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In this article, single product Cournot oligopolies are considered, where the demand and cost

functions are linear. While cost functions are completely known by all firms, they only partially

know the demand function, as they misspecify the slope. At any stage of the repeated oligopoly

game firms update the slope of their subjective demand functions on the basis of the discrepancy

they observe between the expected price, computed according to believed demand, and the price

they actually observe. This adjustment process has a unique steady state, where any subjective

demand function coincides with the true demand function. If such steady state is stable, then the

true slope of the demand function can be learned by all oligopolists, even if they start from

misspecified initial guesses. Sufficient conditions for the stability of the steady state are given for

n-firms oligopolies. In the particular case of a duopoly, an exact delimitation of the stability

region in the parameters’ space is given, and with the help of numerical simulations, the size and

the shape of the basins of attraction is analysed, as well as the kinds of attracting sets that

characterise the long-run dynamics of the learning process when the steady state is unstable.

Keywords: Oligopoly game; Heterogeneity; Dynamical systems; Stability; Bifurcations

What we have to learn to do, we learn by doing
Aristotle, Nocomacheam Ethics, Book II

1. Introduction

Oligopoly theory is one of the most frequently discussed

areas in the literature of mathematical economics. This

field dates back to Cournot (1838), and since then many

researchers have devoted their efforts to the different

variants of the Cournot model. The main results on the

existence and stability of equilibria in Cournot oligopoly

games are summarised in Okuguchi (1976), Okuguchi

and Szidarovszky (1999), where the most relevant

references are also given.
A common assumption in game-theoretic models is

that each player has a perfect knowledge of the payoffs

of the game and is able to correctly forecast the choices

of the other players. However, in the literature on

oligopoly games, these assumptions of full rationality

have been weakened in several ways. First of all, firms
have been considered unable to predict their competi-
tors’ decisions. So, at each repetition of the game, they
are assumed to form expectations about the next period
decisions of the competitors, and they base their own
decisions upon such expectations. This problem was
already present in the model proposed by Cournot
(1838), where he assumed that players use the outputs
observed in the current period as expected outputs for
the next period (the so called naive expectations). Other
authors proposed adaptive expectations as a more
general forecasting rule (see, e.g., Okuguchi 1976,
Okuguchi and Szidarovszky 1999, Szidarovszky and
Okuguchi 1988, Bischi and Kopel 2001).

However, firms’ information sets may be incomplete
on several accounts. As stressed by Kirman (1975), firms
are, in general, imperfectly aware of their environment,
so they may have an imperfect knowledge of the
payoffs (i.e., the expected profits) of the oligopoly*Corresponding author. Email: gian.bischi@uniurb.it
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 game they are playing. For example, players may
misspecify the estimates of the demand function.
However, under suitable assumptions regarding the
information sets available to the firms, they may realise
that their view of the economic system is imperfect, since
the economic data observed will not always coincide
with their predictions. This will give rise to an
adjustment process, that is, firms will update their
believed demand functions according to the observed
data when the game is played repeatedly. In other
words, firms try to learn the game they are playing. This
learning process was introduced and analysed in
Szidarovszky (2003), where local and global stability
analysis was performed in continuous time scale.
Following this stream of thought, in this article we

propose a n-firm single product Cournot oligopoly
where the demand and cost functions are linear.
However, while cost functions are completely known
by all firms, they only partially know the demand
function, as they misspecify the slope. In other words,
even if firms have a correct understanding of the
structure of the economic system of which they are
part, they have an incorrect wrong estimate of some
parameters. Moreover, we assume heterogeneity in the
estimates, i.e., different firms may have different beliefs
about the slope of the demand function. At each
repetition of the game, by using its believed demand
function each firm computes its own profit maximising
production, as well as those of its competitors. The sum
of all these production quantities gives the total supply
expected by the single firm and this allows it to compute
its expected next period price. While firms will never
learn how much the actual total supply is, they do
observe that the expected price does not coincide with
the actual market price. This will make players aware
that the demand function they are using may be
misspecified. In light of these observations, a reasonable
response for the firms would then be to update the slope
of the believed demand, through an adaptive mechan-
ism, at each stage of the repeated game.
In other words, when players perceive that their game

(subjective game) is different from the real (objective)
one they correct their subjective estimates of the demand
function in order to learn the true game they are playing.
The question is: can boundedly rational players who
myopically play the game repeatedly learn about the real
(objective) elements of the game starting from perceived
(subjective) misspecified elements?
For the oligopoly game proposed in this article, we

show that the learning process always has a unique
steady state, corresponding to the situation where all the
believed demand functions coincide with the true market
demand. If the adjustment process converges at such
unique steady state, then we say that all the firms learn
the true demand, even if they started from misspecified

(and different) initial guesses about the slope of the
demand function. We give conditions for the stability of
the steady state, that is, we identify the sets of
parameters which ensure the convergence of the adjust-
ment process.

However, the adjustment process proposed is not
always convergent, and we examine some bifurcations
that lead to instability of the steady state, and what kind
of disequilibrium dynamics may occur when the learning
process does not converge. These results show that, in
general, excessive reactivity of the firms, as well as an
excessive cost heterogeneity, increases the likelihood of
failing convergence at the steady state. The first
statement is not surprising, as stability in adaptive
systems is often lost due to over-reaction by the agents.
The second statement may deserve some economic
reflections. A more detailed analysis of the duopoly
case will show that some counterintuitive effects can be
observed if the reactivity of firms is gradually increased
in the presence of strong heterogeneity. Moreover, the
analysis of the particular case of n identical firms shows
that if the number of firms is increased, the likelihood of
convergence also increases.

It is worth taking a brief look at some related models
in the literature. The effect of imperfect knowledge of
the market demand function has been examined in Cyert
and DeGroot (1971, 1973) by using Bayesian methodol-
ogy in duopolies. Kirman (1975, 1983) examined
differentiated products and linear demand functions,
what the firms try to estimate, and investigated the
convergence of the resulting process. Gates et al. (1982)
introduced an economically guided learning process. All
previously discussed learning schemes used either least
squares learning or Bayesian updating of the unknown
parameter, or considered the outputs of the competitors
as random variables and introduced a similar learning
process for estimating it. In the model introduced in this
article we assume that the firms know their own cost
functions and those of the competitors. It is a realistic
assumption in real economies, since firms are usually
aware of each other’s technology. Firms can also
observe the market price without the output of the
competitors. Price observations indicate the values of
the price function at unknown total production levels.
Therefore, these observations cannot be considered as
independent observations from the same statistical
family. For this reason we did not select Bayesian,
least squares, or other statistics-based optimal learning
methods. Okuguchi and Szidarovszky (1990) discussed
the asymptotic properties of dynamic oligopolies with
perceived marginal costs. Léonard and Nishimura
(1999) examined discrete dynamic duopolies and illu-
strated how the asymptotic properties of the steady
states change as the result of the incorrect assessment
of the demand function, the misspecification due to

