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Chapter 13

AN ADAPTIVE DYNAMIC MODEL
OF SEGREGATION
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Starting from a seminal paper of Thomas. Schelling {1969} we formalize a two-
dimensioaal discrete time dynarnical system fo study segregation. The simple adaptive
‘mechanism we propose mzy lead to the segregation oftwo different populations Whaose
. ‘members are characterized by a limited tolerance about the presence of individuals of
the other group. We provide a global analysm of the model, based on a computer-
assisted interplay of aralytical, nimmerical and geometrical methods. This allows us to
emphasize the role of the parameters that represent the distribution. of tolerance within
"the populatiéns and their inertia in moving in ‘or out of the system considered, as well
as the role of constrainits imposed. When several attractors are present, each with its -
own basin of attraction; the adaptive dyramics can ‘act as a path-dependent selection
device, i.e., the collective ‘behavior that prevails in the long run depends on the starting
conditions and on the historical accidents occirring along the trajectories. The study
shows how simple adaptive rules, repeatedly applied over time, can be used fo analyze
the evolutive paths ledding to the emergence of different collective behaviors in the
long ruz, i.e., the trade-off between myopic mdmdual behavior and the emergence of
social structures.
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13.1. Iniroduction

In a celebrated seminal paper [1} (see also the expanded version, [2]), Schelling proposed
two models for the description of residential separation of a population formed by two kinds
of inhabitants, differing, e.g., for racial or religious or cultural featuzes. The Separafion into
exclusive districts is explained by Schelling in terms of individual preferences, or tolerance
— following Schelling’s terminology — on coexistence with neighbors of the opposite
kind. Scheiling analyzed the effects of local decisions on global behavior, and showed that
even if agents have mild preferences for same-tipe neighbors, in the long run, the system
can evolve towards a complete separation, even if this is not the outcome preferred by the
tndividuals. In his papers [1} and [2}, Schelling.refers to blacks and whites that have to

decide if they want to stay in a given city district or leave it, and denotes the phénomenon -

of separation as segregation, to stress the dramatic prablem of formation of ghettos. How-
ever, as stressed by other authors (see e.g. [3]), individuals tend to categorize themselves
in several ways; this has consequences on several situations, for example when they have

"to decide on joiuing a given club, or entering an organizatior, or a political party or an -

-academic group. Indeed, Scheﬂmcr himself begins his-paper with the sentence “People get
separated along many lines and in' many ways. There is segregation by sex, age, income,
" langnage, religion, color, taste ... and the accidents of historical location”( 12, p. 143]).

The first model proposed by Schelling is a typical agent-based simulation model. Ac-
cording to [4] it can.be considered as a migration model,.ie., a cellular antomata where
actors are not confined to & particular cell. By contrast, the second one is formulated in
terms of a two-dimensional dynamical system, and, even if no explicit expression is given,
a qualitative graphical dynamical analysis is proposed to show that several equilibria coex-
ist. Moreover, no information on basins of attraction is gjven due to the lack of an explicit
anglytic formulation of the dynamical system.

While the fitst mode! has inspired-a flourishing-stream of literature, and many Te-
searchers have developed extensions, refinements, computer and graphical implementations
of Schelling’s agent-based simulation model, the second approach, based on the qualitative
theory of nonlinear dynamical systems, has been rather neglected. .

In this chapter we try to fill this gap, and propose an explicit analytic formulation of
the model described in [1] and [2]. This explicit formulation will aliow us to emphasize the
effects of the variations of the parameters that represent individual behavior of the members
of the two populations. Moreover, when the system has several different attractors, an
analysis of the extension and the shapes of their basins of attraction is possible. This will
allow us to give a more accurate description of the role of initial conditions on the system

evolution, and of the influence of their changes as consequences of small variations, as those

induced by particular laws or palicies. In fact, as already stressed oy Schelling; “In some
cases, small incentives, almost imperceptible differentials, can lead to strikingly polarized
results™( [2, p. 146]). Finally, we shall study the effects of constraints on Iocal and global
stability analysis. .

