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For a class of rational triangular maps of a plane, characterized by the presence of points in
which a component assumes the form %, a new type of bifurcation is evidenced which creates
loops in the boundaries of the basins of attraction. In order to explain such bifurcation mech-
anism, new concepts of focal point and line of focal values are defined, and their effects on the
geometric behavior of the map and of its inverses are studied in detail. We prove that the
creation of loops, which generally constitute the boundaries of lobes of the basins issuing from
the focal points, is determined by contacts between basin boundaries and the line of focal val-
ues. A particular map is proposed for which the sequence of such contact bifurcations occurs,
causing a fractalization of basin boundaries. Through the analytical and the numerical study
of this example new structures of the basins of attraction are evidenced, characterized by fans
of stable sets issuing from the focal points, assuming the shape of lobes and arcs, the latter
created by the merging of lobes due to contacts between the basin boundaries and the critical

curve LC.

1. Introduction

In this work we present a new kind of bifurcation,
which causes the fractalization of the basin bound-
aries in a class of triangular maps arising in ap-
plicative contexts [Bischi & Naimzada, 1995; Bischi
& Gardini, 1996]. Such class of maps, deduced in
[Bischi & Gardini, 1996], has the triangular struc-
ture ' = ®(z, y); ¥’ = ¥(y), defined by

o = Pry+f(z)
T: L+py (1)

!

y'= 1l+py

where p € (0, 1) is a parameter and f: R— Ris a
function of class C2.

It is known that the asymptotic behavior of a
triangular map is related to the dynamics of a one-
dimensional map [Gardini & Mira, 1993], and this is
particularly simple in the class (1). But the deter-
mination of the basins of attraction requires a global
study of (1) in its two-dimensional phase space, and
in particular of its critical sets LC_; and LC that,
following the notation introduced in [Gumowski &
Mira, 1980, represent the sets of critical points and
of critical values respectively.

The peculiarity of the class of triangular maps
(1) is given by the fact that T is not defined in
the whole plane R?, due to the presence, in the
first component ®(z, y), of the denominator which

vanishes along the line §; of equation y = —%
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(singular line). In particular, the existence, on the
singular line, of points in which the function ®(z, y)
assumes the form g plays a special role in the char-
acterization of the basins of attraction, and can give
rise to sequences of bifurcations causing a fractal-
ization of basin boundaries. These particular points
will be called focal points following the terminology
introduced by Mira in his pioneering work [Mira,
1981].1

The basin bifurcations studied in the present
paper are not the result of a contact between basin
boundaries and critical curves (as often occurs in
noninvertible maps defined on the whole plane, see
[Mira et al., 1996]) and are only possible if focal
points are present.

Such basin bifurcations can also be seen in dif-
ferent kinds of noninvertible maps with vanishing
denominator, like those considered in [Bischi &
Gardini, 1995; Billings & Curry, 1996; Bischi &
Naimzada, 1996]. However, to our knowledge, this
is the first study describing the bifurcation mecha-
nism related to the presence of focal points.

Roughly speaking, these bifurcations may be
characterized by the creation of loops in basin
boundaries, issuing from the focal points, due to the
contacts of basin boundaries with the set of focal
values.

The plan of the work is as follows. In Sec. 2
some general features of the class of maps (1) are
given, concerning w-limit sets and basin boundaries,
together with the definitions, and the main proper-
ties, of the focal points and the set of focal val-
ues. In particular, in Secs. 2.1 and 2.2 the spec-
tral properties and the asymptotic behavior of (1)
are analyzed. In Secs. 2.3 and 2.4 the main re-
sults are given, concerning the properties of focal
points. Here a one-to-one correspondence between
the slopes of curves issuing from a focal point and
the position of the images along the line of focal
values is given, which is the basis to explain the
geometric action of T, often counterintuitive, near
the focal points and near the focal values. The
mechanism which creates “loops” issuing from focal
points, which generally constitute the boundaries of
“lobes” of attraction basins, is explained in detail.
The “fan” of stable sets issuing from the focal points
and the fractalization mechanism are explained in

'In our definition of focal point, given in Sec. 2, we require not
only that the map assumes the form % but also the existence
of finite limit values, The set of such values will be denoted
as the locus of focal values.

Sec. 2.4 on the basis of the propositions of Sec. 2.3.
In Sec. 2.5 some properties of the critical sets LC_;
and LC of the maps (1) are given, and in Sec. 2.6
a peculiar property of the inverses of T' is proved,
which may be considered an analytical proof for the
geometric behavior of 771,

In Sec. 3 a particular example, with the func-
tion f given by a cubic polynomial, is considered,
with particular emphasis on the structure of the
basins and their bifurcations. The parameters’ val-
ues at which the bifurcations creating lobes of the
basins occur are analytically determined, and the
particular structure of the boundaries separating
the basins of different coexisting attractors are ana-
lyzed through numerical exploration, guided by the
results of Sec. 2.

2. General Properties of the
Triangular Maps T

2.1. Domain and range of the
map T

The maps T of the form (1) are not defined in the
whole plane because the denominator of the first
component ®(z, y) vanishes in the points of the line
85 of equation y = —1 (singular line). Thus, in or-
der to have a well defined two-dimensional recur-
rence, we must exclude from the phase plane of T
the singular line as well as all its preimages of any
rank. These preimages belong to a sequence of lines
located below the singular line, i.e. in the half plane
with y < —‘lo. In fact the second component ¥(y)
of T can be easily inverted to obtain

y' -1
. (2)

from which we deduce that the points which are
mapped by 7T in the singular line are the points of
the line ;! of equation y = —1—:';3, which is below
s, and the points which are mapped in the singular
line after n iterations of T are located on the line
6;™ of equation

y:

1-— p'n—{-]
- ol pnt2 ()

T
>
k=0 _

y:— pn+1 =

All these lines are below 65, as 65 ("+1) s below

6;™ for each n > 1. Thus the phase space of the
recurrence defined by the map T is given by

A=R*\ |J 6™ (4)
=0



Int. J. Bifurcation Chaos 1997.07:1555-1577. Downloaded from www.worldscientific.com
by NATIONAL TAIWAN UNIVERSITY on 01/15/15. For persona use only

where §;" are defined by (3). Clearly T" maps A into
itself but not onto. In fact the range of T' cannot
include the z-axis because 3’ = 0 is got by (1) only
if y = —1, and such a value of y does not belong to
the domain of 7T'.

2.2. Spectral properties and
asymptotic behavior of T

The maps T are defined in every point of the
half-plane y > —%. Furthermore any trajectory
starting in the set A enters such a half plane. This
is due to the simple form of the second compo-
nent ¥(y) of the map T, whose iteration gives the
sequence

n—1 _ 1
gn =3P +p Yo = +o'%. (5)
k=0 b=p

For p € (0,1) such sequence is monotonically
convergent to
. 1

Yy = 1— p 3 (6)
increasing if yp < y*, decreasing if yo > y*. This
implies that the line y = y*, which is mapped into
itself by T, is globally attracting for the trajectories
of T. In other words, the limit set of any trajectory
of the map T belongs to the trapping line y = y*
(line of w-limit sets) and is an invariant set of the
restriction of T' to such line, which can be identified
with the one-dimensional map (limiting map )

2 = hy(2), ho(e) = pz+(1-p)f(). (1)
It is easy to see that the limiting map h,(z) has the
same fixed points as the map f(z), but this property
no longer holds for cycles of higher period, that is,
for k-cycles with k > 1.