404 G.-I. Bischi et al.
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 a multiplicative scale factor. Chiarella and Szidarovszky
(2001) analysed the continuous time-scale version of
Léonard–Nishimura model and investigated how the
asymptotic properties are further altered by time delays
in obtaining and implementing information on the
output of the rivals. They show that (under concavity
assumptions) the resulting dynamical system converges
towards a steady state, which in general differs from the
full information equilibrium. This model has been
further generalised in Chiarella and Szidarovszky
(2003), in which firms may also misspecify the shape
of the demand function and not only its scale as assumed
in the original model of Léonard and Nishimura.
Léonard and Nishimura’s discrete time model has also
been extended in Bischi et al. (2003b), where a duopoly
model is proposed for situations in which the players
lack knowledge of the market demand, and cost
externalities between the firms are allowed. So, differ-
ently from the Léonard and Nishimura model, the
assumption of decreasing reaction functions is relaxed.
This implies that the presence of demand misspecifica-
tion à la Léonard and Nishimura may imply that new
steady states are created, when (one or both) players
over- or underestimate the demand. However, in these
papers no learning occurs on the subjective (mis-
specified) demand function. Indeed, in Léonard and
Nishimura (1999) and the above quoted extensions, it is
assumed that the information set available during the
repeated game is not sufficient to reveal to the players
that they are using an incorrect demand function. In
fact, these works are based on the assumption that firms
do not know the cost functions of their competitors and
therefore are not able to compute or estimate the output
decisions of their competitors. This implies that they are
not able to estimate the whole quantity sold in the
market. So, the price they observe does not provide
sufficient information to them that they are using a
misspecified demand function.
In the model proposed in this article, the observed

discrepancy not only allows the players to be aware that
they are using an incorrect demand function, but also
give them the possibility to correct, adaptively, the
believed demand.
Adaptive learning ideas go back several decades, and

first were used to form predictions about the simulta-
neous outputs of the competitors (Fisher 1961).
Okuguchi (1969, 1970) has examined the effect of
adaptive expectations on the stability of dynamic
oligopolies. A comprehensive summary of early results
are given in Okuguchi (1976).
This article is organised as follows. In section 2, the

dynamic learning model is introduced. The existence and
uniqueness of the steady state is examined in section 3,
and the local stability analysis is given in section 4.
Sections 5 and 6 examine particular cases where a global

analysis of the model is possible, because the dimension
of the model is reduced. In fact, section 5 deals with the
one-dimensional model obtained under the assumption
of n identical players, and section 6 analyses the two-
dimensional model that simulates the case of duopoly
with heterogeneous players. Some concluding remarks
follow in section 7.

2. The Cournot oligopoly with learning on demand

We consider an n-firm single product oligopoly, without
product differentiation. Let Ck(xk)¼ �kxkþ �k, with
�k>0 and �k� 0, be the cost function of firm k, where
xk is its output. We assume that all cost functions are
known by all firms, i.e., each firm knows not only its
own cost function, but also the cost functions of the
competitors (i.e., the production technologies that they
adopt, their salaries etc.). Let Q ¼

Pn
k¼1 xk be the total

production of the good considered. We assume that the
price p that prevails in the market is determined by the
linear inverse demand (or price) function

p ¼ f ðQÞ ¼ B� AQ ð1Þ

where the positive parameter B indicates the price when
the production of the good is zero, and the positive
parameter A represents the slope of the inverse demand
function.

We assume that this demand function is not fully
known by the firms. More precisely, we assume that the
firms know that the demand function is linear and
decreasing, but they have only a misspecified estimate of
the slope. In other words, firms are assumed to know the
value of B/A, i.e., the total output level that makes the
price zero, but each firm selects a subjective ‘‘reference’’
price function p¼ uk f (Q)¼ uk(B�AQ), uk>0, that is, a
function with a slope that in general is different from the
one of the true price function (1). As we shall see below,
the information set of the firms allows them to realize
that the demand functions they are using may be
misspecified, and they guess that the true price function
is a constant multiple of the subjective reference price
function. In other words, starting from a subjective
guess given by p¼ uk(B�AQ), at each time t firm k will
use the price function

fkðtÞ ¼
uk
"kðtÞ
ðB� AQÞ ð2Þ

where "k(t) is a firm-selected scale factor that they
will adjust over time, on the basis of the observed data,
in order to obtain a better approximation of the
true demand. More precisely, as we shall describe in

Learning the demand function 405
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 more detail below, at each time period each firm will

adjust its believed scale factor "k on the basis of the

discrepancy between their computation of the expected

price and the realised price they observe in the market.
We now describe, step by step, how this adaptive

learning process is developed. First, we will describe the

output selection and price expectation of a particular

firm k that behaves, at each repetition of the game, as a

Cournot oligopolist, i.e., a profit maximising quantity

setting producer. The believed (or expected) profity of

firm k is

�ek ¼ xk
uk
"k
ðB� Axk � AQ�kÞ � ð�kxk þ �kÞ ð3Þ

where Q�k ¼
P

l6¼k xl is the aggregated output of the

competitors of firm k, so that Q¼xkþQ�k. Assuming

interior optimum, the first-order condition for the

maximization of the expected profit gives

uk
"k
ðB� Axk � AQ�kÞ � xk

uk
"k

A� �k ¼ 0

that is

xk ¼
ukB� �k"k

ukA
�Q: ð4Þ

Firm k also believes that the optimal choice of any other

firm l is given, similarly, as

xl ¼
ukB� �l"k

ukA
�Q ð5Þ

i.e., firm k also computes the expected xl by using its

own believed demand function (2). Of course, this

computation is possible only if firm k knows the cost

function of any other firm l. Therefore, firm k computes

its believed equilibrium output of the industry, say Q(k),

by adding equations (4) and (5):

QðkÞ ¼
nB

A
�
"k
ukA

X
i

�i � nQðkÞ

so that

QðkÞ ¼
nB

ðnþ 1ÞA
�

"k
ðnþ 1ÞukA

X
i

�i : ð6Þ

Based on this belief, firm k computes its expected

equilibrium price by using its own believed price

function (2):

pðkÞ ¼ fkðQ
ðkÞÞ ¼

uk
"k

B� AQðkÞ
� �

¼
uk
"k

B�
nB

nþ 1
þ

"k
ðnþ 1Þuk

X
i

�i

 !

¼
ukBþ "k

P
i �i

ðnþ 1Þ"k
ð7Þ

and, according to (4), it selects its output as

xk ¼
ukB� �k"k

ukA
�QðkÞ

¼
Buk � ðnþ 1Þ�k"k þ "k

P
i �i

ðnþ 1ÞukA
: ð8Þ

In reality, each firm reasons in the same way, so the

actual outputs of each firm k is given by equation (8).

By adding all the xk, computed according to (8), we can

obtain the actual total output of the industry:

Q ¼
Xn
k¼1

xk ¼
nB

ðnþ 1ÞA
�

1

A

X
i

�i"i
ui

þ
1

ðnþ 1ÞA

 X
i

�i

! X
j

"j
uj

!
: ð9Þ

So, the equilibrium price that prevails in the market is:

p ¼ fðQÞ ¼ B� AQ

¼
B

nþ 1
�

1

nþ 1

 X
i

�i

! X
j

"j
uj

!
þ
X
i

�i"i
ui
: ð10Þ

Of course, a discrepancy between the expected price (7)

and the realised price (10) is observed by the firms.

This discrepancy shows the firms that their computation

of the expected price is based on a misspecified

description of the economic environment they are

modeling, and it provides them with a method of

improving their estimate of the slope of the demand

function. The learning process works in the following

way. At each time period, each firm computes its

subjective expected price (7), and receives the realised

equilibrium price (10). The difference �k¼ p(k)� p can

be used by firm k to adjust its price assessment by

altering the value of the multiplier "k. If �k>0, then the

expected price is too high, so firm k wants to decrease its

yBelieved means that it is computed by firm k according to the believed demand function (2).

