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Routes to Complexity Induced by Constraints
in Cournot Oligopoly Games with Linear
Reaction Functions®

Gian Italo Bischi and Fabio Lamantia

Abstract

Within a classical discrete-time Cournot oligopoly model with linear demand and quadratic
cost functions, minimum and maximum production constraints are imposed in order to explore
their effects on the dynamic of the system. Due to the presence of such constraints, the dynamic
model assumes the form of a continuous piecewise linear map of the plane. The study of Nash
equilibria of the oligopoly game, together with an analytical and numerical investigation of the
different kinds of attractors of the dynamical system, shows how the presence of production con-
straints generates so called border collision bifurcations, a kind of global bifurcations recently
introduced in the literature on non-smooth dynamical systems, which gives rise to a quite rich
spectrum of dynamic scenarios, characterized by drastic changes in the qualitative dynamic prop-
erties of the system.

*We thank Carl Chiarella, Michael Kopel and Ferenc Szidarovszky for their illuminating discus-
sions on oligopoly models as well as Laura Gardini and Iryna Sushko for helpful comments and
suggestions about border collision bifurcations.
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1 Introduction

Starting from the pioneering mathematical description of duopoly competition pro-
posed by Cournot (1838), oligopoly models have always held a fascination for
mathematically inclined economists (as stated in Shubik (1981)) as well as for eco-
nomically inclined mathematicians. Indeed, after the duopoly model with linear de-
mand and cost functions proposed by Cournot, where a Cournot-Nash equilibrium
is achieved in the long run as the game is repeated by two players endowed with
naive expectations, oligopoly models have been extended into different directions.
A stream of literature studies the stability of oligopolistic markets as the number of
competing firms increases (see Teocharis (1960), Hahn (1962), Okuguchi (1964),
Okuguchi and Szidarovszky (1999)). In particular, Teocharis (1960) proves that
a discrete time Cournot model with linear demand and cost functions is only sta-
ble in the case of duopoly. Moreover, McManus and Quandt (1961), Hahn (1962),
Okuguchi (1964) show that this statement depends on the kind of adjustment con-
sidered and the kind of expectations formation. However, Fisher (1961) stresses that
in general “the tendency to instability does rise with the number of sellers for most
of the processes considered”. Edgeworth (1925), by using prices as decision vari-
ables (following the suggestion in Bertrand (1883)) and assuming quadratic costs,
stresses that prices may never reach an equilibrium position and continue to oscil-
late cyclically forever (of course, his conclusions also apply to Cournot models,
as quantities and prices are related by an invertible, linear in this particular case,
demand function).

Other extensions consider duopoly models with nonlinear demand and/or
cost functions, by which several kinds of reaction functions can be obtained, such
as non monotonic ones, which may lead to periodic or quasi-periodic or chaotic
behaviors (Rand (1978), Dana and Montrucchio (1986), Puu (1991), Kopel (1996),
Bischi, Chiarella, Kopel, and Szidarovszky (2010)). In particular, by using a for-
mal approach based on symbolic dynamics, Rand (1978) showed that a Cournot
tatonnement with unimodal reaction functions can be chaotic, i.e. erratic bounded
oscillations arise with sensitive dependence on initial conditions. Postom and Stew-
art (1978), pp. 424-425, claim that ”adequate mathematics for planning in the pres-
ence of such phenomena is a still far distant goal”. Economic motivations for uni-
modal reaction functions have been given in Van Huyck, Cook, and Battalio (1984)
and Van Witteloostuijn and Van Lier (1990) in terms of goods that are strategic
substitutes and complements in the sense of Bulow, Geanokoplos, and Klemperer
(1985), whereas Dana and Montrucchio (1986) proved that any kind of reaction
function can be obtained from a sound economically microfounded problem with
suitable demand and cost functions. Puu (1991) shows how an hill-shaped reaction
function can be obtained by using linear costs and an hyperbolic demand function,
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i.e. a demand with constant elasticity, and that complex behavior emerges provided
that agents are sufficiently heterogeneous; in Kopel (1996) and Bischi and Laman-
tia (2002) unimodal reaction curves are obtained starting from a linear demand
function and a nonlinear cost function with positive cost externalities. In all these
papers complex (periodic or chaotic) dynamics arise through the well-known period
doubling route to chaos, typical of smooth discrete dynamical systems. Moreover,
global dynamical properties have been studied in Bischi, Mammana, and Gardini
(2000), Bischi and Kopel (2001), Bischi and Lamantia (2002), Agliari, Gardini,
and Puu (2006) where the method of critical curves for continuously differentiable
maps is used to bound chaotic attractors and to characterize global bifurcations
that cause qualitative modifications of the basins of attraction. Indeed, all these
oligopoly models are based on the implicit assumption that firms can adjust outputs
to their desired levels, without constraints on minimum and maximum production.
Such simplifying assumption implies that the dynamic models obtained are smooth,
hence the standard results on stability and bifurcations of differentiable dynamical
systems can be applied. Only a few works on the subject relax these assumptions
(see for instance Bischi et al. (2010), Puu and Norin (2003), Tramontana, Gar-
dini, and Puu (2011)). As a matter of fact, with such constraints firms’ production
strategies over time often assume the form of piecewise smooth maps, i.e. dis-
crete dynamical systems whose state space can be partitioned into regions where
the functional form of the map changes (see Mosekilde and Zhusubaliyev (2003)
and Di Bernardo, Budd, Champneys, and Kowalczyk (2008)). This implies that,
beside the standard bifurcations (either local or global), well-studied for smooth
systems, other interesting dynamic phenomena are possible, such as those related
to the existence of borders (or switching manifolds) in the phase space where the
functional form defining the map changes, and thus to discontinuous Jacobian. The
collision of an invariant set of the piecewise smooth map with such a border may
lead to a bifurcation often followed by drastic changes in the dynamic scenarios.
The dynamic phenomena related to these contacts are nowadays called Border Col-
lision Bifurcations, a term introduced in Nusse and Yorke (1992) and then adopted
by many authors. The simplest case occurs when a fixed point (or a periodic point)
crosses a border of non differentiability in a piecewise smooth map. In Banerjee,
Karthik, Yuan, and J.A. (2000a) and Banerjee, Ranjan, and Grebogi (2000b), it is
shown that such a contact may produce any kind of effect (transition to another
cycle of any period or to chaos), depending on the eigenvalues of the two Jacobian
matrices involved on the two opposite sides of a border.