Any k-cycle of the two-dimensional map T,
which necessarily belongs to the line of w-limit sets,
has the property that its projection on the z-axis is
a k-cycle of the one-dimensional map given in (7).
It is also immediate to see that the stability proper-
ties of the cycles of T, and all the local bifurcations
involving attracting sets of T', can be deduced from
the properties of h,(z). These are consequences of
the spectral properties of 7', whose Jacobian matrix
is the triangular matrix

(8)

DT(z, y) = [Jn le]

0 »
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where Jj; = %ﬂ and Jyg = %‘ On the

line of the w-limit sets DT becomes

Hy(2) o1 —p)z — f(z))

0 ) (9)

DT(m! y*) = [

where h/,(z) is the derivative of the limiting function
(7). DT(z, y*) becomes diagonal at any fixed point
(z*, y*), with eigenvalues

A= h:,(a:*) =p+(1—p)f(z) and I =p.
(10)

The eigenvalue A; coincides with the multiplier of
the fixed point z* of the one-dimensional limiting
map (7), and A\ always satisfies the constraints for
the stability, since 0 < p < 1. Moreover, being
DT(z*, y*) a diagonal matrix, we have that the
invariant set issuing from the fixed point and re-
lated to A, is the line y = y*, whereas the local
stable manifold issuing from the fixed point and
related to A2 is the line z = z*. Similarly, a set
Ce = {(z1, ¥*), .-, (zk, ¥*)} is a k-cycle of T, with
k > 1, if and only if {zy,..., 2z} is a k-cycle of
hy(z), and the Jacobian matrix of T*, given by
DT* = [1%_, DT(;, y*), is upper triangular with
eigenvalues

k
§1 = H hi(z;) and sy = ok

i=1

(11)

The eigenvalue s; coincides with the multiplier of
the k-cycle {z1,..., zx} of the map h,(z), and the
related eigendirection is along the line y = y*,
whereas the eigendirection related to s is trans-
verse to that line. Hence any cycle C, of T possesses
a local stable set W transverse to the line of the
w-limit sets. If the corresponding cycle {x,..., 4}
is attracting for the limiting map h,(x) then Cj
is an attracting node for the map T, whereas if
{z1,..., zx} is repelling for h, then Cy is a sad-
dle for T (note that a cycle of T cannot be a focus
because the eigenvalues (11) are real, and cannot
be a repelling node because 0 < sy < 1). Thus in
any case we have a local stable set transverse to the
line of w-limit sets.

From the arguments outlined above the dynam-
ics of the triangular maps (1) appear to be rather
simple since the w-limit sets of T only depend on
the one-dimensional limiting map (7). For each ini-
tial condition in the domain A, defined in (4), the
trajectory approaches the line of the w-limit sets
y = y* and may be either divergent (i.e. convergent
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to an attractor at infinite distance on that line, say
(o0, y*), represented by a point of the Poincaré
Equator), or bounded (i.e. convergent to some ab-
sorbing interval or cyclic intervals on that line).

However the analysis is not so simple if we want
to determine the basins of the different coexisting
attractors, such as D, defined as the set of points
of A generating unbounded trajectories of T', or,
equivalently, the complementary set A\ Dy, which
is the set of points having bounded trajectories.
Also the points of this set (which may be the whole
phase plane A if Do, = ) may belong to the dif-
ferent basins of coexisting bounded (or at finite dis-
tance) attracting sets. The determination of the
basins is very important also in applications, and
the study of the limiting map h,(x) gives no help
in this direction. It is necessary to consider the
global two-dimensional properties of T, and its crit-
ical curves when T is noninvertible.

In general the boundaries of a basin are ob-
tained by taking the stable sets of some cycles on
it. In the case of maps (1) such cycles can only
be of saddle type, and located on the line of w-
limit sets. To get the stable set W* of a saddle it
is enough to take the preimages of any rank of a
local stable set W; , that is W= Us_, T ™(W.).
As explained above W} is transverse to the line
y = y* and its preimages cannot have other cycles
at finite distance as limit sets, since all the cycles
of T belong to the line y = y*. Thus, due to the
expansive character of ¥~1(y), defined in (2), such
preimages must necessarily reach, in a finite num-
ber of steps, the line y = 0, which does not belong
to the range of T. However we shall see that all
these preimages must necessarily cross the singu-
lar line y = —% through points in which the first

component ®(z, y) assumes the form %.

2.3. Focal points and focal values:
Definitions and properties

Definition 1. A focal point of a map T(z, y) is
a point (zp, yr) in which at least a component
of T assumes the form 3 and for smooth simple
arcs transverse to the singular line, with paramet-
ric representation <y(¢) such that y(0) = (zp, yr),
lim¢ o T(y(t)) is finite. The set of all such finite
values, obtained with different curves v, constitutes
the set of focal values.

Of course, for the class of triangular maps (1)
this can only occur for the first component ®(z, y)

and, since the denominator only vanishes in the
points of the singular line ¥y = —1, all the focal
points of T' must necessarily belong to this line. On
this line the numerator of ®(z, y) becomes f(z)—=,
hence it vanishes if and only if z satisfies f(z) = =z,
i.e. at every fixed point of the function f(z) [and
thus also of the limiting map (7)]. It follows that
the limit of ®(z, y) as (z,y) — (o, —%), where
xo is not a fixed point of f(z), is either (400, 0)
or (—oo, 0), and a focal point is necessarily of type
(z*, —%), where z* is a fixed point of f(z). How-
ever, according to the definition given above, we
have also to see whether the function ®(z, y) takes
finite limit values as (z, y) — (=¥, —%). For this
purpose let us consider a smooth simple arc -y, trans-
verse to the singular line, represented by the
parametric equations

z = @(t) = z* + two + t2o1 + O(t)
¥(t) : 4 y=¥(t) = —5 +to + P9 + O(1),

with g #0
(12)

with O(t) and O(t) representing higher order terms.
We get

. * ©o 1y %
fim T(0) = (o + =) - 1),0)

Let m = %g— be the slope of the tangent to the
smooth arc 7 in the point (z* —7), assuming
m — oo when ¢ = 0. Then we have

lim T(y(8) = (um, 0),
(13)

with Um =25 +

It is clear that on varying m in R\{0} all the points
of the line y = 0 are obtained, provided that z* is a
fixed point for which f’(z*) # 1. Thus the line &y,
of equation y = 0, represents the set of focal values
for the maps (1). A situation in which f'(z*) = 1
can be considered as a bifurcation case, which may
change the number of fixed points of f(x), and thus
of the focal points of T". Considering a generic case
we shall assume the following:

Assumption (H). We assume that any fixed point
z* of f(x) satisfies f'(z*) # 1.
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We can now give the following:

Any point Fy = (zf, —%), where
xy 15 a fized point of f(z) satisfying Assumption
(H), is a focal point of the class of maps (1). For
each focal point the set of focal values is the line &
of equation y = 0.

Proposition 1.

From the computation of (13) it is clear that if
we consider an arc 7 deprived of the point on the
singular line, say v = y_ U4 where y_ and 74 de-
note the portions below and above the singular line
respectively, and such that the closure 7 is a smooth
curve through a focal point, then T'(7y) is a boundedl

Basin Fractalization Due to Focal Points 1559

arc, T(v) = T(y-) U T(74), with T'(y-) and T(v3)
below and above the line of focal values respectively,
and such that the closure T'(y) is smooth in the
point (um, 0) of the focal line, u,, depending on
the slope m of ¥ in the focal point according to
(13) (see the schematic picture in Fig. 1(a). It is
worth noticing that different arcs 7y,, such that 75
have all the same tangent of slope m in the focal
point, are mapped into arcs T(v,) such that T(v,)
all cross the line of focal values at the same point
(m, 0) but with different slopes, as schematically
shown in Fig. 1{b). This property can be proved by
direct computation. In fact, considering an arc
parameterized as in (12), we have that the tangent
to the arc T(v,) in (um, 0) has slope S given by

P2}

S =

2
poatd + 0 | 52 (") = g1+ £(@)l] + ool - £(a")

Assuming o and 9 fixed and varying ¢; and 1,
in order to get a family of arcs vy, all tangent to the
same line, we see that the slope S takes different
values.

