bifurcation at which
a stable periodic cycle of period two -represented by the periodic points pi and p2 in

'Figure 13.4a - is createci. In this case, coexistence can be obtained, evén if the coexistence
equIlibrium is unstable, bèing characterized by osciilations in the number of the individuals
of the two integrated populations. If either speed of reaction increases further, the first fiip
bifurcation is followed by other ones, and the usual period-doubling cascade leads to the
creation of chaotic attractors areurid E5. Another remarkable global dynamic property that
can be seen in Figure 13..4a is the existence Qf non connected portions of the basins (E 1 )
and (E2 ) located in the portion of the phase piane where both the populations are almost
entirely included . in the.system considered. From the point of v^iew of the mathematical
properties of discrete dynamic. al systems, this occurrence can only be observed when the
dynamic inodel is obtained by the iteration of a noninvertible. (or many-to-ohe) map (see,
e.g., [7,8j). Indeed, the points of the non connected portion of B (E 1 ) ore mapped into
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the bigger portion of the basir around Ej (also called immediate basin of E') in one step,
due to the folding properties of a noninvertible map. In other words, the póints of the non
connected pertica are rank-1 preimages of points Iocated inside the immediate basir. In
tenns of the adaptive behavior considered in the mode], this property represents an extreme
forra of overshooting, as it is due to an aver-reaction of many members of a population
due to the excessive presence of the other population. This massive migratiori ' of members
of populatiòn C2 out of the system leads to the final dominante of the population Ci even
if the starting situation was characterized by a slight prevalente of C2. This is due to àn
excessive reactivity of the C2 individuals to the strong presente of Ci individuals, even if
the C2 population initiaily represents the majority. Similar argomenta explain the presence
of the non connected portion of (E2 ) in the upper right portion of the state space.

Figure 13.4. Equilibria and basins of attraction for the following sets of parameters: (a)
Ni N2-=1 ,71 = y2=1 .2, Ti-=3.3,'e2 .= 3.5,Kt =1, K2 = 1; (b) Some values as in (a)
except tt = 4 and T2 = 3. The meaning of thé colora is the some as , in Figure 13.3.

If the differente between. the tolerancea of the two populations is slightly increased,
any possibility of stable coexistence, both stationary, and.oscillatory, is ruled out, as shown
in Figure 13.4b. This is obtained with the seme parameters as Figure I3.4a, but the two
parameters of tolerance are noW fixed at zt = 4 and T2 = 3; 'in this case all the attractors
interior to the state space disappear, and only the two segregation equilibria Et and E2 are
stable. Furthermore, the basin of El is much more extended because of the higher tolerance
that characterizes the population of color Ct _ However, due to the high value of speeds of
reaction, a nonconnected portion of (E2) persista in the upper-right portion of the phase
space, because of the excessive reactivity of CI population with respect to the presence of
C2 individuala, even if Cy population represents the majority inside the system.

We now consider what happens if one population is more numerous, >

	

color
Ci represents a "minority" population. For example, the situation shown in Figure 13.5a is
obtained with Ni = 1 and N2 = 0.5, identica] reactivity (yl = y2 = 1) and tolerance

	

=
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T2 = 3) for both population_ If there are no further restrictions (i.e. K, = i = 1,2) then
ozùy the segregation equilibria are statile, with a much stronger probability of convergente
to the equilibrium E1, being the basin (Eri ) more extended than (E2). The possibility
of stable coexistence is obtained by increasing the tolerance of the minority population, as
in Figure 13.5b where Tt = 2 and ti2 = 8. In this case, a stable coexistence equilibrium
exists, with a quite extended basin of attraction. This can be stated by saying that a stable
coexistence between a majority and a minority can be obtained only if the minority is more
tolerant.

Figure 13.5. Equilibria and basins of attraction for the following seta of parameters: (a)
=I , N2 =0.5,71 = Yr = 1,tit = t2=3,Kl =1,K2 =0.5;(le)Samevalues as in (a)

except t^ = 2 and T2 = 8. The meaning of the colors is the stime as inthe previous pictures.