The structure of the chapter is the following. In section 13.2 we present the formal
dynamic model and thé assurnptions or which it is based. In section 13.3 we describe all
the possible equilibrium points and in section 13.4 we examine, through numerical explo-
rations, the stricture of the basins and the kind of dynamic evolutions generated by the
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medel, as well as the influence of the main paramsters and constraints in the case of linear
distribution of tolerance. In.section 13.5 we introduce a distribution of tolerance different
from the linear one, and siress the effecis of this new assumption on the dynamic behav-
iors of the model. Section 13.6 concludes the chapter and gives some directions for future
extensions of the proposed model.

13.2. The Model

Foliowing [2], we assume that individuals are partitioned in two classes C; and & (say
“color 17 and “color 27) of respective numerosity ¥, and Ns, and postulate that the indi-
viduals of each group care about the color of the people in the district they live in or —
according to the different interpretations attached to the modeled systern — in the associa-
tion they belong to, or political party and so o1..

Any individual of color i, i = 1,2, can observe the ratio of the two types at any moment,
and can decide to move in (out) depending cn its (dis)satisfaction with the observed pro-
porticn of opposite color agents to its owr color. As in [2], this can be expressed through
the definition of a distribution of Tolerance, R; = Ry(x;) for each population 7. This distci-
bution represents a cumulative density function giving the maximum ratio R; of individuals
of population C; to individuals of population C; which is tolerated by a fraction x;/N; of
population C;. -As suggested by Schelling (see [1] and [2]), the simplest assumption is a
linear curnulative distribution (see Figure 13.1a): .

K x
= (1-2
R 1’( .M>-

where 1; is a parameter giving the maximum ratio of tolerance of individusls of color ;.

i=1,2, (13.1)
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Figure 13.1. (2) Linear distribution of tolerance, 0 < x; < &; individual of color C; can
tolerate at most 2 ratio R; = x;/x; of individuals of different coler C;, where noboedy can _
tolerate a ratio T; or more of different individuals. All can tolerate O different individuals.
(b) The two functions x;R;(x;), i = 1,2 considered in [2].
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Following the cjualitative argun:lents of Schelling (see [1] and 2D, letx; (¢) be the num-
ber of individuals of color C; present in the system at ume period r = 0,1,2.... They can

tolerate at most x; (£) R, (x; (¢)) individuals' of color C;, 7 52 7. If this number is laxger than .

the current number x;(r) of individuals of color C; in the system, then we assume that, at
time £, some individuals of-color-C; will enter the system, and conséquently x; will increase

in the next time period 7 + 1; vice versa, if the opposite inequality holds, i.e. x;(¢) is greater ‘
than x; (2) R; {x;(£)), then some individuals of color C; will leave the system, and x; will de- -

crease (see the arrows in Figure 13.1b, reproduced from [2]). In order to obtain an explicit
dynamic model, we assumne that this difference times Y: (the speed of adjusrment), gives the
relative variation of class C; individuals. Formally:

. xi{t+1)—x (2)
) ) x,-(t)

where we adopt 2 discrete time scale in order to allow a comparison with the agent based
simufatior model proposed by [2]. Notice that low values of the speed of reaction V; denote
inertia, or patience, whereas high values represent strong reactivity and fast decisions.

Of course, we also have to consider the natural constraints 0 < x;{t) < N;foreachz > 0.
However, in some situations, it may be interesting to introduce even stronger restrictions
on the upper limits for the number of individuals of a given color that are allowed to enter
the system: say 0 <;{t) < K, with K; < N, as possible exogenous controls imposed by an

=% R (=) -5 @], (13.2)

