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A discrete-time dynamical system is proposed to model a class of binary choice
games with externalities as those described by Schelling (1973, 1978). In order to
analyze some oscillatory time patterns and problems of equilibrium selection that
were not considered in the qualitative analysis given by Schelling, we introduce
an explicit adjustment mechanism. We perform a global dynamic analysis that
allows us to explain the transition toward nonconnected basins of attraction
when several coexisting attractors are present. This gives a formal explanation
of some overshooting effects in social systems and of the consequent cyclic
behaviors qualitatively described in Schelling (1978). Moreover, we show how the
occurrence of a global bifurcation may lead to the explanation of situations of
path dependence and the creation of thresholds observed in real life situations
of collective choices, leading to extreme forms of irreversible departure from an
equilibrium and uncertainty about the long run evolution of the some social
systems.

Keywords: binary games, discrete dynamical systems, global bifurcations,
overshooting, social externalities

1. INTRODUCTION

In mathematical sociology, according to Sørensen and Sørensen (1977),
an important class of models is given by the purposive actor models
or rational choice models, as they are more often called. Several
sociologists worked within a rational choice framework: Coleman
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278 G.-I. Bischi and U. Merlone

(1973), Granovetter and Soong (1983), and Braun (1995), to cite a few;
for a review of rational choice models in sociology the reader may
refer to Edling (2002). The application of models where the outcome
of an actor’s action is also affected by the actions of other actors is
growing in sociology. Among the different contributions, the seminal
work by Schelling (1973) stands out on its own as it provides a
simple model which can qualitatively explain a wealth of everyday
life situations. Indeed, the model proposed in Schelling (1973, p. 386),
and in the successive versions, is general enough to include several
games, such as the well-known n-players prisoner’s dilemma or the
minority games (e.g., Challet and Zhang, 1997). Another important
contribution on situations where actors face two alternatives is given
in Granovetter (1978); there the approach is based on behavioral
thresholds, and the author provides some models that are valuable in
helping understand examples where the outcomes are not intuitively
consistent with individual preferences.

However, as remarked by Granovetter (1978, p. 1435), in Schelling
(1973) the time sequence is not treated because no dynamic models
are explicitly given, even if a dynamic adjustment is implicitly
assumed in order to both analyze the time evolution of the fraction
of agents that make a binary choice and to provide arguments
about the existence and stability of equilibrium values. However,
this implicit dynamic adjustment fails in describing some important
phenomena observed in many real situations, such as oscillations
caused by overshooting (or overreaction) of the actors involved in
choices repeated over time and problems of equilibrium selection
when nonmonotonic payoff curves lead to the presence of several
stable equilibria. In the latter case, an explicit formulation of the
dynamic process involved is particularly important to describe real
situations where extreme forms of path dependence are observed, due
to the creation of thresholds that mark irreversible departures from
an equilibrium value to reach another distant equilibrium as final
outcome (on the importance of thresholds, see also Granovetter, 1978).

We propose an explicit dynamic adjustment that both extends the
equilibrium analysis of Schelling (1973) and explores the possible
occurrence of nonequilibrium dynamics. In fact, since in Schelling
(1973) the time scale is not specified (as noticed also by Granovetter,
1978, p. 1435), it may be either continuous or discrete. In our
approach it seems interesting to investigate what the consequences
are on the dynamics depending on the kind of considered time
scale. In particular, following Granovetter (1978), we are interested
in considering discrete time dynamics since, in social and economic
systems, changes over time are usually related to decisions that
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Global Dynamics in Binary Choice Models 279

cannot be continuously revised. For example, to quote some of the
situations described by Schelling, each year one can decide whether
to get a flu vaccination or not; whether to use insecticide or not.
Also, in strategic decision making, managers may need to wait for the
next board meeting to revise a just-reached decision. Finally, voting
for presidential elections and for ballot questions are examples of
binary choices where the decisions cannot be continuously revised.
Furthermore, in Schelling (1978, ch. 3) several other different
situations are described and qualitatively analyzed in terms of
individuals that make repeated binary choices, that is, a typical
discrete time scale (see, e.g., Schelling, 1978, p. 86 or p. 121). As is well
known, discrete-time adaptive processes may lead to oscillations, often
related to overshooting effects that are quite common in the presence
of emotional human decisions. As stressed by Schelling himself (1978),
“the phenomenon of overshooting is a familiar one at the level of
individual � � � ” and consequently “numerous social phenomena display
cyclical behavior” (p. 86). Also Granovetter (1978) provides several
example of binary choices where a discrete time scale seems to be
the most appropriate, for example, strikes, votes, and educational
attainment. For a discussion, the reader can refer to pages 1423 and
1424 of Granovetter.