In this paper we consider a classical Cournot oligopoly model, proposed
in the recent book Bischi et al. (2010), where linear demand and quadratic cost
functions (linear cost can be obtained as a particular case) give rise to continuous
piecewise linear reaction functions, characterized by the presence of points of non
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differentiability due to the presence of upper and lower output constraints. Our
goal is to show how complex dynamic behaviors may arise through non standard
routes, characterized by border-collision bifurcations. We show that the lines of
non-differentiability, due to the presence of constraints, can have several effects on
the global dynamics observed. In fact, contacts of invariant sets with switching
manifolds may lead to the sudden appearance or destruction of periodic or chaotic
attractors; moreover such lines of non-differentiability may play the role of criti-
cal curves, so that they can be used to characterize some contact bifurcations that
change the structure of the basins and, together with their images, they can be used
to bound chaotic attractors, as suggested in Mira, Gardini, Barugola, and Cathala
(1996), see also Bischi et al. (2010).

In particular, we intend investigate the role of the total number of firms,
agents’ heterogeneity and the inertia of the adaptive adjustments on the overall
dynamic behavior of the model. In order to consider the combination of agents’
numerosity and heterogeneity while keeping the model tractable, we assumed that
the population of N firms is subdivided into two subsets of identical firms so that
each of them can be represented by a representative firm. In this way, some degree
of heterogeneity can be introduced and the total number of firms N can be used as a
bifurcation parameter. Moreover, we show that when firms are aware of symmetry
within the groups, the model exhibits very simple dynamic properties, whereas lack
of information brings about the aforementioned Border Collision Bifurcations.

Of course, the fact that an unstable linear model becomes periodic or chaotic
when constraints on minimum and maximum production are also considered (floor
and ceiling), is not surprising. However, we believe that it is nowadays interest-
ing to relate such phenomena to the rich literature on piecewise smooth dynami-
cal systems arising in relevant applications in electrical engineering, (Di Bernardo,
Feigen, Hogan, and Homer (1999), Banerjee and Grebogi (1999), Banerjee et al.
(2000a), Banerjee et al. (2000b), Avrutin and Schanz (2006), Avrutin, Schanz, and
Banerjee (2006), Tramontana and Gardini (2011)) or physics (see e.g. Zhusub-
aliyev, Mosekilde, Maity, Mohanan, and Banerjee (2006), Zhusubaliyev, Soukho-
terin, and Mosekilde (2007)), and even to the works of some mathematical precur-
sors of Nusse and Yorke that already studied the particular bifurcations associated
with piecewise smooth maps, such as Leonov (1959), Leonov (1962), Mira (1978),
Mira (1987), Maistrenko, Maistrenko, and Chua (1993), Maistrenko, Maistrenko,
Vikul, and Chua (1995), Maistrenko, Maistrenko, and Vikul (1998).

The paper is organized as follows. In section 2 the setup of the Cournot dy-
namic model with linear reaction functions and adaptive adjustment is introduced;
in section 3 the existence of Nash equilibria is discussed with particular emphasis
on the role of production constraints; in section 4 some issues on dynamic behavior
of the model, and the particular bifurcations observed, are addressed through both
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analytical and numerical methods. Section 5 concludes and gives suggestions on
further researches about the proposed model.

2 The constrained Cournot model with piecewise lin-
ear reaction functions

Following Bischi et al. (2010), we introduce a Cournot oligopoly model where each
firm k, k = 1,...,N, has an upper capacity limit L, so that it can choose a quantity
inside the interval [0,L;]. Moreover, for firm k, the production of the rest of the
industry is given by

N
Q=) xi
ik
so that Q = x; + QO is the total output of the industry.

In this paper we assume that the inverse demand is a piecewise linear ramp
function of the form:

A— if0<O0<A
pzf(Q)z{OifQQ;A—Q— ()

where A is the market absorbing capacity, and the cost is given by a quadratic func-
tion
Ck(xk) = CyXk + ekx,%. 2)

If e; € (0,4o0) the cost functions are convex and no particular constraint on other
parameters should be imposed, whereas if ¢; € (—1,0), the cost function is strictly
concave and it is necessary to add the condition

Ck

Ly < ——— 3
k 2er (3)

in order to avoid decreasing production costs when x; > —;—(fk. Of course, for ey =0
we obtain the particular case of linear cost function. The individual profit function

(X1, oy XN) = Xpef (X + Qi) — Ci () = “4)
. xk(A—Qk—xk—ck—ekxk) if0< QOr+x <A 5)
T ek — erxd if Qp+x >A
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is concave in the strategy set x; € [0,L;] if ¢; > —1, condition assumed to hold
throughout the paper. The firm k maximization problem defines the reaction func-
tions:
Ri(Qr) = argmaxm(xy, ..., xn)
0<x; <Ly
given by the following piecewise linear mapping (see also Bischi et al. (2010),
chapter 2):

0 if Op > A—cq

A—c—0Ox :
ey otherwise

Notice that Ri(Qy) is not identically zero whenever A > ¢, k = 1,...,N, which also
is assumed to hold in the rest of the paper.

In the following, in order to introduce some degree of heterogeneity while
keeping the model tractable, we assume that there are N > 2 agents, subdivided
into two groups of homogeneous players, referred to as group 1 and 2, formed by
1 <ny <N and ny = N — n firms respectively.