~authority in order to regulate the system. Putting together all these assumptions we obtain

the following piecewise differentiable dynamical system

. 0 i R (a().xn{) <0
Cafrl=9 K it R (n (0),%0) > K
‘ B (x1(2),%2(¢)) otherwise

(13.3)
0 i Be)n@)<0
xg(t-i-l): K : if Fi(xl{t) xz(Z)_) >K2
F (1 (8),x2(2)) othermse
where : ‘ '
Fi(x (), x2() =x 0 [1+7 (X1 () Ry 1 (£) —x2 (#))]
o = . . - . - = . o (13‘4)

B (n{),ma(6) =x () 1+ (%2 () Ralea (1)) — 50 (£))]
The presence of the constraints gives rise to a piecewise differentiable dynamical system,
Le., the phase space of the dynamica] system can be divided isto d1SJomt regions where the
dynammal systemn is smooth, whereas it is not differentiable along the beundaries that sep-
arate these regions. In the presence;of piecewise smooth dy:uam.lcal systems the adjustment
process may rsveal the cecurrence of so-called border-collision bifurcations, which are re-
lated to the crossing of invariant sets through the borders of non differentiability. These
bifurcations may cause sudden stability switches and/or the appearance/disappearance of
periodic cycles or chaotic attractors {(see [5,6]). Moreover, (13 Nisa nonm&emble {or

UIf Ry is the maxinmum tolerated ratic of Cj to €y individuals, then x;R; represents the abselute number of Cy
mdmduals tolerated by C; ones. . .
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many-to-one) map, that is, if we solve the system (13.3) with respect to the varizbles x; {¢)
and x3(#) in terms of x; (¢ + 1} and x2(r +1) we obtain several solutions, i.e. distinct points
of the plane exist that are mapped by (13.3) into the same point. This property may have '
important consequences on the global dynamic behavicur of the model, see, e.g., [7,8]. In
this chapter we will not deal with such advanced global dynamic properties of (13.3), how-
ever'the reader should be aware that these features are underlying many of the numerical
resulis that will be ithustrated in the following.:

13.3. Equilibrium Points

The equilibrium points of the model (13.3), expressed by the steady- state conditions
x;(t+1) =x;(f). i = 1,2, include the trivial equilibrium Ey = {0,0), the “segrégation”; {or

“ghetto’s™) equilibria E; = (X7,0) and Ey = (0,K3), and some “coexistence “equilibria
E = (x},x5) where x} > 0, i = 1,2, which are either the solutions (if any) of

5 =R (2]

* 3 L
X, =xR(x3)
xi‘ < K3 ;xa‘ < K5

or x{ = K1 and x3 sohution’ (if any) of 3Rz (x3) = Kq, or x5 = K7 and x} solutjon (if any)
of x7Ri(x]) = Kz, or, finally, x; = K; and xj = K, provided that K3Ry(Kz) > K and
KR (K]) > Kz
Some situations, obtamed with two linear tolerance functions (13 1) are illustrated in
Figure 13.2.

N

Figure 13.2. Coexisting equilibria (black circles) assuming linear tolerance distributions
and different values of the parameters 1;, i = 1,2, and constraints K;, i = 1,2. {a) K} = N},
Ky = N; and curves x;R;(x;), i=1,2, mtersecung in three points; (b) K} < N7 and X3 = Ny,
(c) K1 < KaR» (%) and K < K1R {K). ‘

Given the existence of so many equilibrium points, the first question to be investigated
is their stability and, when several stable equilibrium points are present, the delimitation of
their basins of attraction. A. deeper analytic study of existence and stability of the equilibria
is out of the goals of the present chapter, and will be given elsewhere. In the next sections, in
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order to investigate these questions, as well as the influence of the parameters of the model,
we present the results of some numerical explorations obtained with dlﬁerent combinations
of parameters.