406 G.-I. Bischi et al.
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 price assessment by increasing the value of "k; if �k<0,
then the expected price is too low, so firm k wants to
increase its price estimate by decreasing the value of "k;
if �k¼ 0, then there is no need to change the price
estimate. This adjustment process, in discrete time scale,
can be conveniently modeled by assuming that, at
each time period, each firm k computes its new "k
value by adding a positive multiple of �k to the previous
"k value:

"kðtþ 1Þ ¼ "kðtÞ þ Kk�k : ð11Þ

This gives rise to the following system of n nonlinear
difference equations:

"kðtþ 1Þ ¼ "kðtÞ þ Kk

"
B

nþ 1

 
uk
"kðtÞ
� 1

!

þ

P
i �i

nþ 1
þ
X
l

"lðtÞ

ðnþ 1Þul

X
i

�i � ðnþ 1Þ�l

 !#

ð12Þ

for k¼ 1, 2 , . . . , n, where the parameter Kk denotes the
‘‘adjustment speed’’ of firm k: smaller values of Kk imply
an higher inertia of firm k in revising the scale factor "k,
i.e., a stronger anchoring attitude. This discrete-time
n-dimensional dynamical system expresses the adjust-
ment process by which the n firms update, at any
repetition of the oligopoly game, the scale factors "k,
k¼ 1 , . . . , n of their believed demand functions. We are
interested in studying the long-run behaviour of this
dynamical system, in order to see if the time evolution of
the scale factors is such that the firms are able to learn,
during the repeated game, the true demand function.
Indeed, in the next section we shall prove that this
occurs whenever the long-run evolution of the dynami-
cal system (12) converges to a steady state.

3. Existence and uniqueness of the steady state

In this section, we prove the theorem that essentially
states that the dynamical system (12) indeed represents a
learning process, since the system is in a steady state if
and only if all the believed demand functions fk coincide
with the true demand function f:

Theorem 1: The discrete time n-dimensional non-linear
dynamical system (12) has a unique steady state given by
�"k ¼ uk for k¼ 1, 2 , . . . , n.

Before giving the proof of Theorem 1, let us remark
that the unique steady state of (12) corresponds to the

perfect knowledge of the demand, because for "k¼ uk we

get fk(Q)¼ f(Q) for all k.

Proof: Let �"1; . . . ; �"n be a steady state, i.e., the

expression inside the square bracket in each of
the difference equations in (12) vanishes. Notice that

in the bracketed expression only the first term depends

on k, hence if all such expressions vanish, then

u1
�"1
¼

u2
�"2
¼ � � � ¼

un
�"n
: ð13Þ

Let v denote this common value. Of course, being both
uk and �"k positive, v>0. The bracketed expression can

be rewritten as

B

nþ 1
ðv� 1Þ þ

P
i �i

nþ 1
þ
X
l

P
i �i � ðnþ 1Þ�l
ðnþ 1Þv

¼
B

nþ 1
ðv� 1Þ þ

P
i �i

nþ 1
1�

1

v

� �
:

If v>1, then both terms are positive, if 0< v<1, then

both terms are negative, and if v¼ 1, then both terms are
equal zero. Hence, this expression is zero if and only if

v¼ 1, that is, �"k ¼ uk. œ

Theorem 1 states the existence and uniqueness of the

steady state, but it doesn’t say anything about its

stability. However, we need the asymptotic stability of
the steady state in order to guarantee that the firms have

the possibility to learn the true demand by repeatedly

playing the game, i.e., as the long-run outcome of an
endogenous adjustment process.

4. Local stability analysis

In order to study the local stability of the unique steady

state, we will use the standard linearization method,

based on the localization of the eigenvalues of the
Jacobian matrix computed at the fixed point of (12).

We notice, first, that the derivative of �k with respect

to "k is:

D�k ð�kÞ ¼
�Buk

ðnþ 1Þ"2k
þ

P
i �i � ðnþ 1Þ�k
ðnþ 1Þuk

and, for l 6¼ k, the derivative of �k with respect to

"l is:

D�lð�kÞ ¼

P
i �i � ðnþ 1Þ�l
ðnþ 1Þul

:

Learning the demand function 407
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 Therefore at the steady state, where uk/"k¼ 1, the

Jacobian of the dynamical system (12) has the

special form

J ¼ IþK

�A1

�A2

. .
.

�An

0
BBBB@

1
CCCCA

2
66664

þ

B1 B2 � � � Bn

B1 B2 � � � Bn

: : . .
.

:

B1 B2 . . . Bn

0
BBBB@

1
CCCCA

3
77775 ð14Þ

where I is the n� n identity matrix, K ¼ diag

(K1,K2 , . . . ,Kn), and for k¼ 1, 2 , . . . , n,

Ak ¼
B

ðnþ 1Þuk
; Bk ¼

P
i �i � ðnþ 1Þ�k
ðnþ 1Þuk

:

By introducing the notation di¼ 1�KiAi (1� i� n),

D¼diag(d1, d2 , . . . , dn),

k ¼

K1

K2

:
Kn

0
BB@

1
CCA and bT ¼ ðB1;B2; . . . ;BnÞ

it is easy to see that

J ¼ Dþ k bT ð15Þ

so the characteristic polynomial of the Jacobian is the

following:

’ð�Þ ¼ detðDþ k bT � �IÞ

¼ detðD� �IÞ detðIþ ðD� �IÞ�1k bTÞ

¼
Yn
i¼1

ðdi � �Þ 1þ bT D� �Ið Þ
�1k

� �

where we used the fact that for any n-element column

vectors u and v; det(Iþ u vTÞ ¼ 1þ vTu: Therefore

’ð�Þ ¼
Yn
i¼1

ð1� KiAi � �Þ 1þ
Xn
i¼1

KiBi

1� KiAi � �

" #
: ð16Þ

For the sake of simplicity let �1< �2< � � �< �s denote
the different 1�KiAi values with multiplicities

m1,m2 , . . . ,ms. Let furthermore Il¼ {ij1�KiAi¼ �l}.
Then

’ð�Þ ¼
Ys
l¼1

ð�l � �Þ
ml 1þ

Xs
l¼1

�l
�l � �

" #
ð17Þ

with �l ¼
P

i2Il
KiBi. The main result of this section is

expressed by the following theorem, that gives sufficient

conditions for the local asymptotic stability of the

unique equilibrium:

Theorem 2: Assume that for all l,

(a) j�lj<1;
(b) � l� 0;
(c)

Ps
l¼1

�l
�lþ1

> �1.

Then the unique steady state of system (12) is locally

asymptotically stable.