A different situation is obtained if we consider
the image by T of an arc v = y_ U~ as above, but
such that the closure ¥ intersects the singular line
in a point (zg, —%) which is not a focal point. By
using the parametric representation

. [F= e =20ttt 00
P v =wt) = L+ tho+0(), %o #0
(14)

we get lim_o(onys) T(1(2)) = (Z22E0) g) =
(£ 00, 0) or (F o0, 0) according to (f(xp)—x¢) > 0
or (f(zo) — zo) < 0 respectively. In any case T'(y_)
and T(y4) are two disjoint umbounded arcs,
T(v-(t)) below and T(v4(t)) above the line of fo-
cal values, as qualitatively shown in Figs. 1(c) and
1(d). These results are summarized by the following
propositions:

Proposition 2. Any smooth simple arc v = y_ U
Y4+, where v~ and vy denote the components below
and above the singular line respectively, such that
the closure 5 has a tangent of slope m # 0 in the
focal point F = (a*, —2), is mapped by T into a
bounded arc, T(v) = T(y-) U T(y+), with T(y-)
and T(v+) below and above the line of focal val-
ues respectively, and such that the closure T(vy) is
a smooth curve through the point (u,(x*), 0) of the

I

focal line with

um(z®) =2" + —m (15)

Different arcs va such that 75 have all the same
tangent in the focal point F with slope m # 0 are
mapped into different arcs T(vy) such that each
T(va) crosses the line of focal values in the point
(um(x*), 0) with slopes generally different.

Proposition 3. Any smooth simple arc v = y_ U
Y+, where y_ and 4 denote the components below
and above the singular line respectively, such that
the closure 7 intersects the singular line at a point
which is not focal, is mapped by T in two disjoint
unbounded arcs, doubly asymptotic to the line of fo-
cal values, with T'(y-) and T(v+) below and above
the line of focal values respectively.

Remark 1. We may ask what happens when an arc
v is tangent to the singular line in a focal point,
i.e. when m = 0. In this case the limit of T{+(t))
goes to infinity, that is, the corresponding point
um(z*) — too as m — 0, the sign depending on
the sign of (f'(¢*) — 1) and on the arc y. Thus
for such an arc we have a behavior of T'(y) simi-
lar to that occurring when « intersects the singular
line at a non focal point, that is, two disjoint un-
bounded arcs doubly asymptotic to the line of focal
values.



Int. J. Bifurcation Chaos 1997.07:1555-1577. Downloaded from www.worldscientific.com
by NATIONAL TAIWAN UNIVERSITY on 01/15/15. For personal use only

1560 G.-I. Bischi & L. Gardini

T(y)

T
&

T,

Line of

ds

Jocal values

singular
L

So

7( (x., -%)

$(%)-%o>0

(c)

Fig. 1.

$(x,)-%.< 0

(d)

(a) Smooth arcs crossing the singular line &, through a focal point, with different slopes, are mapped by T into smooth

arcs crossing the line of focal values § at distinct points whose coordinates are given by (15). (b) Smooth arcs crossing the
singular line é,, through a focal point, with the same slope, are mapped by T into different arcs crossing the line of focal
values 6y at the same point. (¢) and (d) A smooth arc crossing the singular line §,, through a non focal point, is mapped by
T into two disjoint unbounded arcs asymptotic to the line of focal values éq.

Proposition 2 suggests some consequences when
we consider the preimages. The endomorphism in
(1) may be a map with a non unique inverse, and
the number of distinct inverses of T' depends on
the function f(z), which is assumed to satisfy As-
sumption (H). In fact from Proposition 2 we can
deduce that if f(z) has N fixed points (hence also
T has N fixed points) then the line of focal val-
ues must belong to a region, say Zy, whose points
have N distinct rank-1 preimages, as stated in the
following:

Proposition 4. Let f(x) satisfy Assumption (H).
If f(z) has N fized points then the line of focal val-
ues belongs to a region Zy where T has N distinct
INVEerses.

In fact, under the assumptions of this proposi-
tion T has N disjoint focal points. If we consider
disjoint neighborhoods U; of the N focal points Fj,
i=1,..., N (deprived of the points of the singular
line) then, for each i, W; = T(U;) is a neighbor-
hood of the line of focal values y = 0. The region
W = ﬂ 1 Wi # 0 is an infinite strip containing
the line of focal values. Let us denote by T; ! the
inverse of T" associated with the focal point Fl, that
is, the inverse of T' such that T, }(W) C U;. Then
T has N distinct inverses defined in W, and each
of them is associated with a focal point F;, i =
1,..., N.

From Proposition 2 we can also deduce the be-
havior of the rank-1 preimages of a smooth arc
which intersects the line of focal values, say n =
17— Uny, where _ and n4 denote the components
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below and above the line of focal values respectively,
and such that the closure 7 is smooth at the point
(u, 0) of intersection with that line. From Proposi-
tion 4 we can take the arc 7 entirely belonging to the
region Zy. Then the NV distinct rank-1 preimages
of n, say ’1}_1(?3), t=1,..., N, are arcs such that
each closure T."!(n) intersects the singular line at
the focal point F; = (zf, —1), with slope m; given

by the relation m;(u) = % obtained from (15)

(see Fig. 2(a), where N = 2 is assumed). Note
that the slope m;(u) is independent of the slope of
the arc 7 and only depends on the focal point F;
and on the coordinate u at which 7 intersects the
line of focal values. If we consider different arcs

!
&,
(wo) >
\ K -
o g /;:s» ) T
3_\ /;?“
& &s
/ E
)
A -4 /
T(m) Ta(n)
(a)
LR
13
'
i,0)
/ -4
\ T
\ |/ )
ds
K ¥
N
3 7
%\

Fig. 2. (a) The rank-1 preimages of a smooth arc crossing
the line of focal values 6 are arcs which “cross” the singu-
lar line §, through a focal point with slope given by (16).
(b) The rank-1 preimages of smooth arcs crossing the line of
focal values &y at the same point (u, 0) with different slopes
m; are given by arcs “crossing” the singular line 6, at each
focal point F; with a slope only depending on u and F;.
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Na = Na— U 7o+ belonging to region Zy and such
that all the closures 7, are smooth and intersect
the line of focal values at the same point (u, 0) but
with different slopes, then the rank-1 preimages of
No» 58y T *(a), i = 1,..., N, are such that all

the arcs T; *(7a), on varying a, intersect the sin-
gular line at the focal point F; with the same tan-
gent of slope m;(u) [see the qualitative picture in

Fig. 2(b)]. In fact, assuming that one arc T,;_I(na)
has a different slope, say p, then by applying the
map T to it we get an arc crossing the line of fo-
cal values at the point (u(p), 0), different from the
starting point (u, 0), which is a contradiction. Thus
Proposition 2 admits a specular proposition which
can be stated as follows:

Proposition 5. Any smooth arc 7 = n— U ny4,
where n— and 14 denote the components below and
above the line of focal values respectively, such that
the closure 7 is smooth at the point (u, 0) of inter-
section with that line, has preimage(s) T, *(n), i =
1,..., N, such that each closure T, '(n) intersects

the singular line at the focal point F; = (zF, —%
with slope ,
fa) —1
mi(u) = —/———. 16

From Propositions 2 and 5 the following correspon-
dence is obtained

Correspondence (slopes «—— focal values) The
map T defines a one-to-one correspondence between
the slopes of the lines y = —%'+ m(zx — z}), m # 0,
issuing from a focal point F; = (zf, —-%), and the
points (u, 0) on the line of focal values, given by

m—(u,0): u=uzf+ ____f’(:cg‘) 1
ren-1 O
(‘IL, 0) —m: m= m .