13.4. Global Dynamics &‘ﬁd Basins of Attraction: Numerical Ex-
plorations

To start our numerical explorations, we consider the model (13.3) with linear tolerance
distributions (13.1) and twe populations of the same size that, without loss of general-
ity, we consider normalized to Ny = N> = 1. 'We do not consider further limitations (i.e.
K; = K3 = 1) and set the maximum tolerances to T) = 3 and T2 = 3.5 and the speeds of
reaction to 1, = 0.5 and y» = 0.3 for population of color €; and G, respectively. A sim-
ple numerical computation of the eigenvalues of the Jacobian matrix of the model (13.3)
at the equilibrium points shows that the trivial equilibrium Ey is a non-hyperbolic umsta-
ble equilibrium, whereas the two “segregation” equilibria E; = (1,0), characterized by all
color €y individuals, and E, = (0,1), characterized by all color o individuals, are stable.
The unique “coexistence” equilibrium Ej3, is located at the positive interséction of the two
parabolas x; = Tax; (1 —x/Nz) and x; = T1x; {1 —x;/N), and is 2 saddle point. Its stable
set constitutes the boundary thaf separates the two basins of attraction 3 (E)) and 3(E;)
represented in Figure 13.32 by the light grey and dark grey regions respectively. It is worth
to notice that the basin of £, is more extended. This is related to the fact that 5 > 7;:
since the less toleranit population has a higher attitude to leave the system thus giving an
casier path towards a “ghetto” completely occupied by the other one. Notice also that, in
the situation illustrated in Iigure 13.32, the less tolerant population Cj also has a higher
speed of reaction, being v, > v, this emphasizes éven more the segregation phenomenon.
However, by increasing the telerance of population C; from 71 = 310 1; = 3.8, due to the
contact and crossing of the two parabolas, a saddle-node bifurcation occurs, and both a sta-
ble node Es and a saddle point E4 are created (Figure 13.3b). The boundary of the basin of

the stable “coexistence” equilibrium Es, represented b} the white region in Figure 13.3b, -

is now delimitated by the stable sets of two saddles — the already existing one Ej; and the
newbors £4. The condition of tangency between the two parabolas; as well as the exact

coordinates of the equilibria located at their intersections, can be analy‘aca.lly computed by

the Cardano’s formulas for a third degree algebraic equation. Their expressions are quite

" cumnbersome and not usefut for our purposes; therefore they will be omitted. What {s inter-

esting for our analysis is thé fact that by decreasing the difference between the parameters
of telerance of the two populations a stable equilibrium is created. There, the coexistence
(or integration) of the two populations is possible, provided that the initial condition is taken
inside the basin ®(E;5), i.e. if the system starts with a sufficiently balanced initial mixture
of the two populations. By conirast, starting from an initially unbalanced situation, i.e. 2
marked prevalence of one of the two populations so that the initial condition belongs to
one of the two grey regions, the evolution is diffsrent. In this case, the endogenous long

. tun evolution of the systern will enhance the initial difference and finally move towards &

completely segregated situation; we can observe convergence to a segregation equilibrium,

. either E7 or E,, according to the initial bias.
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Figure 133, Equﬂlbna and basins of attraction: the Light grey regions represeut the basin
of E,, the dark grey regions represent the basin of 5, the white region répresents the basin
of the coexistence equilibrium Es; for the following sets ‘of parameters: (a) Ny =Ny =1,
1 = 0.5, "{7—03 11 =3, 12 =3.5, 1{1—1 Kz—l (b) Same vahuies as in (a) except
T = 3. 8

In the dynamic situations described zbove, the eigenvalues of the Jacobian matrix com-
puted in the equilibrium points are real and positive, and only monotonic motions are ob-
served. However, situations of oscillatory convergence towaids to the coexistence eqm—
librium Es can be easily observed by increasing the speéds of reactions 7y and/or ¥a.
fact, high reactivity may imply overshooting effects, which are quiie common in the pres-
erce of emotional human decisions. As stressed by [9, ch. 3, p. 86] “The phenomenon of

overshooting is a familiar ofe af the level of individual™ and consequently “Numergus so-
cizl phenomena display cyclical behavior”. The coexistence equilibrium E5 may even be
destabilized via a flip (cr period doubling) bifurcation as the speeds of reaction increase.
This is Tllustrated in Figure 13.4a, with parameters 1; = 3.3, T, = 3.5 and high speeds of
reaction v; =¥, = 1.2; thers Es has become a saddle point after a flip bifurcation at which
a stable perodic cycle of period two — ‘represented by the periodic points p; and p2 In