Let us finally consider the effects of introdueing constraints on the maximum number
of individuala ' of one or both the populations allowed te enter the system, i.e. Kt <M
an,d/or K2 <M . As stressed ìn the previous section, this inay be considered as a ldnd of
exogenous contro]. in order to force the system to converge to a programmed equilibrium.
The effect of such a kind of control is here investigated by a nunrerical exploration starting
from a given combination ofparameters without any imposed constraints, for example Nl =
N2 = I, yl = Y2 1, Tl = 4, T2 = 2, Kl = K2 = l .as in Figure 13.6a, and then gradually
réducing Kt respectively to Ki = 0.6 (Figure 13.6b), Kf = 0.4 (Figure 13.6c), and Ki = 0.2
(Figure 13.6d). It can be noticed that as K1 decreases, stable coexistence is possible only at
intermediate levels (see Figure 13.6c). By contrast, for high values of Ki only segregation
is possible -- with the segregation equilibrium El prevailing (figures 13.6a,b)_ Finally,
at low levels of Kl only se gregation can be obtained with equilibrium. E2 that dominates.
This confirms that art exogenously ieguIated maximum number of allowed entrance can
be a useful way to control the system. The introduction of censtraints is also interesting
frana a mathematical point of view, because the bifurcations at which equilibrium points
are created or destroyed are not standard bifurcations of differentiable dynamical systems,

3
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but can be characterized as border collision bifurcations, i.e. bifurcations reiated to the
contacts between attractors and curves where the dynamical system is not differentiable,
see, e.g., [5, 6].

Figure 13.6. Effects of constraints_ Equilibria and basins of attraction for the following sets
of parameters: (a) N1 = N2 = 1, 71 = T2 = 1, rr = 4, ti2 = 2, K1 = K2 = 1; (b) Same values
as in (a) except K1 = 0.6; (c) Seme values as in. (a) except Kl = 0.4; (d) Seme values as in
(a) except Kl = 0.2. The meaning af the colors is the saure as in the previous pictures.

13.5. An Alternative Toleranee Distribution

In this section we introduce a different distribution of tolerance for population C2, given by

ti2 (N2 -x2)
R2(x2) _	

X2

and characterized by the property that a positive fraction of the population C2 that toler-
ates any ratio of different colored individuals always exists (see Figure 13.7a)_ The cene-
spanding funetion x2R2 (x2 ) =ti2 (N2 -x2) is a straight Erte, as represented in Figure 13.7b

together with the fonetica x 1R 1 (xl ) associated with linear distribution of tolerance (13.1).
The fast that the function x1 = x2R2(x2) does not vanish for x2 = 0, Le. has a positive in
tercept, is different from the Schelling originai assumption (13.1) which irnplies that both
curves cross at the point (0; 0). This new assumption is supported by empirical data, as
shown by [10], for black populations living in American cities (Figure 13.7c). We now
wonder what are the effects induced by the introduction of one distribution of tolerance of
the forni (13.5) in the model (13.3).

Figure 13.7. (a) The hyperbolic distributimi of tolerance for population of color C2; (b) the
functions x 1R 1 (X 1 ) assumiti linear tolerance distribution for C1 and x2R2 (x2) assuming the
hyperbolic distribution for C2; (e) empirical curves x=RI (x) taken from [10].

In this case at most two coexistence equilibria can be obtained; they can be easily
computed as the intersections between the straight line xl = T2 (N2 -x2 ) and the parabola
x2 = z 1x1 (1 -xi /_N1 ) (see Figure 13.7b). This gives rise to new dynamic situations that
alow us to get interesting real fife interpretations. Indeed, starting from the dynamic situ-
ation shown in Figure 13.8a, obtained with distributions of tolerance Rl iri the forni (13.1)
and R2 in the fonti (13.5) respectively and parameters N1 = 1, N2 = 0.8, yt = 0.4, y2 = 0.5,