Proof: Under assumption (a), all roots of the first part

of ’(�) are inside the unit circle. In order to complete the

proof, we will show that all roots of equation

Xs
l¼1

�l
�l � �

¼ �1 ð18Þ

are also inside the unit circle. If h(�) denotes the left-

hand side of equation (18), then it is easy to see that

lim
�!�1

hð�Þ ¼ 0; lim
�!�lþ0

hð�Þ ¼ þ1; lim
�!�l�0

hð�Þ ¼ �1

and

h0ð�Þ ¼
Xs
l¼1

�l

ð�l � �Þ
2
50: ð19Þ

The graph of h(�) is shown in figure 1. Notice first that

equation (18) is equivalent to a polynomial equation of

degree s, so there are s real or complex roots. From the

graph of function h(�) it is clear that there is a root

before �1, and one root between each pair �i, �iþ1
(i¼ 1, 2, . . . , s� 1). Therefore all roots are real and inside

the unit circle if h(�1)>�1. Assumption (c) is

equivalent to this condition. œ

Assumption (a) can be rewritten as �1<1�KlAl<1,

that is

Kl

ul
5

2ðnþ 1Þ

B
; l ¼ 1; . . . ; n ð20Þ

So, assumption (a) holds if the speeds of adjustment

Kl are sufficiently small with respect to the subjective

408 G.-I. Bischi et al.
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‘‘reference’’ misspecified slope. This means that if firm

l selected a demand function that underestimates the

price (i.e., ul<1) then a smaller speed of adjustment

(i.e., higher inertia) is requested to have stability. This

means that a firm who updates his estimates by small

steps has good chances to learn the true demand

function. Assumption (a) is more easily satisfied for a

large value n of firms. This result suggests that, when the

number of firms present in the same market is high,

there is a lot of information available about the market

and thus it is easier to learn the demand. Finally,

assumption (a) is satisfied for small values of the

parameter B. This shows that the described adaptive

process is suitable for a small market. All these

considerations can be summed up in the following

statement: the adaptive process (11) is suitable for a

market with many, small, cautious firms.
Assumption (b) holds necessarily if

X
i

�i5ðnþ 1Þ�l ð21Þ

for all l. If the marginal costs, �i, are almost the same,

then this inequality is satisfied. This means that for each

firm it’s easier to learn the true demand if firms are

similar to each others.
Assumption (c) can be rewritten as

Xs
l¼1

P
i2Il

KiBi

2� KlAl
¼
Xn
k¼1

KkBk

2� KkAk
4� 1 ð22Þ

which holds if all Bk values are sufficiently small in

absolute value.
The sufficient conditions for the local asymptotic

stability of the unique steady state, as given in

Theorem 2, ensure that for sufficiently small speeds of

adjustment Ki, sufficiently small values of Bk, and

sufficiently homogeneous marginal costs, the adaptive

adjustment described in section 2 will lead the firms to

learn the true demand function in the long run, after

several repetitions of the Cournot oligopoly game, even

if some (or all) the firms start from subjective

misspecified beliefs about the demand function.
However, the results of this section concern only the

local stability of the equilibrium, i.e., the sufficient

conditions of Theorem 2 ensure the convergence of the

learning process provided that the initial scale factors

selected by the firms, "k(0), are sufficiently close to the

respective ‘‘reference’’ slope uk. So this local analysis,

based on the linearization of the model (12) around the

steady state, leaves several open questions to solve. First

of all, what are necessary conditions for local stability,

such that an exact delimitation of the stability region in

the space of the parameters can be obtained. Then, the

study of what kinds of bifurcations occur when the

boundaries of such stability region is crossed, i.e., how

does the steady state lose stability and what kind of

disequilibrium asymptotic dynamics of (12) should be

expected when the steady state is unstable. Finally, what

are the extension and the shape of the basin of attraction

of the steady state (when it is stable) or of other

attractors when the steady state is unstable. Answering

these questions is not generally easy for the highly

nonlinear n-dimensional dynamical system (12), so we

shall try to gain some insight into these problems by

considering some simple situations: an oligopoly with n

identical players starting from the same initial guesses

on the scale factors, a duopoly with two heterogeneous

players that start from arbitrary initial guesses on the

scale factors "k(0).

5. Oligopoly with N identical players starting from

identical initial guesses on scale factors

Let us now consider the case of n homogeneous players,

i.e., players that are characterised by identical

parameters

�1 ¼ �2 ¼ � � � ¼ �n ¼ �; u1 ¼ u2 ¼ � � � ¼ un ¼ u;

K1 ¼ K2 ¼ � � � ¼ Kn ¼ K: ð23Þ

Then equations (12) are the same for each k, and starting

from an homogeneous initial condition

"ið0Þ ¼ "0 8i

δ2δ1 δi λ

h(λ)

1–1 δi+1 δsδs-1

Figure 1. Graphical representation of the function h(�) in the

proof of Theorem 2.
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 we have "i(t)¼ "(t) for each t� 0 and i¼ 1, 2 , . . . , n.

This corresponds with the obvious statement that, in a

deterministic framework, identical players, starting

from identical initial conditions, behave identically for

each time. These trajectories, characterised by "i(t)¼ "(t)
for each t� 0 and i¼ 1, 2 , . . . , n, are called ‘synchronised

trajectories’, and are governed by the following

one-dimensional difference equation

"ðtþ 1Þ ¼ gð"ðtÞÞ ¼ 1�
Kn�

nþ 1ð Þu

� �
"ðtÞ

þ
BKu

nþ 1

1

"ðtÞ
þ
K n�� Bð Þ

nþ 1
: ð24Þ

5.1 Stability

The one-dimensional dynamical system (24) can be

considered as the model of a representative player whose

dynamics summarise the common behaviour of the n

synchronised firms (Bischi et al. 1999, Bischi and

Gardini 2000). This reduction may be quite misleading

(on this point see also Bischi et al. 1999, Kopel et al.

2000) if suitable hypothesis are not done. However, the

study of this simplified one-dimensional model may give

us some insight into the dynamic properties of the

general n-dimensional model (12). The following

result holds:

Theorem 3: A necessary and sufficient condition for the

local asymptotic stability of the unique steady state " ¼ u

of (24) is

Kðn�þ BÞ

uðnþ 1Þ
52: ð25Þ

If the aggregate parameter at the left-hand side of (25) is

increased through value 2 then the fixed point loses its

stability via a flip (or period doubling) bifurcation, at

which a stable cycle of period 2 is created around it.

Proof: The derivative of the map g is

Dgð"Þ ¼ 1�
Kn�

nþ 1ð Þu
�

BKu

nþ 1

1

"2
ð26Þ

and, computed at the unique steady state " ¼ u, gives

DgðuÞ ¼ 1�
Kðn�þ BÞ

ðnþ 1Þu
: ð27Þ

As Dg(u)<1 for all values of the parameters, the only

stability condition becomes Df(u)>�1, i.e., the condi-
tion (25). Moreover, when the aggregate parameter at

the left hand side of (25) is increased through the

value 2, Dg(u) crosses through the value �1, thus giving
a flip (or period doubling) bifurcation, at which a stable

cycle of period 2 is created. œ

The stability condition (25) confirms the stabilising

role of small values of K/u. The role of the number of

firms is not so trivial, because the left-hand side of the

stability condition (25) is a decreasing function of n if
�<B, and an increasing function of n if �>B, so that

in the former case a higher number of identical firms

helps the learning process, whereas in the latter case an
higher number of identical firms may prevent the

learning process.

5.2 Instability and complex dynamics

In order to understand the global dynamic properties of
the one-dimensional map (24), the graph of g(") has to
be examined for ">0. It is a hyperbola with a vertical

asymptote at "¼ 0þ, whereas and for "!þ1 it
approaches the asymptote of equation

y ¼ 1�
Kn�

nþ 1ð Þu

� �
"þ

K n�� Bð Þ

nþ 1
: ð28Þ

So, if Kn�=ðuðnþ 1ÞÞ > 1 then the map g is decreasing,
and for "!þ1 it tends to �1 along the negatively

sloped line (28). In this case, any positive trajectory

converges to the steady state if the stability condi-

tion (25) is satisfied, whereas if (25) does not hold
a stable cycle of period 2 may be the unique attractor.