‘Figure 13.4a —is created. Jn this case, coexistence can be obtained, even if the coexistence

equilibrium is unstable, being characterized by oscillations in the number of the individuals
of the two integrated populations. If either speed of reaction increases further, the first flip
bifurcation is followed by other ones, and the usual period-doubling cascade leads to the
creation of chaotic attractors around Es. Another remarkable global dynamic property that
can be'seen in Figire 13.4z is the existence of non tonnected portions of the basins 3 (E7)
and B (E,) located in the portion of the phase plane where both the populations are almost
entirely included in the system considered. From the point of view of the mathematical -
properties of discrete dynamical systems, this occurrence can only be observed when the
dynamic model is obtained by the iteration of 2 noninvertible (or many-to-one) map (see,
e.g., [7,8]). Indeed, the points of the non connected portion of 3 (E1) are mapped into
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the bigger portion of the basin around E; {also called immediate basin of £:) in one step,

due to the folding properties of 2 noninvertinle map. In other words, the points of the non

connected portion are rank-1 preimages of points located inside the imamediate basin. In
-terms of the adaptive behavior considered in the model, this property represents an extreme

form of overshooting, as it is due to an over-reaction of many members of a population

due to the excessive presence of the other populaticn. This massive migration of members

of population C; out of the system leads to the final dominance of the population €y even
- if the starting sitvation was characterized by a slight prevalence of C;. This is due to &
excessive reactivity of the C individuals to the strong presence of ( individuals, even if
the C; population initially represents the majority. Similar arguments explain the presence
of the non connected portion of (&) in the upper right portion of the state space.

Figure 13.4, Equilibria and basins of aftraction for the following sets of paraméte’rs: (a)
N=N=Lv=1=121=331=35 L =1, % =1; (b) Same values as in (g}
except 71 = 4 and 72 = 3. The meaning of the colors is the same.as in Figure 13.3.

If the difference between the tolera.ncf:ﬁa of the two populations is sligh_tl}: increased,
any possibility of stable coexistence, both stationary and oscillatory, is ruled out, as shown
in Figure 13.4b. This is obtained with the same parameters as Figure 13.4a, but the two

parameters of tolerance are now fixed at Ty = 4 and 1, = 3; in this case all the attractors

interior to the state space disappear, and only. the two segregation equilibria Ey and E are
stable. Furthermore, the basin of £ is much more extended because of the higher tolerance

that characterizes the population of coler Ci. However, due to the'high value of speeds of |

reaction, a nonconnected portion of 3 (£} persists in the upper-right portion of the phase
space, because of the excessive reactivity of C; population with respect to the presence of
" C; individuals, even if C; pepulation represents the majority inside the system.

' We now cousider what happens if one population is more numerous, N; > Ny, i.e. color
C; represents a “minority” population. For example, the situation shown in Figure 13.5z is

obtained with Ny = 1 and M, = 0.5, identical reactivity (y3 = y» = 1) and tolerance {1; = -
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T2 = 3) for both populations. If there are no further restrctions (i.e. K; =N, i=1,2) then
only the segregation equilibria are stable, with 2 much stronger probability of convergence
to the equilibrium E}, being the basin 3 (£,) more extended than 3 (E7). The possibility
of stable coexistence is obtained by increasing the tolerance of the minority population, as
In Figure 13.5b where 7) = 2 and 1, = 8. In this case, & stable coexistence equilibrium
exists, with a quite extended basin of zftraction. This can be stated by saying that a stable
coexistence between a majority and a minority can be obtained only if the minoerity is more
tolerant.