Some consequences of the Correspondence
(slopes «— focal values), important for the charac-
terization of the basin boundaries and their bifur-
cations, are deduced by considering a smooth arc 7
such that 7 intersects the line of focal values at two
points, say (u, 0) and (v, 0), as shown in Fig. 3(a).
In this case 7 can be considered to be made up of
three pieces, i.e. 7 =, U 54 U 12, where 7; and 79
are below the line of focal values and 7, is above
it. As before, we can consider the arc n entirely
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belonging to the region Zy. Then, regardless of the
values of v and v, the N rank-1 preimages of 7,
say T.'(n), i = 1,..., N, are arcs such that each
T, !(n) has a loop in the focal point F; = (z¥, —%)
(see Fig. 3(a), where it is assumed N = 2). And
also, as the slopes m;(u) and m;(v) are indepen-
dent of the slope of the tangent to the starting
arc 7 at the points (u, 0) and (v, 0), we can con-
sider different arcs 7, such that all the closures
Tle are smooth and intersect the line of focal val-
ues in the same points (u, 0) and (v, 0) but with
different slopes, and entirely belonging to the re-
gion Zy. Then the rank-1 preimages of 7., say
T;l(?}a), fori=1,..., N, and for any «, are such
that the arcs T, (7)) form loops in the focal points,
all having the same tangents in each F; with slopes

1+
(/)—\ J.
0 o,
" / ", )\m / -l-'i
\ 7 /
\[ /7 N~ / J
7Ey F
/\ NN
o 3 /\‘@-}
G\ 5
/&
(a)
ds
0} {wr
_r-d

(b)

Fig. 3. (a) The preimage(s) of an arc crossing the line of
focal values 6, at two distinct points is (are) given by loop(s)
issuing from the focal point(s). (b) The rank-1 preimages of
a family of arcs crossing the line of focal values 6o at the same
two distinct points are given by N families of nested loops
issuing from the focal points, where N is the number of focal
points.

m;(u) and m;(v) according to (16) [see Fig. 3(b)].
Thus we have the following:

Proposition 6. Let n = n; Un4. U be an arc, with
components 171 and 12 below the line of focal values
and 04 above it, such that the closure 7 is smooth at
the points (u, 0) and (v, 0) where it crosses the line
of focal values. Let T ' be an inverse of T which
applies to all the points of 1. Then the preimage

T Y(n) is such that its closure T; '(n) intersects the
singular line at a focal point F; = (7, -—%;) forming
a loop with double point in F;. The slopes of the
two tangents in F; are given by m;(u) and m;(v)
according to (16).

We close this section with some remarks.

Remark 2. We are tempted to include the focal
points in the domain of T. In this case the new
map, say T, is single-valued in the set A and set-
valued at the focal points, since T(F;) = 6y, where
dg denotes the line of focal values, for any F;. Con-
sequently, the range of T includes also the set of

. =—1 R e s .
focal values, and each inverse T, ~ of T' is infinite-

to-one in the line of focal values, being T;l(ég) =
F;, i = 1,..., N (assuming that N focal points
exist). However this extension is not satisfactory.
In fact, if we consider a ball B as that shown in
Fig. 4, deprived of its intersection with the line of
focal values, then for any inverse T{l we have that
T:'(B) is an eight-shaped region, deprived of the
focal point, and the points of B are in one-to-one
correspondence with those of 7.7!(B). This corre-
spondence is no longer preserved if we consider T.

o

ds

V!’ é oy

Fig. 4. Each preimage of a ball B, located partly above and
partly below the line of focal values &, is an eight-shaped
region since the segment of ¢ inside B is “focalized” into
each focal point F; by the inverse T;*.

14
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A good choice should be that of considering each
focal point as an infinitesimal circle, and assigning
the appropriate set of values to F; (a subset of &)
obtained by the Correspondence (slopes «—— focal
values). This is just what T" does.

Remark 8. The properties of the focal points F; and
of the set of the focal values &g for the class of maps
(1), given in Propositions 2-3 and 5-6, can be ex-
tended, with few changes, to a generic rational map
with a vanishing denominator.

Remark 4. Even if for the class of maps studied in
this paper we have that all the points at which a
component assumes the form % are focal points, for
a generic rational map this may not be true. In fact
a point at which a component of a rational map
assumes the form % but the limits of T'(y(t)) are
divergent along any curve 7 through it, does not
behave as a focal point, but like any other point
of the singular set (in which only the denominator
vanishes). An example is the map considered in
[Billings & Curry, 1996|, where two points exist in
which a component of the map becomes %, but only
one is a focal point.

Remark 5. Consider a fold bifurcation of f(z)
which creates a pair of new fixed points of f(z).
Such a bifurcation creates a new pair of focal points
for the triangular map T. At the bifurcation a fixed
point £* of f(z) exists at which f’(£*) = 1. In such
a situation the set of focal values associated with
the point F = (£, —%) is formed by the only point
(&%, 0), according to (13). Thus the point F does
not behave as a focal point, but we can considered
it as a “germ” of true focal points since it splits
into two focal points, whose set of focal values is
the whole line y = 0, just after the bifurcation.

2.4. Fan of stable sets issuing
from the focal points and
fractalization mechanism

Although the line of focal values &, of equation
y = 0, does not belong to the range of 7', it belongs
to its domain A, and from (5) the image of rank-n
of such line belongs to the line 6, of equationy =Y,
where =

R (18)
i.e. the sequence {6,} is formed by lines parallel to
the line of focal values 6 and convergent to the line
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of the w-limit sets y = y*, that can be denoted by
bcot

T"(60) C 6, with 6, =05 as n— 0.

(19)

From this observation follows that the stable set of
any saddle cycle of T, obtained by taking the preim-
ages of a local stable set, is made up of branches
issuing from the focal points. In fact, the preim-
ages of any local stable set, transverse to the line of
w-limit sets do0, necessarily go back to the line of
focal values dp in a finite number of steps. Thus any
stable set must be made of branches which “cross”
the singular line at the focal points (for short, when
we say that a branch “crosses” a point of the singu-
lar line, and in particular a focal point, it is implic-
itly understood that the point of the singular line
is to be excluded). This means that, generally, a
fan of branches of stable sets issues from any focal
point, as we shall see in the example of Sec. 3 (see
also [Bischi & Gardini, 1995]).

Proposition 7. All the branches of stable sets of
all the saddle cycles of T are “focalized”™ through
the focal points of the maps (1).

From (2) we know that all the preimages of a
line 6, belong to the line é,-1, n > 1. In particular
’I}'l(él) = p for any inverse of T' defined on the line
61 of equation y = 1. If we consider a smooth arc 7
crossing the line §; at a point {uy, 1) we have that
the arc 7, !(n) intersects the line of focal values &,
at a point (up, 0) and T 2(n) “crosses” the singular
line at a focal point F; [see the qualitative picture
in Fig. 5(a)]. The Fig. 5(b), where the situation
of an arc 7 intersecting the line &, at two points
is considered, is self-explaining. If we consider an
arc 7 which intersects both the lines §; and &y at
two points, like in the Figs. 5(c) and 5(d), then
Ti‘l(n) “crosses” the singular line at a focal point
F; forming a loop which in turn intersects the line &g
at two points, say po and go. Thus ’I};Q (1) “crosses”
again the singular line at the focal point F; with
another loop whose slope depends on pg and gp. We
may have the second loop included in the previous
one, as in Fig. 5(c), or out of it, as in Fig. 5(d).
Taking into account the fact that the line of focal
values belongs to a region Zy, if the arc n entirely
belongs to Zy then T-1(n) includes T, *(7),i =
1,..., N, that is N disjoint lobes (as in Fig. 5(e),
where N = 2 is considered). If also these loops are
all inside Zy then each of them possesses IV lobes as
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Fig. 5. The preimages of any arc crossing any line §,, and in particular those of the local stable sets of any saddle cycle
located on 6., are “focalized” in the focal points after a finite number of steps.

preimages, so that the rank-2 preimages mz(n)
where 1; and iy take any value in {1,..., N}, in-
cludes N? lobes.