Instead, if Kn�=ðuðnþ 1ÞÞ < 1 then the map g is

unimodal (see figure 2(a)): it decreases for "< "min,
where

"min ¼ u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BK

nþ 1ð Þu� Kn�

s
;

and it increases for "> "min. As "!þ1 it approaches
the positively sloped line (28). This case may give rise to

more complex dynamic properties: in fact, in this case

the first period doubling bifurcation, at which the steady
state loses stability, is followed by other period

doublings and, in general, by the well-known period

doubling cascade, that constitutes the typical route to
chaotic behaviours for smooth unimodal maps. So,

complex dynamics, that include periodic cycles of any
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period and chaotic motion, can be obtained if the map is
unimodal and the fixed point is unstable, i.e.,

2ðnþ 1Þu

n�þ B
5K5

nþ 1ð Þu

n�
ð29Þ

This range is nonempty provided that B> n�, i.e., the
maximum price is greater than the aggregated marginal
cost. For example, if we consider the set of parameters
n¼ 2, B¼ 5, �¼ 1, u¼ 1, the range (29) is 6/7<K<3/2.
This is confirmed by a numerical computation of the
bifurcation diagram shown in figure 2(b). As far as the
minimum value c¼ g("min)>0, the asymptotic
dynamics are trapped inside the interval [c, c1], where
c1¼ g(c) is the rank-1 image of the minimum point (see
figure 2(a)). For increasing values of the adjustment
coefficient K, as shown in the bifurcation diagram of
figure 2, the minimum value c decreases until it reaches
the value c¼ 0 (for the set of parameters used to obtain
the bifurcation diagram of figure 2(b), this occurs at
K’ 1.3). This is the final bifurcation, after which the
generic trajectory involves negative values.
It is worth stressing that the same kind of bifurcation

diagram as the one shown in figure 2(b) can be obtained
by increasing the parameter B or by increasing the
parameter �, of by decreasing u.

6. The case of duopoly with heterogeneous players

In this section, we consider the case of two heterogeneous
firms, i.e., a duopoly system, and we give a detailed
study of the region of stability in the space of the
parameters of the learning process. In the case n¼ 2, the
dynamic model (12) becomes two-dimensional,

the learning process is given by the iteration of the two-
dimensional map T: ("1(t), "2(t))! ("1(tþ 1), "2(tþ 1))
defined by:

"1ðtþ 1Þ ¼ "1ðtÞ � K1

"
B

3

 
1�

u1
"1ðtÞ

!
þ
2�1 � �2

3u1
"1ðtÞ

þ
2�2 � �1

3u2
"2ðtÞ �

�1 þ �2
3

#

"2ðtþ 1Þ ¼ "2ðtÞ � K2

"
B

3

 
1�

u2
"2ðtÞ

!
þ
2�1 � �2

3u1
"1ðtÞ

þ
2�2 � �1

3u2
"2ðtÞ �

�1 þ �2
3

#
: ð30Þ

6.1 Stability

In order to study the stability of the unique positive
steady state �" ¼ �"1; �"2ð Þ ¼ ðu1; u2Þ, we consider the
Jacobian matrix (14) with n¼ 2 computed at the
equilibrium:

DTðu1;u2Þ

¼

1�
K1

3u1
Bþ2�1��2ð Þ �K1

2�2��1
3u2

�K2
2�1��2

3u1
1�

K2

3u2
Bþ2�2��1ð Þ

2
664

3
775: ð31Þ

The analysis of local stability is obtained by the standard
linearization procedure, that is by the study of the
eigenvalues, solutions of the characteristic equation
P(z)¼ z2�Tr � zþDet¼ 0, where Tr and Det are,
respectively, the Trace and the Determinant of the

Figure 2. (a) Graphical representation of the map g with the set of parameters B¼ 5, K¼ 1, �¼ 1, n¼ 2, u¼ 1. As far as the

minimum value c¼ f(xmin)>0, the asymptotic dynamics are trapped inside the interval [c, c1], where c1¼ f(c) is the rank-1 image of

the minimum point. (b) Bifurcation diagram for the one-dimensional map g with the same parameters B¼ 5, �¼ 1, n¼ 2 and K/u as

a bifurcation parameter in the range [0.8, 1.2].
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 Jacobian matrix (31). A sufficient condition for the
stability is expressed by the following system of
inequalities

Pð1Þ ¼ 1� TrþDet4 0;

Pð�1Þ ¼ 1þ TrþDet4 0; Det� 150 ð32Þ

that give necessary and sufficient conditions for the two
eigenvalues be inside the unit circle of the complex plane
(see, e.g., Medio and Lines 2001, p. 52, or any standard
book on discrete dynamical systems). The first condition
is always satisfied, hence the stability conditions reduce
to P(�1)>0 and Det� 1<0, that, after some algebraic
manipulations and a division by u1u2 become,
respectively

B �1 þ �2 þ Bð Þ
K1

u1

K2

u2
� 6 2�1 � �2 þ Bð Þ

K1

u1

� 6 2�2 � �1 þ Bð Þ
K2

u2
þ 3640 ð33Þ

and

B �1 þ �2 þ Bð Þ
K1

u1

K2

u2
� 3 2�1 � �2 þ Bð Þ

K1

u1

� 3 2�2 � �1 þ Bð Þ
K2

u2
50: ð34Þ

These two inequalities define a region of stability (we
may call it learning region) in the space of the parameters
of the model (30). Moreover, the conditions (33) and
(34) taken as equalities, i.e., the equations P(�1)¼ 0 and
Det¼ 1, define bifurcations hypersurfaces. This means
that when one or more parameters are varied so that the
equilibrium �" becomes unstable, if the stability loss is
due to a change of sign P(�1), i.e., of the left-hand side
of (33), then a flip (or period doubling) bifurcation
occurs, whereas if the stability loss is due to a change of
sign Det� 1, i.e., of the left-hand side of (34), then a
Neimark–Hopf bifurcation occurs.
It is useful to represent the learning region projected

in the two-dimensional plane ððK1=u1Þ; ðK2=u2ÞÞ, where

the bifurcation curves that bound the region of stability
are equilateral hyperbolas (see figure 3, where F denotes
the positive branch of the hyperbola P(�1)¼ 0, H
denotes the positive branch of the hyperbola Det¼ 1,
and the shaded area represents the learning region). If

�1
2
5�252�1 ð35Þ

then the two hyperbolas do not intersect, and the
learning region is bounded only by the flip bifurcation
curve (figure 3(a)), whereas if

2�25�152�2 þ B or 2�15�252�1 þ B ð36Þ

then the two hyperbolas intersect in the positive orthant
of the plane ðK1=u1Þ; ðK2=u2Þð Þ, so that the learning
region is bounded by an arc of the Neimark-Hopf
bifurcation curve and by two arcs of the flip bifurcation
curvey (figure 3(b)).

If the parameters K1=u1 and/or K2=u2 are varied, so
that they cross the boundary of the stability region along
the portion of curve F, then the equilibrium point "
changes from a stable node to a saddle point via a
supercritical flip bifurcationz. This means that, just after
the stability loss of ", the long run evolution of the
trajectories of (30) is characterised by the convergence to
a periodic cycle of period 2. So, although the learning
process is adopted during the repeated game, the
players will never learn the true demand function.
They will keep on underestimating/overestimating it,
as the subjective scale factors continue to oscillate.