Figure 13.5. Equilibﬁa and basins of attraction for the following sets of parameters: (a}
M=LM=05n=n=11u=1u=3 K =1,K =05 (b) Same values as in (a)
exceptT) =2 and 1y = 8. The meaning of the colors is the same as in'the previous pictures.

Let us ﬁnal]v consider the effects of mtroducmo constraints on the maximum number
of individuals of one or both the populations allowed to enter the system, ie. K5 <N
and/or K3 < M;. As siressed in the previous section, this may be considered as.a kind of
exogenous control in order to force the system to converge to 2 programmed equilibrium.
The effest of such a kind of control s here investigated by a numerical exploration starting
from a given combination of parameters without any imposed constraints, for example Ny =
M=I,y1=n=1,1=4 = 2, Ky = Kp =1 as in Figure 13.62, and then gradually
réducing K respectively to K = 0.6 (Figure 13.6b), &1 = 0.4 (Figure 13.6c), and X; = 0.2
(Figure. 13.6d). It can be noticed that as K| decreases, stable coexistence is possible only at
intermediate levels (see Figure 13.6c). By contrast, for high values of K; only segregation
is possible — with the segregation equilibrium E; prevailing (figures 13.6a,b). Finally,
at low levels of X only segregation can be obtained with equilibrium X, that dominates.
This confirms that an exogenously regulated maximum number of allowed enirance can
be 2 useful way to contrel the system. The introduction of constraints is also interesting
from a mathematical point of view, bscause the bifurcations at which equilibrium points
are created or destroyed are not standard bifurcations of differentieble dynamical systems,
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but can be characterized as border collision bifurcations, i.e. bifurcations related to the
contacts between attractors and curves where the dynamical system is not differentiable,
see, e.g., [5,6]. :

Figure 13.6. Effects of constraints. Equilibria and basins of attraction for the following sets
of parameters: (@ Ny =M=l =1=1T1=4 1=K =K=1; (b) Same values
&s In (a) except X = 0.6; () Same values as in (a) except K; = 0.4; (d) Same values as in
(a) except K3 = 0.2. The meaning of the colors is the same as in the previous pictizes.

13.5. An Alternative Tolerance Distribution

In this section we introduce a different distribution of tolerance for popu!an:on Gy, given by

T2 (N2 —x2)

.Rz [JCQ) = 2

(13.5)
and characterized by the property that a positive fraction of the population C, that toler-
ates any ratio of different colored individuals always exists (see Figure 13.7a). The corre-
sponding function xR (¥2) = T (M2 —x2) is a straight lirie, as regresented in Figure 13.7b
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together with the function x) &; (x;) associated with linear distzibution of tolerance (13.1).
The fact that the function x; = xR (xz) does not vanish for xp = 0, i.e. has a positive in-
tercept, is ditferent from the Schelling original assumption (13.1) which implies that both
curves cross at the point {0,0). This new assumption is supported by empirical data, as
shown by [10] for black populations living in American cities (Figure 13.7¢). We now
wonder what are the effects induced by the introduction of ene distribution of toleran ce of
the form (13.5) in the model (13.3). '
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Figure 13.7. (a) The hyperbohc distribution of tolerance for populafmn of color Cy; (b) the
functions x1R; (¥1) assuming linear tolerance distribution for C; and x,R; (x2) assuming the
hyperbolic distribution for Gs; {c) empirical curves x;R;(x;) taken from [10].