It is clear now that if we consider an arc n which
intersects the lines 6;, j =0, 1,..., (n — 1) at two
points, then the set of rank-n preimages T "(n)
includes at most N™ lobes issuing from the focal
points Fy,..., Fy.

This behavior, applied to the stable set of some
saddle cycle, is at the basis of the fractalization of a
basin boundary, as it will be shown in the example
of Sec. 3.

2.5. Critical curves LC_; and LC
of maps T

From (8) the Jacobian of T is
oy + f'(z

J(z, y) T+ o

It is immediate to see that any map (1) is good
in Whitney’s sense (see [Whitney, 1955]), that is
at any point (z, y) of the domain A it is either
J(z,y) # 0 or J(z, y) = 0 with grad(J(z, y)) # 0.

In fact grad(J(z, y)) = [p1+py, %D] has the

= det(DT(z, y)) =
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second component always different from zero when
J(z, y) # 0. For a good map the set J(z,y) =0
consists of smooth curves in A ([Whitney, 1955]). If
T has more that one inverse then the set defined by
the equation J(z, y) = 0 includes the critical curve
of rank-0, denoted by LC_ (see [Mira et al., 1996]).
It may happen that LC_; C {(z, y)| J(=z, y) = 0},
but for maps (1) LC_{ is exactly such set,
ie.

0 _=

(21)
In fact J(z, y) cannot be factorized further, and it

takes opposite signs on the two sides of the curve of
the equation

LC_ ;= {(I’ y)

py+f'(x) _ 1}.

y= —%f’(w) (22)

which is the closure of LC_q, say LC_;.
point (z, y) € LC_; we have f'(z) # 1, i.e.

For any

(@) € LC-y = y = ~% f(z) and fl(z)#1.

We note that while in maps defined in the whole
plane the critical curve LC_; separates regions
where the Jacobian takes constant sign, in ratio-
nal maps this may not be true. The class of maps
(1) is an example: In fact in the region where y >

—1f'(x) we have J(z, y) > 0 (<0) for points above

(below) the singular line y = —%.
A point (z, y) € LC_; is mapped by T into a
critical value, or critical point of rank-1

1, fl@)—=zf'(=) .,
S
for any z such that fl(z)#1.
(23)

If LC_; intersects the singular line, necessarily at
a point which is not focal if Assumption (H) holds,
from Proposition 3 we have that LC includes dis-
joint branches doubly asymptotic to the line of focal
values.

The vector tangent to LC_; in (z, y) has the
direction

T(:B, y) = [Tla 72] = [ Py f”(fﬁ)] (24)

1+y

and the eigenvectors Vy and V, of DT'(z, y) which,
when (x, y) € LC_;, correspond to the eigenvalues
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81 = 0 and sy = p, are given by

Vo(z, y) =[1, 0] (25)
and

Thus when f“(z) # 0 the tangent to LC_; at
its point (z, y) is not parallel to the eigenvector
Vo(z, y). This is a sufficient condition for (z, y) to
be a fold-point of LC_;. Its image is a fold-point
of LC, with tangent at the point T'(x, y) given by
V,(x, y). This means that any smooth arc v, with
tangent at (z, y) which is not parallel to Vy(z, y) is
mapped by T into a smooth arc tangent to LC at
T(z,y), i.e. “folded” on LC, and thus with tangent
at T'(z, y) parallel to V,(z, y).

At a point (z, ys) € LC-1 such that f"(z;) =
0, the tangent to LC_, is parallel to the eigenvec-
tor Vo(zs, ys). Thus the point (x5, ys) may be a
cusp-point of LC_; and its image by T a cusp point
of LC, according to Whitney [1955]. By applying
Whitney’s second order condition we get

9 —(DTT) + 19— 9

i E» (DT'T)
ot
=- m}'m(%)vp(ms, Ys) -

Thus if f*(xzs) # 0 the point (zs, ¥) is a cusp-
point. The slope of the tangent to the cusp of LC
is given by the slope of V, (x5, ys).

These properties of the critical curves of T are
summarized in the following:

Proposition 8. Let f(z) be a nonlinear function
satisfying Assumption (H). Then

(i) The critical curve LC_; has equation y =
o' (@), y# -

(11) For any point (3: y) € LC_; f'(z) # 1 holds;

(iii) If € emists such that f'(¢) = 1 then LC_y in-
tersects the singular line in the non-focal point
('51 ‘—%);

(iv) If LC_; intersects the singular line then LC
has branches doubly asymptotic to the line of
focal values;

(v) If f"(z) # 0 then the point T(z, ~—f’(a:
LC 1s a fold-point;

(vi) If f”(a:) = 0 and f”"( ) # 0 then the point
T(x, —1f'(z)) € LC is a cusp-point;
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(vil) The tangent vector to a fold-point or a cusp-

point T(z, ~—f"(m)) € LC has slope %&l}ﬁ

2.6. A peculiar role of the line
of focal values

That the preimages of points near the line of focal
values are “focalized” at the focal points can also be
seen directly by computing the rank-1 preimages
(z,y) of a given point (z', y') in the range of T,
i.e. with ¥’ # 0. From the second component of T
we get

-1

xr1r=y
y(=', y) e

and z(z', y') is a solution of the implicit equation

(27)

f@)+ (@ -1z -2y’ =0. (28)
Asy — 0, y(o', y) — -% and z(z', y') — z},
where 27 is a fixed point of f(z). In other words, if
y — 0, T, M ', o) = (2(2/, ), y(a', ¢')) tends to
the focal point F; = (a7, —%), i=1,..., N, being
N the number of fixed points of f(z) which satisfies
Assumption (H).

The property of mapping arcs with different
slopes into arcs with the same slope is peculiar of
the critical set LC_;. As we have seen in Sec. 2.3
this behavior occurs for the inverses of T' defined
in a neighborhood of the line of focal values. This
property of the line of focal values (perhaps unex-
pected) is stated in the following proposition:

Proposition 9. Let f(x) satisfy Assumption (H).
For each of the inverses Ti‘l of T the Jacobian det
(DT, ¢')) — 0 as (2', y') tends to the line of
focal values.

In fact

1
det(DT(z(z', o), y(z', ¥'))’

det(DT; (2, ¢)) =

and from (20) we have

!

PNy Y —
@)= ply' + f'(z(2', y') = 1) 0

as y' — 0 because z(z', ') — xF as y' — 0, where
x7 is a fixed point of f(z), so that the denomina-
tor tends to p(f'(z}) — 1) # 0 if Assumption (H)
holds.

det(DT; !

From Proposition 8, if we consider the eigen-
values o, and oy of DT{I(Q:', y'), where o1 — 0 as
y' — 0, with associated eigenvectors Wy and W,
respectively, and apply T ! to arcs “crossing” the
line of focal values at a point (z’, 0), we obtain arcs
“crossing” the focal points F; with the same tan-
gent, with slope equal to the slope of W, as y’ — 0.
Let us verify that the value m;(y') given in (16) is
obtained following this procedure.

From the matrix DT given in (8) and from (28)
we get

a' —z(z’, y)
Y+ fl(z(z’, y')) — 1
0 a3

a
DT '@, y) = |

_,_y._ﬂ
i G-t And o2 =

The respective eigenvectors are

with eigenvalues o; =

WO(xfi yr) = [11 0]
and
Py p(xf - x(mfs y')
W)= [ e o=t

As y' — 0, considering the inverse T.;I, the eigen-
plz’ -zt

vector W, (.7:;, y;) — [_’T_TI_}-,

(xz¥)-1 . . !
E(F'_a that is the value m;(z") expressed by (16),

as expected.

1} whose slope is

3. A Particular Map T with
Three Focal Points

In this Section we consider a particular map (1),
obtained with a cubic function f(z), defined by

ful@) = pz(1l - a:)2 (29)
so that T becomes
o = Pyt pa(l - x)?
T : 1+ py (30)

=1+4py.