When the cost parameters �1 and �2 are not too
different, according to (35), i.e., in the case of moderate
heterogeneity in costs, the steady state �" can lose
stability only via a period doubling bifurcation. This is
particularly true if players are identical, according to the
analysis in section 5.

Let us now consider what happens if the parameters
K1=u1 and K2=u2 are varied, so that they cross the
boundary of the learning region along the portion of
curve H. In this case, the equilibrium " changes from a
stable focus to an unstable focus via a supercritical
Neimark–Hopf bifurcationx. This means that the
long-run evolution of the trajectories of (30) converges

yFor �1¼ 2�2 the curve F degenerates into the pair of straight lines K1/u1¼ 6/(3�2þB) and K2/u2¼ 6/B. For �2¼ 2�1 the curve F
degenerates into the pair of straight lines K1/u1¼ 6/B and K2/u2¼ 6/(3�1þB).

zA rigorous proof of the supercritical nature of the flip bifurcation requires a centre manifold reduction and the evaluation of higher
order derivatives, up to the third order (see, e.g., Guckenheimer and Holmes 1983). This is rather tedious in a two-dimensional map,
and we prefer to rely on numerical evidence as a stable 2-cycle close to the saddle " is numerically detected whenever the parameters
cross the bifurcation curve F.

xAlso in this case, a rigorous proof of the supercritical nature of the Neimark–Hopf bifurcation requires a centre manifold reduction
and the evaluation of higher order derivatives, up to the third order (see, e.g., Guckenheimer and Holmes 1983). This is rather
tedious in a two-dimensional map, and we prefer to rely on numerical evidence as a stable orbit surrounding the unstable focus " is
numerically detected whenever the parameters cross the bifurcation curve H.
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to a quasi-periodic motion around the steady state.
Again, this implies that, on the basis of the adjustment
process adopted, players will never learn the true
demand function, as they will continue cyclically to
over/under estimate prices. This kind of route to
instability can only occur if the two players are
sufficiently heterogeneous with respect to cost para-
meters, according to (36). Moreover, if the difference
between the cost parameters is increased, then the arc of
the curve H included in the boundary of the stability
region becomes more extended (see figure 3(c)).
In summary, on the basis of the results on the stability

region in the plane K1=u1;K2=u2ð Þ, we can say that the
adjustment process can converge to the true demand
function provided that both the ratios K1=u1 and K2=u2
are sufficiently small. This means that, given u1 and u2,
the speeds of adjustment K1 and K2 cannot be too great,
i.e., a sufficiently small degree of inertia is necessary, in
order to ensure convergence of the adaptive learning
process to the true demand. Indeed, increasing one or
both speeds of adjustment may cause overshooting,
characterised by oscillations of the scale factors that
never settle to the true demand function. This result
confirms the observation made in section 4, assumption
(a), and the underlying idea that this learning process is
suitable for cautious firms.
We may also consider a different point of view. Given

fixed values of the speeds of adjustment K1 and K2

(or, equivalently, given levels of inertia of the players in
revising their scale factors), subjective price overestima-
tion (i.e., high values of u1 and u2) favours the
convergence of the learning process to the true demand,
and if we decrease u1 or u2 with fixed values of Ki the
steady state of the learning process may loose stability

through one of the bifurcations described above.
This suggests that when firms are very sensitive it’s
better for them to overestimate the price.

However, when (36) holds, so that the stability region
has a shape like the one shown in figure 3(b) or 3(c), it is
interesting to notice that some bifurcation paths exist
such that an increase of one or both the parameters Ki/ui
may have both a stabilizing and a destabilizing effect.
This occurs, for example, on the bifurcation path
indicated by the dashed line of figure 3(c). Along
the first portion of this path an increase of K1/u1 and/or
K2/u2 has a stabilizing effect, as �" from unstable becomes
stable via a backward flip (or period halving) bifurca-
tion, and if we continue to increase K1/u1 and/or K2/u2
along the same path we get a destabilising effect because
�" loses stability via a supercritical Neimark–Hopf
bifurcation.

Of course, this ‘‘double effect’’ can only occur in the
presence of a considerable degree of heterogeneity in
costs because, as remarked above, the portion of the
boundary of the learning region formed by the
Neimark–Hopf bifurcation curve becomes smaller and
smaller (until it disappears) as the heterogeneity in
marginal costs is reduced.

It is also worth noticing that, in any case, the
stability region shrinks as, ceteris paribus, the parameter
B increases, i.e., the maximum price is higher. In fact,
the intersections F1 and F2 of the curve F with
the coordinate axes of the parameter plane
K1=u1;K2=u2ð Þ are given by F1¼ (6/(2�1� �2þB), 0)
and F2¼ (6/(2�2� �1þB), 0). So, the convergence of
the learning process to the true demand is more difficult
if the inverse demand function is shifted towards higher
maximum prices. In other words, this learning process is
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Figure 3. Learning region projected in the two-dimensional plane (K1/u1,K2/u2). The shaded area represents the learning region,

the bifurcation curves that bound it are equilateral hyperbolas: F denotes the positive branches of the Flip (period doubling)

bifurcation curve, H the positive branch of the Neimark-Hopf bifurcation curve. (a) With the set of parameters B¼ 5, �1¼ 0.5,

�2¼ 0.8, the condition �1/2< �2<2�1 holds, then the two hyperbolas do not intersect, and the learning region is bounded only by

the Flip bifurcation curve; (b) With the set of parameters B¼ 5, �1¼ 0.5, �2¼ 1.3, the two hyperbolas intersect in the positive

orthant, so the learning region is bounded by an arc of the Neimark-Hopf bifurcation curve and by two arcs of the flip bifurcation

curve; (c) With the set of parameters B¼ 5, �1¼ 0.3, �2¼ 1.4, the arc of the curve H included in the boundary of the stability region

becomes more extended.
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better adapted for small markets. This confirms the
results on local stability for the n-dimensional model
given in section 4, assumption (a).

6.2 Instability and complex dynamics

The stability analysis given above is only based on local
stability and local bifurcations of the unique steady
state. With the help of some numerical simulations we
can explore what happens when the parameters are
moved far from the boundaries of the stability region,
and we can obtain some indications about the extension
and the shape on the basis of attraction of the steady
state or of the more complex attractors that replace it
when the parameters are out of the learning region.
Let us consider, first, the values of the parameters

B¼ 5, �1¼ 0.5 and �2¼ 0.8 that give the learning region
of figure 3(a). In this case, when the parameters are
inside the stability region the steady state is a stable
node, like in figure 4(a) obtained with u1¼ 1.2, u2¼ 0.8,
K1¼ 0.6, K2¼ 0.7, so that K1/u1¼ 0.5 and K2/u2¼ 0.875.
In this case, there are two real eigenvalues, one positive
and one negative. This means that any trajectory of (30)
starting close to the steady state �" converges to it
through oscillations of decreasing amplitude. In figure 4
the white region represents the set of points that
generate feasible trajectories (i.e., trajectories entirely
included inside the positive orthant) and converging to
the steady state, whereas the grey region represents the
set of points that generate unfeasible trajectories (i.e.,
trajectories involving negative values). Figure 4(b) is
obtained with a higher value of the speed of adjustment
K2, namely K2¼ 0.9, so that the ratio K2/u2¼ 1.125 is
outside the region of stability (close to the boundary, see
figure 3(a)). In this case, as expected on the basis of the

local stability analysis, the steady state is a saddle point,
because a period doubling bifurcation created a stable
cycle of period 2, represented by the two small dots in
figure 4(b). This means that none of the two firms learns
the demand and they keep on underestimating and
overestimating it. As K1/u1 and/or K2/u2 are further
moved away from the stability region, the periodic
points move away from the unstable steady state, i.e.,
the amplitude of the oscillations increase. Moreover,
other local bifurcations may occur, at which also the
cycle of period 2 loses stability and more complex
attractors may appear. For example, the two-cycle may
flip bifurcate to give rise to a stable cycle of period 4,
and so on, until chaotic attractors appear after the
well-known period-doubling cascade (see figure 4(c),
obtained with K2¼ 1.05 and the other parameters like in
the previous figures, so that K2/u2¼ 1.3125).