Note that, by (1), prices are positive as long as

A>nL+mil,. @)

We denote by x;(¢) the quantity produced by a representative agent in group i, i =
1,2 at time ¢, and we assume naive expectations, i.e. each agent in the first group
assumes the current production of the rest of the industry in order to compute its
best reply for time ¢ + 1:

01(t) = (m — D)x1(t) + (N —n1)x2(2) €]

and analogously for a representative agent in group 2

Qz(t):nlxl(t)—f—(N—m—1)x2(t). 9

3 Equilibria

The individual production strategies at a Nash equilibrium are obtained as solutions
of the system

{ Ry(x2) = xy such that x; € [0,L;],i = 1,2 (10)
R2(X1) = X2
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where the modified best reply Ry for a firm in group k, as a function of the quantity
produced by a representative agent in group /4, is obtained by substituting (8) and
(9) into (6) to get:

0 ifx, € (A_C",Lh}

ny,
Ri(wn) = § Aohyan ity € Ao (bdoinlle A7a |k h= 120k #h (1)
Ly if 3y € |0, A=ci-t 2actnile )

Notice that the interval [0,Ly], is given by the union of the following three inter-
vals,where the definition of Ry (x;) changes:

A—cr— (142 L
Ly = [07 ck — (1+2ex +ny) k) (12)
M
A—cp—(1+2 Ly A—
L= { cx— (1+2e;+ny) 3 Ck}, kh=12k4h  (13)
np np
A— Ck
Lyz = < 7Lh] : (14)
np
These are all proper intervals of the real line provided that
(142ex +ng)Ly < A—cy < nyly, kh=1,2;k#h (15)

Obviously, for A — ¢ > nyLy, itis Lyz = 0 and for (14 2e; +ny )Ly > A — ¢
itis Ly; = 0. In any case Ly is always a proper interval of the real line. We

assume that Ly = [A‘C"‘““e"*"k)L",Lh if A—c > myLy and Lyy = [0, A;hck] if

np

(1 +2ek+nk)Lk >A—cy.

The Nash equilibria of the game are located at the intersection points of
modified best replies (11), whose definition changes in each of the following nine
rectangles

A,’j:LliXsz, i,j:1,2,3 (16)

provided they are properly defined for the set of parameters at hand.

In order to stress the role of upper production constraints in the determina-
tion of existence and uniqueness of the Nash equilibria, we first neglect the presence
of production constraint L and L, to get a benchmark case, according to the fol-
lowing Proposition:

Proposition 1. Consider the Cournot game whose reaction functions are
given in (6), with two classes of homogeneous agents, quadratic cost functions (2),
with ey, € (—1,4o0), and no capacity constraints, i.e. L — oo and Ly — oo. Then:
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Xy

.TZ.:Rz{.\‘ 1% N;=Rx

A—¢ —(1+2¢+m )L
"y

A —(+2e+m)L, A—c,
m "

R

Figure 1: The modified reaction curves whose intersections define the Cournot-
Nash equilibria.

1. if e, > e, = —% — %, k,h = 1,2;k # h, then a unique (inner) equilib-
rium E.=(q7,q3) exists, with components given by
(A —cx) (142ep) +ny (cn — k)

- L kh=1,2k#h; (17
Uk 1+N—|—2€h(1+nk)+26k(1—|—nh)+4ekeh 7& ( )

2. if ep <ep, h=1,2;k # h, then the inner equilibrium (17) exists together with
the two boundary equilibria

A—c A—co
Ei=(——"L _0); B,=(0—""2);
! (1—1—711—1—261’) 2 ( 1—|—n2—|—2€2)

3. otherwise only one boundary equilibrium exists.

Proof.
Neglecting the presence of capacity constraints, the conditions to have a
unique equilibrium, given by the intersection between the decreasing parts of the

modified best reply functions (11), is obtained by imposing the condition A;—hc" >
%, k,h =1,2;k # h. Similarly, conditions A;hck < 1+frl1h_ih2eh Jkoh=1,2k#h
lead to part 2 of the proposition (two boundary and one inner equilibrium), whereas

L A*Ck A*Ch A*Ch A*Ck fe
conditions < Tont2e, and m > Tmtae; lead to the part 3 of the proposition.[]

Now we consider how the presence of upper capacity constraints affects the
equilibria. Of course, in the cases 1 and 2 of proposition 1, the inner equilibrium
(17) exists provided that Ly > g, k = 1,2. However, from proposition 1 several
consequences can be obtained when adding capacity constraints.
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’ \ (C)

Figure 2: Illustration of Proposition 1, cases 1, 2, 3.

(a) (b) \ (c)
Li; L, L, -\
_]—‘"1 Ll

Is;

Figure 3: Graphical illustration of Proposition 2.

Proposition 2. Consider Proposition 1, case 1, with finite values of Ly,
k =1,2. Also in this case a unique equilibrium always exists, in particular:

L. If Ly > q;, k= 1,2, then capacity constraints do not affect the equilibrium

E, given by (17);

2. If Ly < q, and Ly, > qj, then the k-th and h-th coordinates of the unique
equilibrium are given, respectively, by L and Eh (Ly) = %;

3. If Ly < q;, k= 1,2, then the unique equilibrium is (Ly,L).
The proof is straightforward, see also fig. 3.L]

Proposition 3. Consider proposition 1, case 2. The inner Nash equilibrium
E, exists provided that Ly > q;, k = 1,2; otherwise the inner equilibrium does
not exist; in addition, there is at least another equilibrium, whose coordinates are

given, respectively, by (Ll,ﬁz(L1)> or (ﬁl (Lz),Lz), ie.:
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o Ly, (b) ©

Ll Ll Ll

Figure 4: Graphical illustration of Proposition 3.

i A—ck .
1. 0 and 1+n +Zek f 1+2ep+ny <Ly

A— ck A—Ch
2. Oand Ly, if T 2ecimn > L > —=*;

A—cp—mi Ly A—cy,
3. T 2en and Ly, if L < e

This proof is also straightforward, see fig. 4.0J

Proposition 4. Consider proposition 1, case 3, where only one border equi-
librium exists. For this unique border equilibrium, the same conditions stated in
proposition 3 also apply in the presence of constraints.

It is useful to rearrange the possible steady states of the Cournot game in the
following matrix M, where m;; is the solution (if any) of (10) in each rectangle A;;:

(L) (F952.)  (0L)

M=| (L) @e) () (18)
(L1,0) (Hf};—fzﬁp) 0,0)

Note that equilibrium (0,0) only exists in the unrealistic cases L} = L, =0

orA=0.