For p > 0 the function (29) satisfies Assumption
(H) at the three fixed points

\f x§=1+%. (31)
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From Proposition 1 the map (30) has three focal
points

B = (x;;, _-:;) . k=1,2,3  (32)

with z} given by (31). The limiting function (7),
which governs the asymptotic behavior of T, is given
by the cubic map

ho() = z(p(1 — p)a® — 2pu(1 — p)z
+u(l—p)+p).

From the study of the derivative of (33) it is
immediate to see that if

(33)

3p

>
w>1

(34)

then (33) is a bimodal map, with critical points

1 3p .
c.1==12—4/1 — ——— local maximum
'T3 ( u(1 = p) ) ( )

and

3p ..
2441 — —m— local minimum
( p(1 ~p)) ( )

(35)

W=

Cf_]_ =

otherwise it is an increasing map. As stated in
Sec. 2.2, this map has the same fixed points (31)
as the function f,(x), and from the study of h/,,(z)
it is easy to see that z% is a repelling fixed point
for each p > 0, p € (0,1). Also z} is repelling
for p > 1 (following this section, we shall only con-
sider p > 1) whereas z% is an attracting fixed point
provided that

1 2
1<p<(1+1_p) . (36)
At p=(1+ 1-}5)2 a flip bifurcation occurs at which
z3 becomes repelling and a stable cycle of period
two is created. If p is further increased the pe-
riod doubling route to chaos occurs, which creates
cycles of each period 2%, k € N, and then ape-
riodic (i.e. chaotic) bounded attractors. As it is
well known, a bimodal map can have two coexist-
ing bounded attractors (see e.g. [May, 1983; Mira,
1987; Milnor & Thurston, 1988; Uhl & Fournier—
Prunaret, 1995]). That this also occurs for the map
(33) can be seen from the bifurcation diagrams of
Fig. 6, obtained with a fixed value of the param-
eter p and by varying the bifurcation parameter
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p. The upper bifurcation diagram shown in Fig. 6
is obtained by taking the critical point c_; as the
initial condition for each value of u, whereas the
lower one is obtained with the initial condition al-
ways taken at the other critical point, ¢’ ;. From
a comparison of the two bifurcation diagrams it is
evident that two simultaneous attractors coexist for
p values taken in a given range. For example, with
p = 0.18 and u = 8.93 an attracting cycle of pe-
riod 2 coexists with an attracting cycle of period 4,
as it is shown in the two Koenig-Lemeray stair-
case diagrams of Fig. 6. Moreover, for p > 1, posi-
tively (negatively) unbounded dynamics of the lim-
iting map (33) are obtained with initial conditions
z > x3 (z < z}). However unbounded dynamics
can also be obtained starting with initial conditions
taken from subsets of the interval (z}, 23) whenever
the relative maximum value ¢ = h,,(c_;) is greater
than z3. The creation of such “holes” occurs when
hou(c-1) = z3 as in Fig. 7(a), where the “germs”
of the holes, given by the critical point c_; and its
preimages, are indicated. In Fig. 7(b), obtained
with a greater value of y, the holes inside (z7, z3),
whose points generate unbounded sequences, are
evidenced by the thicker portions on the diagonal,
and a typical divergent trajectory, starting from one
of the holes, is shown. In this case any bounded
sequence generated by h,,(x) enters the absorb-
ing interval (¢/, ¢}) where ¢ = h,,(c’ ;) is the lo-
cal minimum value and ¢] = h,,(c'), but when
po reaches the value at which ¢ = h,,(z}) a fi-
nal bifurcation occurs at which the absorbing inter-
val is destroyed, and the generic trajectory of the
map (33) is divergent. This condition represents,
for the limiting map (33), the contact of the ab-
sorbing interval (¢, ¢}), with the basin of infinity
[Fig. 7(c)].

As stressed in Sec. 2.2, a complete knowledge
of the properties of the limiting map is necessary in
order to understand the asymptotic dynamics of the
triangular map 7. The map T, defined in (30) has
three fixed points, located on the line of the w-limit
sets y = y*, given by

Qk = (xL y*):

with z} given by (31) and y* given by (6). For p > 1
both @1 and Q3 are saddle points with unstable
manifold along the invariant line ¥y = y* and local
stable set on the lines perpendicular to it, i.e. z = 2}
and x = z3 respectively. The fixed point @y is an
attracting node as long as (36) holds and becomes

k=1,2,3
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Fig. 6. Coexisting bounded attractors of the bimodal limiting map h,(z) can be evidenced by comparing the two bifurcation
diagrams obtained with the initial condition taken in the relative maximum point c_; and the relative minimum point ¢’
respectively. With the value p = 8.93 of the bifurcation parameter an attracting cycle of period 2 coexists with an attracting
cycle of period 4, as shown in the two Koenig-Lemeray staircase diagrams.
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Fig. 7. Three situations which characterize the behavior of the limiting map h,(z). The thicker portions of the diagonal
represent sets of points which generate unbounded trajectories of h,(z). In (a) the condition ¢’ = h,(c_,) = 3 hold, hence
the critical point ¢_; and its infinite preimages represent “germs” of holes, inside the interval (z7, 23), whose points generate
unbounded trajectories of h,(x). In (b), obtained with a larger value of p, some of these holes are shown together with a
typical diverging trajectory starting from one of these holes. In (c) the condition ¢} = h,(¢') = z§ holds. This represents
the “final bifurcation” at which any bounded attractor of the limiting map (and hence also of the triangular map T') is

destroyed.
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In (a) the three branches of the critical curve of rank-0 LC_i, located on a parabola and separated by the singular

line §,, are shown. In (b) the corresponding three branches of the critical curve of rank-1 LC are shown.

a saddle point, with unstable set along the line y =
y*, after the flip bifurcation occurring at p = (1 +
li—p)z, at which an attracting node cycle of period
2, say {(xz1, ¥*), (x2, ¥*)}, appears, where {1, 22}
is the stable 2-cycle of the limiting map (33). More
generally, as stated in Sec. 2.2, every attractor of
the limiting map (33) gives a corresponding attrac-
tor of the triangular map (30), located on the line
y=y"

As stressed in Sec, 2, the delimitation of the
basins of the different attractors of the map T,
requires a global study of the map (30), taking into

account its critical sets and the particular prop-
erties related to the presence of focal points. The
map (30) is a noninvertible map defined in the set A
given in (4). Its Jacobian matrix has determinant
J(z, y) vanishing along the curve of the equation
1
y=—E(3:v2—4:r:+1), y#E——. (37)
p P
According to part (i) of Proposition 8 the curve

LC_, for the map (30) is formed by the three arcs
of the parabola (37) separated by the singular line

5. In Fig. 8 these arcs are denoted by LC’E’B , which
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represents the portion of parabola above the sin-
gular line and containing the vertex V = (%, 3&?),
which from Proposition 8 is the unique cusp-point
(in Whitney’s sense) of LC_1, LCE’I) , which is the
infinite branch below the singular line intersecting
the y-axis in the point E = (0, —%), and LCE?,
representing the other infinite branch below the
singular line.

Also the curve LC of critical values, obtained as
LC =T(LC_,) with LC_; given by (37), is formed
by three branches, as shown in Fig. 8, given by
LC@ = T(LC(_GI)), located above the line of the
focal values y = 0 and containing the cusp-point
V' =T(V) = (85, 452), Lc® = T(LCY), tan-
gent to the y-axis at the point E' = T(E) and
Lcte) = T(LCEI)), tangent to the line z = z3 at
the point T'(z3%, 1 — f'(x3)). According to Proposi-
tion 8 the line of focal values &y, of equation y = 0,
is an asymptote for all the three branches, since the
curve LC_; “crosses” the singular line out of the
focal points.