= 2, T2 = 1, Ki = 1, K2 = 0.8, the usual bi-stability situation, with the two segregation
equilibrio. E1 and E2, is obtained. However, as the two tolerance parameters increase, a new
situation is obtained. This is ìllustrated in Figure 13.8b where zl _ 3, ti2 = 2 and the other
parameters are the sartie as in Figure I3.8a. Here a new positive coexistence equilibrium
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exists and is stable; it is created via a transcritical (or "stability exchange") bifurcation at
the merging with the segregation equilibrium El that, as a consequence, becomes unstable.
This is different from file previous cases: here, only the segregation equilibrium E2 is stable,
whereas the other one, El, is unstable. This means that in such a situation the population of
color C2 will never disappear: it may either become the only one (if the system converges
to E2) or coexist with population of color Cz (if the system converges to E4) but it cannot
disappear. This is possible since, due to assumption (13.5), some individuals of C2 popu-

lation can tolerate any ratio xr/x2, hence they never leave the system. Conseqnently, the
equilibrium witit x2 = 0 is not stable, Le. it cannot prevail in the long rum

Figure 13.8. Equilibrio and basins of attraction for the following sete of parameters: (a)
=1,N2 =0.8,yt =0.4,y2 =0.5,ti i =2,x2 = 1, K2 =1,K2 =0.8; (h) Some values as

in (a) except 'r : 3 and T2 = 2. The meaning of the colore is the same as in the preaious
pictures_

13.6. Conclusitn

We have proposed a simple two-dimensiona) discrete-time dynamical systenî to mode) the
long run outcomes emerging from repeated individuai choices to enter or not a given system
(a city district, or an association, or a political party), taken by agents belonging to two
different populations, according to their tolerance about the presence of agents of the other
population.

The explicit dynamic model we bave proposed, even if it is based on a simple adaptive
mechanism, allowed us to get some useful informatìon about the effects of some parameters
that characterize the two populations, such as their maximum tolerance or their reactivity (or
their inertia) in taking decisions as a consequence of the observedproportions of individuala
belonging to different populations.

Adaptive dynamic models constitute uscisti equilibrinm seleetion devices when several
equilibrio (or other lind of invariant sets) are present. lndeed, the explicit adaptive dy-
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namic adjustment, we have proposed in this chapter, allowed us to investigate some global
dynamical properties, in particular the strutture of the basins of attraction when severa
attractors coexist, thus giving indications on the long-run outcome of path-dependent evo-
lutions tbrou gh which different emerging collettive behaviors can emerge from repeated (or
step by step) myopic individuai decisione.

By properly tuning the values of the parameters, we observed two different kinds of
results. Some were both intuitive and expected; others, more interestingly, were somehow
counterintuitive. Both kinds of results are important: the former confini: the proper setup
of the model; the latter illustrate the overshooting effects due to impulsive (or emotional)
behavior of the agents. The presence of overshooting should not be seen as an artificio]
effect or a distortion of reality due to discrete time scale we bave considered. Instead, as
stressed in [9], overshooting and over-reaction arise quite naturaily in socia) systems, due
to emotional attitude, impulsivity or loda of infomiation.

such phenomena are mathematically expressed in terms of oscillatory behavior, and
extreme forms are also related with the peculiar properties of noninvertible iterated maps,
whose. geometric action consiste in folding and pleating the state space, so that distinct
points are mapped iato the same point. This folding action is also caused by the presence
of imposed constraints, see, e.g., [1l].

The approach followed in this chapter is mainly numericaì, based on computer assisted
explorations of dynamic .scenarios obtained by using different combination of parameters,
properly chosen in order to illustrate the main dynamic features of the mode) and their real
fife interpretations. However, the discrete dynamical system proposed, being represented
by a two-dimensionai piecewise differentiable and noninvertible iterated map, with several
equilibrio as well as more complicateti attractors, is worth to be investigated more deeply
by geometrie and analytic methods. Because of the analytic difficulties, as the map is
represented by a high degree polynomial and is piecewise-differentiable, due to the presence
of constraints, such a study goes far beyond the goals of the present chapter, and will be
approached in a future work.
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