We now consider the case of a greater difference
between the cost parameters �1 and �2, so that the
condition (36) is satisfied and, consequently, the stability
region is also bounded by a portion of the curve H
where a Neimark–Hopf bifurcation occurs. Indeed, by
using B¼ 5, �1¼ 0.5 and �2¼ 1.3, like in figure 3(b), we
consider a set of parameters inside the stability region,
namely u1¼ 1.2, u2¼ 0.8, K1¼ 1.2, K2¼ 0.64, so that the
equilibrium, shown in figure 5(a) with its feasible basin
of attraction, is a stable focus (complex conjugate
eigenvalues of modulus less than 1). As expected, if we
increase K1 and K2, so that (K1/u1,K2/u2) crosses the
boundary H of the stability region, a supercritical
Neimark–Hopf bifurcation occurs, at which the steady
state is transformed into an unstable focus, and an
attracting closed invariant curve is created around it (see
figure 5(b), obtained with K1/u1¼ 1.3 and K2/u2¼ 0.9).
As the parameters K1 and K2 are further increased, so

0 
0 

3.5 3.5 3.5 

3.5 3.5 3.5 

(a) (b) (c) 

0 
0 

0 
0 

ε2 

ε1 
u1 

u2 

ε2 

ε1 
u1 

u2 

ε2 

ε1 u1 

u2 

Figure 4. The white region represents the set of points that generate feasible trajectories (i.e. trajectories entirely included inside the

positive orthant) and converging to the steady state, or another attractor around it, whereas the grey region represents the set of

points that generate unfeasible trajectories. (a) With B¼ 5, �1¼ 0.5, �2¼ 0.8 (like in figure 3b) and u1¼ 1.2, u2¼ 0.8, K1¼ 0.6,

K2¼ 0.7, the parameters are inside the stability region and the steady state is a stable node; (b) With B¼ 5, �1¼ 0.5, �2¼ 0.8,

u1¼ 1.2, u2¼ 0.8, K1¼ 0.6, K2¼ 0.9, the parameters are outside the region of stability (close to the boundary F, see figure 3a), the

steady state is a saddle point, and the only attractor is a stable cycle of period 2, represented by the two small dots; (c) With B¼ 5,

�1¼ 0.5, �2¼ 0.8, u1¼ 1.2, u2¼ 0.8, K1¼ 0.6, K2¼ 1.05, a chaotic attractor exist.

414 G.-I. Bischi et al.



D
ow

nl
oa

de
d 

B
y:

 [B
is

ch
i, 

G
ia

n-
Ita

lo
] A

t: 
13

:1
0 

29
 F

eb
ru

ar
y 

20
08

 

that K1/u1 and K2/u2 are further moved away from
the stability region, the size of the attracting closed
orbit around the steady state increases, and conse-
quently the long-run oscillations of the scale factors "i(t)
will increase their amplitude, according to the
Neimark–Hopf bifurcation theorem. The closed invar-
iant curve may change its shape and be replaced by a
more complex attractor, such as a chaotic ring
(see figure 5(c), obtained with K1¼ 1.63 and K2¼ 0.75).
In both numerical explorations, if the parameters are

moved away from the boundaries of the learning region,
more and more complex attractors can be observed that
characterise the nonlearning dynamics. These attractors
become larger, i.e., the long run dynamic of the learning
process is characterised by greater and lesser regular
oscillations until a contact between the boundaries of
the attractor and the boundary of the feasible region
occurs. This contact represents a global bifurcation
(called final bifurcation in Mira et al. 1996 and Abraham
et al. 1997, or boundary crisis in Grebogi et al. 1983) that
marks the disappearance of the attractor, i.e., after the
contact the generic trajectory is unfeasible. We do not
analyse in greater detail these dynamic properties of the
model, as in this context we are mainly interested in
studying the conditions for the occurrence of learning
dynamics. For this purpose, we explore the qualitative
changes of long-run behaviour of the learning process
when the heterogeneity condition (36) holds. We want to
see what happens when K1/u1 and/or K2/u2 are gradually
increased in such a way that we obtain two bifurcations,
which cause a transition between two different instabil-
ity situations separated by a ‘‘window’’ of stability. This
particular sequence will be illustrated by numerical
examples obtained following the bifurcation path, in the
space of parameters, represented by the dashed line in
figure 3(c). Increasing the value of the K1 parameter the

learning process goes through, first, a period halving
(or backward flip) bifurcation and then a supercritical
Neimark–Hopf bifurcation. In figure 6(a) the learning
process approaches, in the long run, a stable cycle of
period 2. In figure 6(b), obtained after increasing K1, the
learning process converges to the true demand (i.e., the
parameters are inside the learning region). In figure 6(c),
obtained after a further increase of the speed of
adjustment K1, the steady state is again unstable and
the long-run dynamics of the learning process are
characterised by quasi-periodic oscillations along a
stable close invariant orbit around the unstable steady-
state.

To conclude this section, it is worth to make some
remarks about the extension and the shape of the
feasible region, represented by the white area in the
figures 4–6. Of course, when the parameters are inside
the learning region, the extension of the feasible region
provides important information about the robustness of
the learning process. In fact, a knowledge of the feasible
basin of the steady state �" gives an answer to the
fundamental question: how far from true demand can
the guesses of the players be in regard to their subjective
scale factors, in order to guarantee the success of the
learning process? First of all, it can be noticed that the
maximum ‘‘distance’’ of a single subjective scale factor is
not important, as the distance of all the scale factors
must be considered. One firm may start its learning
process from an initial guess on "i very close to the
corresponding ui, even from "i ¼ �"i ¼ ui, and the
endogenous dynamics of the global learning process
may prevent it to use the true demand in the long run,
due to the initial errors of its competitors. This remark
may sound quite trivial for an interconnected nonlinear
dynamical system, but we think that it is worth stressing.
The idea is that a firm with the right guess thinks that his
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Figure 5. The condition �1/2< �2<2�1 is not satisfied and, consequently, the stability region is also bounded by a portion of the

curve H where a Neimark–Hopf bifurcation occurs. (a) Using B¼ 5, �1¼ 0.5, �2¼ 1.3 (like in figure 3b) and u1¼ 1.2, u2¼ 0.8,