After some algebraic manipulations the follow-
ing expression of LC is obtained:

2 pw+3-=3y
x_27y l,u-l—gy 9+ (p+3—3y)/ . l

y#0.
(38)

It can be noticed that LC intersects the line of
w-limit sets y = y* only when (34) is satisfied, and
in this case the x coordinates of the two intersec-
tion points are the critical values of the limiting
map, given by

c=hyu(c_1) (maximum value)
and (39)

¢ = hpu(cy) (minimum value)

where c_y and ¢ ; are given in (35).

According to Proposition 4 the line of focal val-
ues y = 0 belongs to a region Z3, whose points
have three distinct rank-1 preimages. This region
extends to the whole zone between the branches
LC® and LC and below LC@. The comple-
mentary zones of the range of T', separated from Z3
by the branches of LC, are denoted as Z; regions,
since their points have a unique rank-1 preimage.
For any point (2, ¥’) in the range of the map (30),
i.e, with ¥’ # 0, the coordinates (z, y) of the preim-
ages (one or three) can be obtained as the solutions

of the system of equations

pd = 2ux? +(p—1+y)z—2"y =0

_y-1 (40)

P

obtained from (28) and (27) respectively. As al-
ready stressed in Sec. 2, even if the line of focal
values 6y does not belong to the range of T', we can
consider such line as belonging to region Z3, in the
sense that points arbitrarily close to this line have
three distinct preimages that are close to the three
focal points (32).

By using (40) we can obtain the boundary 0D,
which separates the basin D, defined as the set of
points which generate unbounded trajectories of the
map (30), from the set of points generating bounded
trajectories. As the boundary of Dy, must include
the saddle fixed points @Q; and Q3, and no other
cycle of T, exists out of the line y = y*, the whole
boundary @Dy is given by the stable sets of these
two saddles, formed by the union of the preimages
of their local stable sets, lying on the lines z = zj
(say wi) and z = z§ (say ws) respectively:

9D = W*(Q1) UW*(Qs)

where

W (@Q1)=J T7(w1)

n=0
and
We(Qz) = | T7"(ws).
n=0

The set of rank-1 preimages of a point of wy, say
(0, ') with ¢’ # 0, can easily be obtained from (40).
In this case the cubic equation which implicitly de-
fines the = coordinates of the preimages assumes the
simpler form

w(pa —2uz+p—-1+9)=0 (41)
which always admits the solution x = 0, corre-
sponding to the preimage 77 (0, ¥') = (0, %) lo-
cated on the same line w; [this is consistent with the
fact that every line « = z}, with z} given in (31), is
an invariant line for the triangular map (30)]. Two
further preimages

10y = (1o, flY ¥t
T2 (Oa Yy ) - (1 L » P )
and (42)

1—94" ¢ -1
T".’)_l(oi y;)= (1+ Ty'a y_p_"")
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exist provided that ¢ < 1, that is, if the point
(0, y') belongs to Z3, being (0, 1) the intersection
point of LC' with the line w;. The two branches of
preimages () form the set of rank-1 preimages of w;
out of itself, which will be denoted as wl‘l. Such a

set is located on the parabola of the equation
w
y= ——p(x -1)? (43)

which represents the closure wi', since wi! is

deprived of the points on the singular line. The
parabola (43) has vertex (1, 0), at which the two
branches () merge, belonging to the curve LC_4,
and crosses the singular line at the focal points F»
and F3, according to Proposition 7 (see Fig. 9).
Preimages of a higher rank of the line wy, which
can be obtained by applying 7! to the points of
wi'!, are all in the half-plane below the singular line
for each value of the parameters. This is due to the
fact that the vertex of wy' always belongs to the
line y = 0 independently of the parameters’ val-
ues, so that wy 1 has no arcs above the line of focal
values.

A more interesting situation is obtained when
the preimages of the line w3, of equation z = z3, are
considered. Also in this case the analytical expres-
sion of the rank-1 preimages can be easily obtained.
In fact the cubic equation in (40), with the coordi-

nates of the generic point of ws, given by (1+3?, y')
with g’ # 0, becomes

(@ — a3)(uz’ + (Vi - pz+y) =0.

Thus 'mE is always a solution, ie. T3 1(9:3, y') =
(z3, yp;l), being the line z = «} invariant for T,
and other two preimages,

T (23, o)
u—ﬁ-\/(n—ﬁ)2—4uy’ y -1
[
and (44)
Ty (23, )
u—\/ﬁﬂ/(u—\/ﬂ)hﬁlw’ y -1
()

exist provided that 3 < (o _4f)2, the right hand
side of this inequality being the y coordinate of the
intersection of LC with the line w3. Also in this
case the set of preimages of the line w3 out of itself,
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say w3 , is located on a parabola, of equation

1 2
= — [ —dpx? + dp(p — Bz + p?
Y 4p’u_[ " plp — )z +p

=20 =2/ — 4p - 1], (45)

which crosses the singular line at the focal points
Fy and F5, and has vertex

o~ ((-6) ) w

on the curve LC_; (Fig. 9).

Differently from w; ! the vertex of the parabola
wy ! moves upwards as the parameter p increases
(or p decreases). As long as the vertex B is below
the line of focal values &y all the preimages of wy !
are below the singular line §,, and lobes of D, are
not present [this is the situation shown in Fig. 9(a)].
If we increase the value of parameter p the curve
w3 ! becomes tangent to the line of focal values when
the y coordinate of the vertex B vanishes, i.e. at g =
1 = 9. At this value of the parameter p the first
bifurcation of Dy, due to a contact of 8D, with
the line of focal values &y, occurs. In fact, for p > p3
an arc of wy L containing the vertex B, is above the
line of focal values and intersects it at two points.
In such a situation Proposition 6 implies that the
three preimages Ts-_l(w:,,_l), i =1,2, 3, form loops
issuing from the focal points F;, ¢ = 1, 2, 3, so that
the effect of this basin bifurcation is given by the
first creation of lobes of Dy, [see Fig. 9(b)]. These
three lobes belong to the set of preimages of rank-2
of ghe local stable set w3, and will be denoted as
W3 .

If p is further increased other bifurcations, at
which new lobes of D issuing from the focal points
are created, occur when old lobes reach the line of
focal values. In fact when the vertex B of wy 1
reaches the line 8;, of equation y = 1, its rank
one preimages B_j;, which are on the top of the
three lobes wy 2 reach the line 8y of focal values.
This gives the second basin bifurcation, occurring at
p = p4 = (14+2y/T+ p)?, at which 3 new lobes are
created, issuing from the focal points. These lobes,
rank-1 preimages of the three lobes w; 2 whose up-
per parts are above the line of focal values &y for
p > 3, will be denoted as w3 [see Fig. 10(a)].

Following the same arguments outlined at the
end of Sec. 2.4, we can state that at any contact
of wy! with a line of the sequence {6,, n > 0},
where §, has equation y = Y,, with Y,, given by (18),
causes the creation of new lobes, say w; ™, issuing
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a8

Fig. 9. The grey-shaded area represents the basin Ds of diverging trajectories of the map T,,, the white region represents
the basin of bounded trajectories. In both these figures all the bounded trajectories converge to the same attractor, namely
the fixed point z3 in Fig. 9(a) and an attracting 2-cycle in Fig. 9(b), represented by the brown dots on the line §, of the
w-limit sets. The boundary D which separates the two basins is given by the stable sets of the two saddles Q] and Q3,
obtained as the union of the preimages of their local stable sets, denoted by w; and wg respectively. In (a) p < pj and in

(b) pi < p < p3.
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(a) p=05 p=13

2 j/ O,
o
I+p - : %
1 ,\I‘C-l 2 3
®, :
0 .3 _3 u.s ao
-.% 8,
2%
- .2 .8 .8 101 x
b
(®) pP=05 pn=13362
y puccts

. .2 .8 .8 4 X

Fig. 10. (a) The vertex B of the parabola w3’ is above the line §; and below the line 82, i.e. p3 < p < p3, so that the 3*
new lobes created at the contact of the three lobes wj ? with 6y can be seen, denoted by w3 . (b) The contact of wy' with
LC causes the merging of lobes and the creation of “arcs”, bounded half-moon shaped regions of basins issuing from the focal
points.
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- : .8 e .0 1.4

Fig. 11. (a) The veriex B of the parabola w; ' is tangent to the line §. of w-limit sets, and the tangency point belongs to
region Z; where only one inverse exists. This implies that the infinite preimages T; *(w3 '), i = 1,..., oo, are lobes all tangent
to the same line (even if only two of them, on the left of w3, are visible in the figure). (b) The vertex of the parabola w; ' is
now above the line §.. and the same is true for all its preimages. The intersection of these infinite lobes, accumulating near
the y-axis, and the line é-, gives infinite holes of the limiting map h,.(z) as shown in Fig. 7(b).
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from the focal points (32). Such contact occurs at
the u value at which the vertex B of wy ' belongs
to the line 0,, i.e. when

p=ph=1+2V/1+p¥s)

with Y, given in (18).