It is worth to notice that the Nash equilibria are not the only invariant sets of
the dynamic game considered and, as it is well known in the literature, the long run
behavior of this dynamic game can exhibit persistent (i.e. self-sustained) periodic
oscillations that never converge to a Nash equilibrium. For example, even in the
simplest case of duopoly competition with best reply response, i.e. N =2 and
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B,

0 x, 13 0 Iy x, 13

Figure 5: The case of duopoly with best reply and unstable interior equilibrium.

a; = ap = 1, for negative values of e; coexistence of two stable boundary equilibria
and a cycle of period two is obtained provided that e, < ey, h = 1,2, as shown in
fig. 5, obtained with parameters A = 16, ¢c; = ¢, = 6; ] = ey = —0.6 < ¢, = —0.5.
In fig. S5a the upper production constraints are arbitrarily large, i.e. L, > (A —
cx)/np = 10, and besides the interior equilibrium, which is unstable (see Bischi
et al. (2010), see also the next section), two stable boundary equilibria exist, given

by E| = (H‘x—fzq,O) = (12.5,2); E, = (0,%) = (0,12.5) as well as a
stable cycle of period 2 given by {K;,K>} = {(0,0),(12.5,12.5)}, each with its
own basin of attraction, represented in fig. 5 by the light grey, dark grey and white
regions respectively. If production limits L; and L, are lower, such as in fig. 5b,

obtained with L; = 7 and L, = 9, both the equilibria and the periodic cycles are
modified accordingly, as they become E; = (Ll,ﬁz (Ll)), E, = (ﬁl (Lz),Lz) and

(K1, K>} = { (131 (L), R (L1)> (Ly ,Lz)} respectively.

It is plain that for e, > 0, h = 1,2, i.e. for convex cost functions, the interior
Nash equilibrium is unique and always globally stable in the positive orthant (see
Bischi et al. (2010) and also the next sections of this paper).

However, for increasing values of N and lower values of adaptive speeds of
adjustment a more rich spectrum of dynamic scenarios can be observed, especially
when binding upper production constraints are considered. In the following, we
analyze the effects induced by the presence of upper production limits L; and L,
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Bischi and Lamantia: Complexity Induced by Constraints in Cournot Games 11

on the dynamic behaviors of the Cournot dynamic game with adaptive adjustments.
As we shall see, when information is not complete, different kinds of periodic and
chaotic behaviors can be observed, and transitions between such dynamic scenarios
can be characterized by sudden changes due to border collision bifurcations, as the
values of production constraints are gradually modified.

4 Dynamics and bifurcations

As customary, we assume that the time evolution of the repeated production choices
in discrete time is based on an adjustment process where each representative firm
partially adjusts towards the computed best reply with naive expectations, modelled
by the iteration of a two-dimensional piecewise smooth map T : A — A, with A =
[O,Ll] X [O,Lz].

However, according to the kind of information available to the firms, we can
distinguish the following two cases:

1. Any agent of group i, i = 1,2, is aware that in the industry there are other
n; — 1 of its same kind and, consequently, it reacts to the quantity of a repre-
sentative firm that is of the different type, according to (11); more precisely,
since each firm is aware that agents of its own type will play its strategy, firms
have perfect rationality on the quantity that will be played by their own group
and naive expectations on the quantity produced by firms of the different
group. The map assumes the form (19).

2. Any agent of group i, i = 1,2, is unaware that in the industry there are other
n; — 1 of its kind, and so it reacts to the quantity produced by the rest of
the industry Q;, on which each agent has naive expectation and best replies
according to (6). In this case, the map assumes the form (20).

Both maps are piecewise linear and their equilibria, already detailed above,
are the same. However, their dynamic properties are very different, as it is inves-
tigated below. In particular, the first model shows very simple dynamic properties
and will be analyzed in the next subsection, whereas the rest of this section is de-
voted to the second model.

4.1 The dynamic oligopoly with complete information

In the first case, each firm reacts to the expected quantity produced by a represen-
tative agent of the opposite kind, as the information on homogeneity within groups
is known by all players. Under this assumption, the map assumes the form:
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7. { xi(t+1) = Ti(x1(1),x2(t)) = 1R (x2(1)) + (1 — a1 )1 (2) (19)

x(t+1) =Ta(x1(2),x2(t)) = aaRo(x1 (1)) + (1 — az)x2(?)

where ﬁk(xh), k,h = 1,2, k # h, are given by (11), a; € (0,1], k = 1,2, denote
the speeds of adjustment toward the best reply, or equivalently (1 —ay), k = 1,2,
denote inertia, or anchoring attitude, with respect to the decision of changing the
current production at time ¢ into the computed one, according to the maximization
problem, i.e. the best reply function. Notice that for a; =1, i = 1,2, each player
chooses its best reply strategy with naive expectations. Moreover, if N =2 (and
consequently n; = np = 1), a typical Cournot duopoly game is obtained, with the
particular structure (x;(fr +1),x2(z +1)) = (R1(x2(¢)),Ra(x1(z)) studied by many
authors for its peculiar mathematical properties, see e.g. Dana and Montrucchio
(1986), Bischi et al. (2010), Canovas (2000), Canovas and Lopez Medina (2010).

Notice that map T, given by (19), has a different specification in each one
of the nine rectangles given in (16). The main dynamic properties of the map (19)
are summarized in the following Proposition:

Proposition 5 Consider the map (19) with best replies (11).

1. For parameters values as in Proposition 1, part I, and Proposition 2, the
unique inner equilibrium is always locally asymptotically stable;

2. For parameters values as in Proposition 1, part 2, and Proposition 3, the
unique inner equilibrium is always locally asymptotically unstable and the
two boundary equilibria are locally asymptotically stable;

3. For parameters values as in Proposition 1, part 3, and Proposition 4, the
unique border equilibrium is locally asymptotically stable.

Proof.

By writing the Jacobian matrices of (19) in the different regions A;;, we
obtain that, apart from J\,Z , eigenvalues are always given by 1 — q;, and so we have
that a boundary equilibriuﬁl, whenever it exists, is stable. Applying to J “ the usual
stability conditions (see (26) below), we get that the condition for having2 2boundary
equilibria implies the local instability of the inner equilibrium.[]

Let us consider the crossing of the inner equilibrium from region Ay, to
another region, due to changes in parameters; for instance a reduction of the pro-
duction constraints L;, moving the fixed point to regions A> or Ay, see (16). This
crossing has no effect on the stability of the equilibrium, as stability is granted be-
fore and after the crossing by the conditions on the Jacobian matrix. In this cases,
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these border collisions do not bring any bifurcation. However, with less information
on players’ heterogeneity, a similar border crossing can lead to a dramatic change
of the stability properties of the attractors, as it will be shown below.