K1¼ 1.2, K2¼ 0.64, the parameters are inside the stability region and the steady state is a stable focus; (b) B¼ 5, �1¼ 0.5, �2¼ 1.3,

u1¼ 1.2, u2¼ 0.8, K1¼ 1.56, K2¼ 0.72, so that (K1/u1,K2/u2) is outside of the learning region, close to the boundary H. The steady

state is an unstable focus, and an attracting closed invariant curve exists around it; (c) With B¼ 5, �1¼ 0.5, �2¼ 1.3, u1¼ 1.2,

u2¼ 0.8, K1¼ 1.63, K2¼ 0.75, the attractor is a chaotic ring around the unstable focus ".
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competitor is going to use his same demand function,
which is a mistake. However, based on the market price
information the competitor will select a wrong demand
function at the beginning of the second time period.
Depending on the initial incorrect guess, the trajectory
may converge to the steady state or may not.
As well, the boundaries of the feasible region may be

quite complicated, as it can be seen in the figures 4–6,
where some irregular boundaries can be seen
(figure 4(c)) as well as the presence of ‘‘islands’’ (or
‘‘holes’’) of the unfeasible region nested inside the
feasible basin of the attractor (figures 5 and 6).
A study of this kind of complexity requires an analysis
of the global dynamic properties of the map (30). In
particular, the creation of complicated topological
structures of the feasible region, such as the presence
of islands of the unfeasible set nested inside the feasible
region, is related to the fact that the two dimensional
map (30) is noninvertible (see, e.g., Mira et al. 1996, for
the general theory and methods for the study on
noninvertible maps, see also Bischi et al. 2000, Bischi
and Kopel 2001, Bischi et al. 2003a, for some recent
applications). We do not go deeper into this question, as
we prefer to develop these aspects of global dynamic
properties elsewhere. We just stress that the two kinds
of complexity, one related to a more and more
complex structure of the attractors that characterise
the nonlearning dynamics and one related to complex
topological structures of the feasible set, are not
generally related.
However, from our numerical simulations we

observed that increasing values of K1/u1 and/or K2/u2,
as well as increasing values of B, may cause both the exit
of the parameters from the learning region and a
reduction of the size of the feasible region. The effects

of the cost parameters �1 and �2 on the shape of the
feasible region do not seem to be so strong.

7. Conclusions

In this article we have analysed a single-product
Cournot oligopoly where firms have incomplete knowl-
edge of the demand function. This implies that they
compute both their own and their competitors’
‘‘optimal’’ production choices, by using a misspecified
slope of the demand function. Under the assumption
that each firm knows all the cost functions of the firms
of the oligopoly system, a dynamic adaptive process of
belief revision is proposed, based on the observed
discrepancy between forecasted and observed prices.
The adjustment process has been expressed in the form
of a nonlinear n-dimensional discrete dynamical system,
where n is the number of firms, such that its unique
steady state corresponds to a situations where all the
subjective believed demand functions are equal and
coincide with the true demand function. So, the stability
of the steady state means that true demand can be
learned by all the oligopolists even if they start from
misspecified (and different) initial guesses in the slope of
the demand function. This means that, even if firms
behave as myopic players that always follow the same
adaptive adjustment mechanism, under suitable condi-
tions they can ‘‘learn’’ the true demand in the sense that
in the long-run they become fully informed about the
game they are playing. However, the adjustment process
may not converge, i.e., the myopic firms continue to
misspecify the demand. We examined some bifurcations
that lead to instability of the steady state, and what kind
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Figure 6. Qualitative changes of long-run behaviour of the learning process when the heterogeneity condition (36) holds. Effects of

increasing values of K1/u1 and/or K2/u2 when we follow the bifurcation path, in the space of parameters, represented by the dashed

line in figure 3c. (a) With B¼ 5, �1¼ 0.3, �2¼ 1.4, u1¼ 1.2, u2¼ 0.8, K1¼ 0.84, K2¼ 0.7, the learning process approaches, in the long

run, a stable cycle of period 2; (b) With the same set of parameters, but increasing the value of K1 (K1¼ 1.2), the learning process

converges to the true demand (i.e. the parameters are inside the learning region); (c) This figure is obtained after a further increase of

the speed of adjustment K1 (K1¼ 1.44). The steady state is again unstable and the long-run dynamics of the learning process are

characterized by quasi-periodic oscillations along a stable close invariant orbit around the unstable steady-state.
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 of disequilibrium dynamics may occur when the adjust-
ment process does not converge.
Following Oechssler and Schipper (2002), the study

we have proposed in this article concerns the problem of
learning about the game, i.e., players, who have
incomplete knowledge about some elements of the
game, such as the payoff functions, try to learn about
such imperfectly known elements while playing the game
repeatedly. This kind of learning differs from the one
which is more frequently addressed in the literature,
related to learning how to play a game, where players try
to complete their imperfect knowledge on the behaviour
of the opponents (see, e.g., Fudenberg and Levine 1988,
and references therein).
Our results concerning the conditions for the local

stability of the steady state have allowed us to
understand the influence of the parameters of the
model on the convergence of the learning process.
We showed that, in general, excessive reactivity of the
firms as well as an excessive cost heterogeneity increase
the likelihood of failing convergence to the steady state.
The first statement is not surprising, as in adaptive
systems stability is often lost due to over-reaction of the
agents. However, our studies reveal that when firms are
very reactive the likelihood of learning the true demand
increases if they initially overestimate the price.
The second statement, concerning the role of firms’

heterogeneity, may deserve some economic reflections.
Loosely speaking, the intuition behind such statement is
that it is easier for a firm to predict the choices of the
competitors if they are similar.
Another parameter that has an important role in the

effectiveness of the learning process is the highest price,
which people are willing to pay when quantity tends to
zero, denoted by B in the model. In fact, the learning
process works better if B is decreased.
Moreover, the analysis of the particular case of n

identical firms showed that the learning process is helped
if the number of players is increased. The intuition
behind this may be expressed by the idea that if more
firms are present in the market, then more information
goes through it, so it’s easier for the firms to collect data
to learn the true demand function.
We can summarise all this by saying that the proposed

adaptive learning process is more suitable for a small
market with many similar cautious firms. These conclu-
sions have been drawn on the basis of the sufficient
conditions for the n-dimensional dynamical system
that describes the learning mechanism for a n-firms
oligopoly. However, the more detailed analysis of the
duopoly case showed that some counterintuitive effects
can be observed if the reactivity of firms is gradually
increased in the presence of strong heterogeneity. In
fact, a two-dimensional dynamical system is obtained in
the case of duopoly, and this allowed us to get a more

detailed study of the stability region in the space of the
parameters and of the local bifurcations that cause a loss

of stability of the steady state. This analysis has shown
that when the two firms have significantly different
marginal costs, some peculiar paths in the space of the
parameters exist such that a gradual increase of the
reactivity of the firms may lead from situations of

instability to stability and then to instability again,
through the occurrence of two different local bifurca-
tions. In other words, even if generally an increase in the
reactivity of firms has a destabilising role (as it may

prevent the convergence of the learning process) under
certain circumstances, starting from a situation of non
convergence, an increase of one or both the speeds of
adjustment may first have a stabilising effect and then
destablise again (i.e., two successive bifurcations occur

which cause a transition between two different instabil-
ity situations separated by a ‘‘window’’ of stability). This
‘‘double effect’’ can only occur in the presence of a
considerable degree of heterogeneity in costs.

With the help of numerical simulations, the size and
the shape of the basins of attraction, as well as the kinds

of attracting sets that characterise the nonequilibrium
dynamics of the learning process, are described. This
allowed us to gain some insight about the kinds of long-
run behaviour of the learning process when the stability
conditions are not fulfilled, i.e., firms do not learn the

true demand even after infinite repetitions of the game.
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