Besides the creation of new lobes, through the
sequence of bifurcations described above, due to
contacts between 9D, and the line of focal values,
merging of lobes can occur as a consequence of con-
tacts of D4 and the critical curve LC. For exam-
ple, in Fig. 10(b) the portion of 8D, formed by w;*
is tangent to LC at the point P. The two preim-
ages of P, T;}(P) = T;'(P), located on LC.y,
are the contact points of the two rightmost lobes
Wq 2 and preimages of higher rank of P are con-
tact points of all the lobes which are preimages of
these [see Fig. 10(b)]. This basin bifurcation, due
to a contact of 8Dy with LC, is a known bifur-
cation, whose mechanism is described in detail in
[Mira et al., 1996] and in the previous works of the
same authors, like [Mira et al, 1994; Mira & Rauzy,
1995]. The merging of lobes causes the creation of
disjoint regions of the basin of bounded trajecto-
ries surrounded by D, which will be denoted by

(47)
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the term “arcs”. This may be considered as a new
mechanism of formation of basin structures similar
to the “islands” described in [Mira et al., 1994].
Note that, after the contact with LC, wy ! enters
the region Z, so further contacts of this curve with
the lines &, occur at points of Z;.

As p is further increased the parabola wj
crosses other lines of the sequence {8,} until it
reaches the line of the w-limit sets 6. The contact
between w3 ' and the line of w-limit sets occurs at

1

po=pk, where uf, = limp_oo ptf = (1+2 -lf—P !

At this value of g an infinite number of lobes
has been created, preimages of wy 1 and all these
infinite lobes, located on the left of the isolated
lobe given by Tfl(w; 1), are tangent to the line
y = y* [Fig. 11(a)]. In Fig. 11(a) infinite preim-
ages of the point B accumulate on the fixed point
Q7 = (0, y*), although only two of such lobes can
be seen. All these infinitely many lobes intersect
LC, and their preimages have infinitely many “con-
nections” on LC_y, thus creating infinite “white”
and “grey” half-moon shaped arcs between the fo-
cal points F, and Fj [although only few of them are
visible in Fig. 11(a)]. This bifurcation on the line
of w-limit sets can be well understood if we look at

p=05 p=158

LC

-3

~at w1 3 «5

1

«? 9 1e1
X

Fig. 12. A contact of 8D, with the line §, of the w-limit sets occurs at a point of the region Z3 where three distinct inverses
exist. The contacts of A0, with the infinite sequence of lines {§,} has created an exponentially increasing number of lobes
issuing from the three focal points. At the contact the basin boundary assumes a fractal structure.
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the restriction of T to this line, that is, the limiting
map (33). In fact at p = p%, the critical curve
LC crosses the line of w-limit sets in the saddle
point Q3 = (z3, ¥*). This means that the local
maximum value of the limiting map ¢ = hpu(c-1)
coincides with z3, as in Fig. T(a). The tangency
point of wy ! with 8 is the critical point c_; of the
limiting map h,,(x), and the other infinite contact
points of 8D, with the same line are given by the
infinite preimages ¢, = h_7'(c_1), n € N, which
accumulate at z = 0.

As pt is increased beyond pl., as in Fig. 11(b),
all these lobes cross the line of the w-limit sets thus
giving infinite holes on that line [compare Fig. 11(b)
to Fig. 7(b)).

In the meantime, due to the increase of u, also
the lobes Ty (w3 ') and T; '(ws '), that merged at
the contact of wy' with LC, have moved upwards
and, crossing more and more lines I¥, have created
more and more new lobes. The merging of the two
lobes gives an arc of D, say A;, which at its cre-
ation only intersects the line é;, but as p increases

intersects all 6, at points belonging to Z3. This
causes a sequence of bifurcations whose effect is a
process of creation of lobes typical of the fractal fig-
ures. In fact, when A; intersects 62 then 3% lobes
intersect &g and 3% lobes issue from the three focal
points, and so on. All the lobes issuing from the
focal points Fy and F3 always belong to region Z3,
hence, when A; intersects &, at least 2" lobes in-
tersect &y and 2"+ new lobes issue from the focal
points Fy and F3. As n — oo we obtain a fractal
basin because the lobes created by this process can
be put in a one-to-one correspondence with the el-
ements of the “middle-third” Cantor set. Also in
this case the limiting value of yu, say pp, at which
Aj has a contact with the line of w-limit sets can he
computed from the limiting map (33), since it cor-
responds to the situation shown in Fig. 7(c). Thus
the value of up can be deduced from the condi-
tion ¢) = hpu(c’) = 23, where ¢’ represents the lo-
cal minimum value of the limiting function. When
1t = pup infinite contacts of 8D, with the line §p oc-
cur, since the infinite lines of the sequence &, have

Fig. 13. This figure is obtained with the same values of the parameters p and p as those used in Fig. 6, so that two
simultaneous bounded attractors, namely an attracting 2-cycle and an attracting 4-cycle, coexdst. In this case the basin of
bounded trajectories can be further subdivided into the basins of the two attracting cycles. In this figure the red colored
region represent the set of points whose trajectories converge to the 2-cycle, the yellow one represents the basin of the 4-cycle.
The cycles are represented by small dots on the line 6. of the w-limit sets: The white dots represent the 2-cycle and the black
ones represent the 4-cycle. The two basins are clearly characterized by structures of lobes and arcs issuing from the focal

points,
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been crossed, so that all the lobes have been created
and have reached the limit line 6o, (see Fig. 12).
Also for the map T this is the final bifurcation at
which any bounded absorbing set is destroyed (see
[Mira et al., 1996] or [Abraham et al., 1996]), and
the generic trajectory of the triangular map (30) is
divergent. :

At this value of the parameter x the boundary
of Dy has assumed a typical fractal structure, and
if x is further increased infinite holes are created
inside the interval (2}, #3) where the w-limit set was
located. Thus the bounded attractors are destroyed
and only a repelling invariant Cantor set survives.

When more coexisting bounded attractors of
the map T are present on the line of w-limit sets,
like in the case shown in Fig. 13, the set of points
generating bounded trajectories, represented by the
white areas in the Fiigs. 10-12, can be further subdi-
vided into the basins of the different attractors. In
Fig. 13, obtained with the same set of parameters
as in Fig. 6, the basins of attraction of the stable
node-cycles of period 2 and 4 are represented by dif-
ferent colors, red and yellow respectively, whereas
the grey regions represent, as in the previous figures,
the basin of infinity. This figure clearly shows that
the boundary which separates the two basins of the
bounded attractors is formed by fans of curves is-
suing from the three focal points. Such a boundary
is formed by the stable sets of saddle-cycles located
between the attracting node-cycles. As explained in
Sec. 2, these stable sets, obtained as the union of all
the preimages of the local stable of the saddle cy-
cles which are always transverse to the line y = y*,
must necessarily cross the singular line through the
focal points, thus giving basin structure with lobes
and arcs.
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