4.2 The dynamic oligopoly with incomplete information

In the second case, the out-of-equilibrium dynamics of the Cournot oligopoly with
naive expectations and adaptive adjustment of N firms subdivided into two hetero-
geneous groups can be modelled by the iteration of the two-dimensional map T
given by

T x1(t+1) =T (x1(t),x2(¢)) = a1R1((ny — 1) x1(¢) + noxa(t)) + (1 —ap)x1(¢)
’ XQ(Z—I— 1) = T2()C1 (t),XQ(t)) = asz(nlxl (l‘) + (I’lz — 1))62(1‘)) + (1 —(lz)XQ(t)
(20)
with piecewise linear reaction functions (6), which can be written, for the purposes
of this section, as:

0 if.XQ > A—ci—(m—1)x

ny
Ri(x1,x)=1¢ Lyifx, < Aiclsz'U:;])*(n'*l)x'

A—ci—[(n1=1)x;+nx;] if Azaz2Li(rer) —(m 1)
2(1+ey) ny

N <xy <

ny
(2D
and
. A—cr—nyxg
0 le2 > e —
Lyifx, < A—cy—2Ly(1+ep)—nyx;

R2(x17x2) = ny—1
A*CQ*[I’I]X|+(I’I271)XQ] if A*C272L2(1+62)7}11X1

A—cr—nix;
2(1+e7) np—1

nzfl

<X <

(22)

Due to the presence of the lower and upper limits, the map (20) has a differ-

ent specification in each region of the phase space [0,L;] x [0,L,], whose borders
(when inside the phase space) are given by the following lines:

A—C1 — (nl — 1)x1
nj
A—c —2L1(1 —1—61) - (n1 — 1)x1
nj
13:x2:l3(x1):w (23)
I’lz—l
A—02—2L2(1 —|—e2) —nixi
l’l2—1

ll L Xp = ll(xl) =

12 Xy = lz()q) =

l4 Xy = l4(x1) =
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Notice /1 and I, are parallel, with /; entirely located above /5; /3 and /4 are parallel
as well, with /3 above I4. Moreover, when ny = 1 then /; and /, are horizontal lines
in the plane (x1,x2).

Denote the sets

Si ={(x1,x2) € [0,L1] x [0,Lz] : x2 < i(x1) Vx1 € [0,L1]}

Obviously, each region inside which the map (20) is differentiable (indeed linear)
can be written in terms of S; sets. For instance, the inner Nash equilibrium E, given
in (17), if it exists, is inside the set

I=5NSNS3NS, . (24)

where A denotes the complement of set A. From the economic point of view, in the
set S7 (S4), firms of the first (second) group produce their upper capacity limit L;
(L»), whereas in the set S| (S3), firms of the first (second) group do not produce at
all, because of (1). The lines /; constitute the boundaries along which the map is
not differentiable, and across such lines (also called borders) the map T assumes
different expressions. This is the basic mechanism that causes border collision bi-
furcations when a portion of an invariant set (e.g. a fixed point or a point of a
periodic cycle) has a contact with one of such lines and then crosses it. Its stabil-
ity properties may undergo a sudden change, as it may be suddenly destroyed or
transformed into a completely different kind of invariant set. In particular this may
cause the sudden creation, destruction or a qualitative change of an attractor.

4.3 Numerical examples

In this subsection, we show some numerical examples obtained with map (20) to
better motivate the following bifurcation analysis. Let us consider the bifurcation
diagram shown in fig.6, obtained with parameters a; =a =0.5;A =16,c; =c; =
6; N=16,n1 =6,e; =e; =0,L, =1 and L; € [0, 1.2] as a bifurcation parameter.
Notice that in this example the cost functions are both linear being ¢, =0, k =1, 2.
At Ly ~ 0.56 the unique (and globally stable) Nash equilibrium E loses stability
and a big chaotic attractor suddenly appears.
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01 02 03 04 05 06 07 08 09 1.0 T,
1

Figure 6: A ’period one to chaos” border collision bifurcation. Parameters are given
as follows: aj :aZZO.S,A: 16,61 :C2:6,N: 16,”1 :6,61 ZEQZO,LQZI
and L; € [0, 1.2] as bifurcation parameter.

This is a typical border collision bifurcation that can only occur in a non-
smooth dynamical system. In fact, when a stable equilibrium of a smooth dynamical
system loses stability, it is generally replaced by an attractor close to it, that may
be a stable cycle of period two in the case of flip (i.e. period doubling) bifurcation
or a couple of stable fixed points issuing from it in the case or a pitchfork bifurca-
tion or another fixed point merging and gradually departing from it in the case of
transcritical (i.e. stability exchange) bifurcation or a small stable closed invariant
curve departing from it in the case of a Neimark-Sacker subcritical bifurcation. In-
stead, in this case we observe a sudden transition from a globally stable fixed point
to a fully developed chaotic area of finite amplitude. This is even more evident,
and more easily understood, if we observe what happens in the phase plane (x,x7)
as the bifurcation parameter L is gradually varied across the bifurcation value. In

fig. 7a, obtained for L; = 0.53, the globally stable equilibrium E = (Ll,ﬁz (L1)>
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is represented together with the borders (or switching lines) /;, i = 1,...,4, given by
(23). If L is gradually increased, then the equilibrium point moves to the right and
also the line /, moves downwards and they have a contact (border collision) when
E e 12, 1.e. ﬁz (Ll) = lz(Ll) that gives 1‘1101122:_"2161411 = L 5112+261+n1) from which
the bifurcation value L} = Lipc = 10/17 ~ 0.588 can be analytically computed. As
soon as L is further increased, a chaotic attractor suddenly appears with the struc-
ture shown in fig. 7b, obtained with L; = 0.6. Fig. 7b also shows that if we consider
the portion of switching line /4 approximately included inside the chaotic area (such
as the dashed thick portion of /4 represented in the figure), its images by the map 7',
denoted as T'(I4) and T2(l4) in fig. 7b, constitute portions of the boundaries of the
chaotic area inside which the long run dynamics of the Cournot game are trapped.
The same holds for the images of increasing rank of the other switching line, /5,
included inside the chaotic area, that are not represented in the figure. The union
of the early images T*(l4) and TX(I,), allows one to get the whole boundary of the
chaotic area, thus giving an estimate of the amplitude of the chaotic oscillations
that characterize the long run dynamics of the system. This may be expressed by
saying that the switching lines (or borders) at which the expression of the map T
changes behave like critical curves, i.e. the curves of vanishing Jacobian that repre-
sent the folding manifolds of differentiable noninvertible maps (see e.g. Mira et al.
(1996), Agliari, Bischi, and Gardini (2002)). This is another important feature of
the non differentiable (piecewise linear) dynamical system due to the presence of
upper production constraints.