In this case at mést two coemstence equilibria can be obtained; they can be easily
computed as the mtersectxons between the straight line x; = 1y (N, —x;) and the parabola
x =T (1 —x1 /Ay) (see Figure 13.7b). This gives rise to new dynamic situations that
allow us to get interestirig real life mterpretatlons Indeed, starting from the dynamic situ-
ation shown in Figure 13.8a, obtained with distributions of tolerance R; in'the form ( 13 1)
and R; in the form (13.5) respectively and parameters Ny = 1, Ny = 0.8, vy = 0.4, %, =
T =27 =1,K =1, K; = 0.8, the vsual bi-stability situation, with the two segreganon
equilibria E) and Ez, is obtained. However, as the two tolerance parameters increase, a DeW
situation is obtained. This is illustrated in Fi igure 13.8b where T =3, T» = 2 and theé other
parameters are the same as in Figure 13.8a. Here a new positive coexistence equilibrium
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exists and is stable; it is created via a transcritical {or “stability exchange™) bifurcation at
the merging with the segregation equilibrium E; that, as a consequence, becomes unstable.
This is different from the previous cases: Lere, only the segregation equilibrivm £ is stable,
whereas the other one, £, is unstable. This means that in such a sitoation the population of
color C; will never disappear: it may either become the only one (if the system converges
to £2} or coexist with population of color & (if the system converges to F4) but it cannot
disappear. This is possible since, due to assumption (13.5), some individuals of C; popu-
lation can tolerate any ratio x) /xz, hence they never leave the system. Consequently, the
equilibrium with x3 = 0 is not stable, i.e. it cannot prevail in the long ran.

Figure 13.8. Equilibria and basins of attraction for the following sets of parameters: (a)

N=1L,M=08n=041%=0517=21=1K =1,k =0.8; (b) Same values as
in (a) except 71 =3 and 7; = 2. The meaning of the colors is the same as in the previous
pictures.

13.6. Conclusion

We have proposed a simple two-dimensional discrete-time dynamical systeri to model the
long run cutcomes emerging from repeated indiviual choices to enter or not a given system
(a city district, or an association, or a political party), taken by agents belonging to two
different populations, according to their tolerance about the presence of agents of the other
population.

The explicit dynamic model we have proposed, even if it is based on a simple adaptive
mechanism, aliowed us to get some useful information about the effects of soms parameters
that characterize the two populations, such as their maximum tolerance or their reactivity (or
their inertia) in taking decisions as a consequence of the observed proportions of individuals
belonging to different populations.

Adaptive dynamic models constitute useful equilibrium selection devices when several
equilibria (or other kind of invariant sets) are present. Indeed, the explicit adaptive dy-
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namic adjustment, we have proposed in this chapter, allowed us to investigate some global
dynamicel properties, in particular the structure of the basins of attraction when several
atiractors coexist, thus giving indications on the long-rn outcome of path-dependent evo-
lutions through which different emerging collective behaviors can emerge from repeated (or
step by step) myopic individual decisions.

By properly tuning the values of the parameters, we observed two different kinds of
results. Some were both intuitive and expected; others, more interestingly, were somehow
counterintuitive. Both kinds of results are important: the former confirm the proper setup
of the model; the latter illustrate the overshooting effects due to itnpulsive {or emotional)
behavier of the agents. The presence of overshooting should not be seen as an artificial
effect or a distortion of reality due to discrete time scale we have considered. Instead, as
stressed In [9], overshooting and over-reaction arise quite naturally in social systems, due
to emotional attitude, impulsivity or lack of information.

Such phenomena are mathematically expressed in terms of oscillatory behavior, and
extreme forms are also related with the peculiar properties of noninvertible lterated rmaps,
whose, geometric zction consists in folding and pleating the state space, so that distinct
points are mapped into the same point. This folding action is also caused by the presence
of imposed constraints, see, e.g., [11].

The approach foliowed in this chapter is mainly numerical, based on computer assisted
exploraticns of dynamic scenarios obtained by using different combination of parameters,
properly chosen in order to illustrate the main dynamic features of the model and their real
Iife interpretations. However, the discrete dynamical system proposed, being represented
by a two-dimensional piecewise differentiable and noninvertible iterated map, with several
equilibria as well as more complicated atiractors, is worth to be investigated more deeply
by geometric and analytic methods. Because of the analytic difficulties, as the map is
represented by a high degree polynomial and is piecewise-differentiable, due to the presence
of consiraints, such a study goes far beyond the goals of the pres=nt chapter, and will be
approached in a futare work.
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