4.4 Stability of the inner equilibrium and genesis of the border
collision bifurcations

The stability properties of the interior Nash equilibrium E, of the unconstrained
duopoly model with best reply, i.e. N =2 and a; = ap = 1 are well known (see
e.g. Vives (2001)): it is globally stable whenever it is the unique equilibrium, and
loses its stability when the boundary Nash equilibria E; and E, are created (see
proposition 1). In the latter case also a stable cycle of period two coexists with the
two stable boundary equilibria, as proved in Bischi et al. (2010), see also fig. 5a.
The stabilizing effects of inertia, i.e. decreasing values of speeds of adjustment a;
in a Cournot duopoly with adaptive adjustment is analyzed in Bischi et al. (2010)
where also the case of N firms with n; =1 is considered. A complete analysis of
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Figure 7: Representation of a border collision bifurcation in the phase space, all
parameters as in fig.6, but with a fixed L;. (a) L; = 0.53: the stable equilibrium
E has not yet crossed the border /; (b) L; = 0.6: just after the crossing of [, the
fixed point E is unstable and a large chaotic attractor appears, whose bounds can be
obtained by iterating suitable portions of the borders /;.

the stability of the equilibrium points of the Cournot model with constraints is not
easy in general, as it requires the localization of the fixed points in the different
regions where the map 7 has different local definitions, and the computation of the
corresponding Jacobian matrix
JdR JdR
(1 — al) + 8_x11 ay 8_x21

J = OR OR (25)
aza—xlz (1 — az) + 8_x22

in the region where the fixed point is located, where R; are the reaction functions
given in (21) and (22). Notice that the Jacobian matrix is just the matrix of the
coefficients, being the map linear in each region of the phase plane. In each region
the usual stability conditions apply, given by

14+Tr+ Det >0
1—Tr+Det >0 (26)
Det < 1
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where Tr and Det represent the trace and the determinant of the Jacobian matrix
respectively. Of course if, due to a variation of one or more parameters, a fixed
point crosses a border that bounds the region where it is defined, after the crossing
it may no longer be a fixed point of the map 7 or it may still be a fixed point but with
a different stability property due to the fact that a different Jacobian matrix governs
the dynamics in the new region. In these cases, we say that a border collision
bifurcation occurs. Instead, it may happen that this crossing has no effects on the
stability of the equilibrium, if its existence and stability is granted both before and
after the crossing by the conditions on the two different Jacobian matrices on the
two sides of the border. In this case, we may say that the border collisions causes
no qualitative changes, i.e. it is not a bifurcation. However, in general, it is quite
difficult to forecast which kind of dynamic scenario will prevail after the crossing,
and a trade off between analytical and numerical methods is often necessary to
study such situations.

Analogous arguments apply to the case of a cycle of period n, that in general
may have periodic points belonging to different regions, e.g. k periodic points in
a given region and the remaining n — k periodic points in a different region. Then
the stability of the cycle depends on the eigenvalues of the product of the Jacobian
matrix at each periodic points, which is, in general, a different matrix inside each
region where the periodic points belong. This implies that, whenever a single peri-
odic point moves between two different regions by crossing a border, the periodic
cycle may disappear or it may suddenly change its stability property.

Proposition 6. Consider the map (20) with best replies given in (21)-(22).

1. Any fixed point or cycle in regions S» NS4 or S| NS5 is locally asymptotically
stable.

2. Any fixed point or cycle in regions S NS4 or S1NS3 is locally asymptotically

4(1+ep) )

Y 142er+ny
3. Any fixed point or cycle in regions S, NS4 or S1 N S3 is locally asymptotically
stable whenever a| € <0 M).

stable whenever a € <O

' 142e1+n
Proof.
: IR _ IR _ ()in S IRy __ IRy _
B We observe thzit, in (25;, Fril Pl 0in g 1 and $>, and i
in S3 and Sa. In $1 NSy, itis G = — A= and G =~ In S3N S, it
g IR IRy _ _ m—1_ -
18 50 = T alte) and T = " 3(lter) Therefore, outside the set I, at least one

off-diagonal term of the Jacobian matrix is 0 and the eigenvalues are given by the
entries in the main diagonal; furthermore at least one of these eigenvalues is always
between zero and one, as it is equal to 1 —a;. In particular, in S NS4 and in S1 N S3
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both eigenvalues are always 1 — a; and so any fixed point or cycle in these regions
is stable.

With respect to part 2, in regions S» NS4 or S; NSz (provided they are
nonempty) the Jacobian matrix reads

1— aj 0
J|S2ﬁ§4 :J|S3ﬂ§1 = ___aon az(1+2ex+4n3)
2(1+62) 2(1+€2)

so that stability of a fixed point (or of a periodic cycle) in these regions surely occurs
a2(1+262+n2)
2(1+4e)

that an equilibrium (or a cycle) is unstable, i.e. if ay € <1i(zle—m, 1}, which is a
proper interval provided that ny > 3 +2e,. Analogous arguments apply to regions
S4M S, and S N S3 by swapping indices 1 and 2, thus proving 3.]

Proposition 6, part 1, deals with the case where firms from both groups
sell a constant production, as in S1 N S3 both groups do not produce (R (x1,xp) =
R>(x1,x2) = 0) and in S NS4 upper capacity constraints are binding for all players,
i.e. Ry(x1,x2) =L and Ry(x1,x3) = Lp. Since productions inside these regions are
constants, the stability of attractors in these regions is achieved for all parameters
values. Instead, proposition 6, case 2 (3), deals with the case where lower or upper
constraints are binding only for firms in the first (second) group; here convergence
to a fixed point occurs provided that it is sufficiently low the speed of adjustment
for firms whose production is not constant.

Now we turn to the problem of stability of the inner Nash equilibrium (17).
For sake of simplicity, we study the case with equal speed of adjustments (a; = ay)
and quadratic cost coefficient (e; = e;), so that the difference between the two
groups can be their numerosity n;, their cost coefficient ¢; or the capacity constraints
Li,i=1,2.

Proposition 7. Consider map (20) with best replies given in (21)-(22) and

with ay = ay and e) = ey > —%.

whenever < 2; otherwise, it is possible to set a speed of adjustment so

1. The inner Nash equilibrium (17) is stable for a speed of adjustment a; €

4(1+¢;) ) 4(1+e¢;) .
<0,m> and unstablefor a; € (m,l 5

4(1+4e) 4(1+4ep)
142ex+n1+ny° 142er+ny
bifurcation occurs whenever the inner Nash equilibrium (17) collides with

the borders 1y or I, given in (23).

2. For a speed of adjustment a, € ( ), a border collision

4(1+61) 4(l+6’1)
142e1+n1+ny’ 142e1+n
bifurcation occurs whenever the inner Nash equilibrium (17) collides with

the borders 13 or ly, given in (23).

3. For a speed of adjustment a; € ( ) a border collision
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Proof.
Inside the interior region / we have
1 _ a1(1+261+n1) __aim
J — 2(1+61) 2(1+€|)
I __am 1— ay(142er+ny)
2(1+e3) 2(1+ep)

In this case, it is possible to show that condition (iii) in (26) is always satis-
fied, and the same holds for condition (ii) whenever ¢; > —%. Assuming e; > —%,
condition (1) in (26) is fulfilled, and so the inner equilibrium is stable, provided that

a € <O, %) , thus proving 1; from this and from proposition 6, parts 2 and
3, it is immediate to show parts 2 and 3 of this proposition.[]

Propositions 6 and 7 are the analytical basis to explain the bifurcations
which are responsible of the sudden changes observed in the numerical experi-
ments: if a variation of one or more parameters causes a displacement of the equi-
librium point (or of a periodic point of a cycle) into different regions by crossing a
border (e.g. [») the stability properties of the equilibrium (or of the periodic cycle)
suddenly change by a so-called border collision bifurcation.

For instance, an increment in the production constraint L; moves down the
border /; and so a stable cycle in S can cross the border /, where the equilibrium
(17) is indeed unstable. As we have just shown, the stability properties of fixed
points (or cyclic points) are different on opposite sides of these borders, and so
border collision bifurcations lead to these jumps in the eigenvalues of the Jacobian
matrix.

Instead of going in deeper analytical details, on the basis of these general
theoretical arguments we prefer to illustrate some consequences of border collisions
through numerical simulations.

Let us start with the following set of parameters: a; = ap = 0.35;¢c; = ¢ =
6;A=16;L, =1;N =16;n; = 10; e; = e = —0.4. Note that with these parameters
(3) and (7) are satisfied, so that cost functions are strictly concave and always in-
creasing and prices are nonnegative. Under these parameters the inner equilibrium
(17)is (¢7,45) = (0.617284,0.617284): the two coordinates are equal as agents are
homogeneous in the parameters that are relevant to calculate the inner equilibrium.

Now we consider a change in the capacity constraint of firms in group 1,
L e [0, 1] .

For L; = 0, region §; NS, = 0, and for L; sufficiently low, firms in group
1 continue to play their capacity constraint L; notice that the border /, is shifted
below as L; is increased. Consequently, firms in group 2, given the low production
in the whole industry due to the tight capacity constraint of their competitors in
group 1, play their capacity constraint L, = 1: the equilibrium (L, L;), which is in
S2 M Sy, is played by all the firms and it is always stable, as shown before.
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Figure 8: Another “period one to chaos” border collision bifurcation. Parameters
are given as follows: aj =a» =0.35;¢c1 =co =6;A=16; L, = 1;N =16; n| = 10;
e1 =e; =—0.4and L; € [0, 1] as bifurcation parameter.

As the constraint L is relaxed and firms in group 1 can increase their pro-
ductions, the equilibrium (L1, L) crosses the border /4 at L; = 0.38: firms in group

2 start to best reply to Ly, according to (6), and the asymptotic behavior of the model
A*C27n1L]

1+n2+2€2
branch in the bifurcation diagram for x, in fig.8b. As we established analytically

before, this new equilibrium remains stable by crossing the border Iy, i.e. in the
crossing between region S> NS4 and S N S4. Indeed, for such a speed of adjust-
ment a,, an equilibrium in S> NS4 is stable, but it would be unstable in S N Sy, as

a = 0.35 € (0.148148,0.387097) = (a2, 1512} Therefore it is the

crossing of border /5 that causes a border collision bifurcation.

In fact, when L; = 0.617284, a border collision bifurcation occurs between
(17) and [p: the inner equilibrium (17) enters region /, i.e. becomes feasible, as
firms in group 1 can actually produce the “unconstrained” equilibrium quantity.
However, as already mentioned, for such a speed of adjustment this equilibrium is
indeed unstable and so convergence to it is not achieved; instead we observe the
sudden convergence to a chaotic attractor, which become larger as L; is further
increased, see fig. 8a,b. We stress that in general it is not easy to predict the kind
of dynamic after the border crossing, as it depends on the global properties of the
map, which depend on all borders in the phase space.

Another interesting situation is shown in the bifurcation diagram of fig. 9a,
obtained with parameter valuesA = 16; N =16,n; =10,a; =a; =0.5; ¢ = ¢, =6;
e] = ey =0.5, L, = 2.5, and bifurcation parameter L; € [0,1.5]. It is easy to com-

is the convergence to a fixed point of the form (L, ), see the decreasing

pute the value of L; at which the contact between the equilibrium E = (Ll ,ﬁz (L)
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01902 03040506 0708 0910 111213 L1

Figure 9: (a) A "period one to period two” border collision bifurcation; Parameters
are given as follows: A=16; N =16,n1 =10,a; =a,=0.5;c1 =c; =6;e; = ey =
0.5, L, =2.5, L; € [0,1.5]; (b) coexistence of attractors with L; = 0.54: the grey
and white regions are, respectively, the basins of attraction of the Nash equilibrium
E and the stable 2 cycle K| and K>.

and the border line /; occurs, whose crossing, as stated above, causes a the loss of
stability of the equilibrium E. In fact, from the condition of border collision E € I,
we get Ligc = 5/9 = 0.5. Indeed, from the bifurcation diagram we can clearly
see that, at this bifurcation value, a sudden transition between a stable equilibrium
value and a stable cycle of period 2 and of finite amplitude suddenly occurs. How-
ever, in this case the discontinuous jump between two attractors, located in quite
different regions, is related to a situation of coexistence of the two attractors before
the occurrence of the border collision. This can be seen in fig. 9b, obtained with
the same set of parameters as in the bifurcation diagram of fig. 9a and L; = 0.54.
In the picture, the Nash equilibrium E is shown together with its basin of attraction
represented by the grey region, together with the stable cycle of period 2, denoted
by the periodic points K| and K>, whose basin of attraction is given by the white
region. As the production constraint L is slightly increased beyond the border col-
lision bifurcation value, the equilibrium E becomes unstable and the cycle of period
2 remains the only global attractor. As L; is further increased, some non smooth
changes of the position of the stable periodic points can be seen, at L; ~ 0.63 and
Ly ~ 1.25, due to the crossing of the upper periodic point with the lines /; and /3
respectively, however these border collisions do not cause changes of stability.
Many other different dynamic situations and bifurcations can be investi-
gated, and the effects of variations of different bifurcation parameters can be ana-
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0 20 40 60 80 100 120
Figure 10: A "Period increment” sequence of quantities produced by agents in the
first group. Parameters are given as follows: A = 16, n; = 10, a; = a; = 0.2,

c1=cy=06,e; =e;=—0.7, L} = L, = 1, and the number of firms N € [10, 130]
as bifurcation parameter.

lyzed, leading to different kinds of attractors as well as coexistence among them,
with complicated structures of the basins of attraction. As the Cournot game con-
sidered here is represented by a linear dynamical system, whenever upper and
lower production constraints are neglected, we can say that all these complex dy-
namic scenarios are directly or indirectly induced by the presence of such con-
straints. For example, even the complex structure of the bifurcation diagram shown
in fig. 10, obtained with parameters A = 16, ny = 10, a; = a; = 0.2, ¢c; = ¢, = 6,
ey = ey =—0.7, L} = L, = 1, and the number of firms N € [10,130] taken as a
bifurcation parameter, is a consequence of the presence of constraints. In fact, the
structure known as ’period increment” sequence shown in this picture is typical of
non-smooth dynamical system, because the creation of stable cycles with periods
that increase in arithmetic progression is due to sequences of border collision bifur-
cation involving contacts between switching manifolds and periodic points (see e.g.
Avrutin and Schanz (2006), Gardini and Tramontana (2010), Gardini, Tramontana,
Avrutin, and Schanz (2010)).

Brought to you by | Universita degli Studi della (Universita degli Studi della)
Authenticated | 172.16.1.226
Download Date | 4/18/12 9:17 AM

Published by De Gruyter, 2012



24

Sudiesin Nonlinear Dynamics & Econometrics Vol. 16 [2012], No. 2, Article 4

5 Conclusions

In this paper, we considered a standard Cournot oligopoly model, with linear de-
mand and quadratic costs, when production constraints are added. The dynamic ad-
justment, based on quite standard assumptions of naive expectations and an adaptive
adjustment with inertia (or anchoring attitude), exhibits simple (and well known)
properties if maximum production constraints are neglected, as commonly assumed
in the literature. Instead, if such constraints are imposed, interesting dynamic phe-
nomena occur, which are caused by the fact that the dynamical system becomes non
smooth, giving rise to global bifurcations known as "’border collisions”, which have
recently become a focus topic in the literature on applied dynamical systems.

We have shown how the reduction of production capacity of one or both
groups of firms can induce important changes in the kind of attractors that charac-
terize the long-run dynamics of the system as well as in the structure of the basins of
attraction when the positive Nash equilibrium is unstable and cyclic dynamics co-
exist with monopoly equilibria, occurring when one of the groups of firms is pushed
out of the market. In the particular case of linear demand and linear cost, we showed
that the presence of constraints, together with increasing number of identical firms,
can give rise to bounded chaotic behaviors, 1.e. an alternative route to complexity
with respect to the one marked by the introduction of nonlinearities in the demand
or cost functions.

Moreover, this paper has emphasized the effects of binding upper produc-
tion constraints on the existence and stability of Nash equilibria of the oligopoly
game, as well as the non standard bifurcation routes leading to the creation of com-
plex attractors related to the occurrence of border collision bifurcations induced by
the gradual variations of production constraints. As the presence of lower and up-
per constraints (floor and ceiling) is quite important in the dynamic modelling of
economic systems, a systematic study of the dynamic scenarios induced by such
constraints, by using the methods recently developed in the emerging literature on
non smooth dynamical systems, may become an important issue in the economic
dynamic literature as well. However, we neglected here other important properties
of the model at hand, which may be studied in the future. For example, the role
of the speed of adjustment in the adaptive adjustment process, or equivalently the
role of inertia of the players in the adoption of the computed best reply, is worth to
be investigated, especially in connection with the possibility of considering an in-
creasing number of firms as a bifurcation parameter in the model. Indeed, as often
stressed in the literature on oligopoly games, the increase of the number of firms
has a destabilizing effects, whereas increasing the inertia, i.e. decreasing the speed
of adjustment towards the best reply with naive expectations, has a stabilizing role.
So, it is intriguing to analyze these two opposite effects when firms have produc-
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tion constraints and, consequently, the quite new property of non-smoothness of
the corresponding dynamical system; of course, in these cases, it is necessary to
adopt non-standard methods for studying the stability properties of non differen-
tiable dynamical systems. We recall that very low speeds of adjustment always lead
to stability, as the dynamical system becomes a strongly contractive one, whereas
high speeds of adjustments (i.e. close to one), corresponding to best reply dynamics
with naive expectations, can only have simple attracting sets, such as fixed points
and cycles of period two, in a piecewise linear dynamical systems. So, the most
interesting and rich dynamic situations can be obtained for intermediate values of
the speeds of adjustment. Another interesting investigation of the model proposed
in this paper is related to the coefficients of the quadratic cost functions, whose
variations in magnitude and sign (related to convexity properties of the cost func-
tions) open up to a wide spectrum of dynamic scenarios when these variations are
associated with binding production constraints.

Finally, the role of constraints as “folding manifolds”, similar to critical
curves obtained from the curves of vanishing Jacobian in continuously differen-
tiable maps, is worth to be further analyzed, as they can be employed to get an
estimate of trapping regions, i.e. regions of the phase space where the asymptotic
dynamics of the economic system are ultimately bounded. These methods can be
usefully tested by studying oligopoly models like the “’vintage” one of this paper, al-
lowing to get an intuitive understanding behind the analytical and numerical results
based on these new mathematical techniques.
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