In the dynamic model we propose, we assume that individuals
make their decisions repeatedly; at each time the strategy each agent
chooses depends on the payoffs realized in the previous period, and we
use methodologies taken from the qualitative theory of deterministic
discrete time dynamical systems in order to study different kinds of
long-run evolutions of the collective choices, ranging from convergence
to an equilibrium point to persistent oscillations which may be either
periodic or chaotic. We will prove that the presence of overshooting
and oscillations may substantially modify some of the conclusions on
the stability of the equilibria given in Schelling (1973). Moreover,
in the case of nonmonotonic payoff curves, when two stable equilibria
coexist, as happens in several interesting examples provided by
Schelling (1973, p. 414) and Granovetter (1978, p. 1439), the adaptive
dynamic process acts as an equilibrium selection device, and the
emergence of a particular equilibrium also depends on the history
of the collective dynamics. In fact, when several attracting sets
coexist, each with its own basin of attraction, the dynamic process
becomes path-dependent; that is, which kind of long run dynamics
is chosen depends on the initial condition. This rises the question
of the delimitation of the basins of attraction; the threshold values
that separate the basins of attraction of the different equilibria can
be identified as well as their changes as the parameters of the model
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280 G.-I. Bischi and U. Merlone

vary. Through a global study of the discrete-time dynamic model
proposed in this paper we can show how, in simple situations, a global
bifurcation can occur. Such a bifurcation leads to the creation of
non connected, that is, separated by multiple thresholds or basins
of attraction, which may explain the irreversible departure from an
equilibrium we can observe in some real life examples.

Moreover, as usual when discrete time modeling is assumed,
periodic or even chaotic time patterns are obtained. In these cases,
the delimitation of bounded trapping regions where the asymptotic
dynamics of collective behaviors are confined may be an useful
information. Indeed, the study of these two kinds of complexity—one
related to the complexity of the attracting sets that characterize the
long-run time evolution of the dynamic process, the other one related
to the complexity of the boundaries which separate the basins when
several coexisting attractors are present—requires a global study of
the geometric properties dynamic model. The main goal of this article
is to study how these complexities arise in a simple explicit dynamical
system that models repeated binary choices.

In the spirit of Schelling, we keep the analysis abstract from
too many mathematical details. We shall just show how some
mathematical methods, which are based on a continuous dialogue
between analytic and graphical tools, may be useful to study the global
dynamic properties of the model.

The plan is as follows. In Section 2 we present the formal dynamic
model; in Section 3 we analyze the cases where the payoff curves
have one single intersection; in Section 4 we discuss the case of
two intersections and provide an example about the antimicrobial
resistance, which illustrates the separation of the basins of attractions
Finally, the last section is devoted to concluding remarks.

2. THE DYNAMIC MODEL

In order to model how individual choices are influenced by social
interactions (social externalities) Schelling (1973, p. 386) proposes two
key simplifications. First, each agent (or player) is assumed to have
a purely binary choice; second the interaction is impersonal, in the
sense that each player’s payoff depends only on the number of agents
who choose one way or the other and not on their identities. More
formally, a population of players is assumed to be engaged in a game
where they have to choose between two strategies, for example, L
and R, respectively. If the set of players is normalized to the interval
�0�1� and we denote by the real variable x ∈ �0�1� the fraction of
players that choose strategy R, then the payoffs are functions of x,
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Global Dynamics in Binary Choice Models 281

say R � �0�1� → IR, L � �0�1� → IR, where R�x� and L�x� represent the
payoff associated to strategies R and L, respectively. Observe that,
as we are considering binary choices, when fraction x is playing R,
then fraction 1− x is playing L. Obviously x = 0 means that the whole
population of players is playing L and x = 1 means that all the agents
are playing R. This is the basic model of interaction that Schelling
(1973) introduces in the first pages to define the uniform multi-person
prisoner’s dilemma. Part of the analysis in the rest of the paper is
based on considerations on the payoff functions.

Even if no dynamic models are explicitly analyzed by Schelling,
a dynamic adjustment is implicitly1 assumed in order to both analyze
the time evolution of the fraction x, and the stability of the equilibrium
points. The basic assumption of such dynamic adjustment is the
following:

Assumption. x will increase whenever R�x� > L�x� whereas it will
decrease when the opposite inequality holds.

This assumption, together with the constraint x ∈ �0�1�, implies
that equilibria are located either in the points x = x∗ such that
R�x∗� = L�x∗� or, in x = 0, provided that R�0� < L�0� or, in x = 1,
provided that R�1� > L�1�. This again is consistent with the discussion
on the illustrative curves reported in Figure 2 in Schelling (1973).

Since no explicit dynamic model is proposed, all the conclusions
of Schelling (1973) are drawn either by qualitative arguments or by
inspection of graphical representations of the payoff functions (see,
e.g., the discussion on pp. 387–390 and the comments about Figures 6–
9 in the original paper). Instead, we introduce an explicit process of
repeated binary choices where a fixed number of agents update their
binary choice at each time period t = 0�1�2� � � � , and let xt be the
number of players playing strategy R at time t. We assume that at
time t + 1, xt becomes common knowledge; hence each agent is able
to compute (or observe) payoffs L�xt� and R�xt�. Finally we assume
that agents are homogeneous and myopic, that is, each is interested
in increasing its own next period payoff. The discrete-time model we
propose is consistent with the assumptions of Schelling: we assume
that if at time t xt players are playing strategy R and R�xt� > L�xt�,
then a fraction of the �1− xt� agents that are playing L will switch
to strategy R in the following turn; analogously, if R�xt�<L�xt� then
a fraction of the xt players that are playing R will switch to strategy

1See in Schelling (1973) the discussion on the differential payoff on page 391 and
the discussion about coalitions starting on page 393.
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282 G.-I. Bischi and U. Merlone

L. In other words, at any time period t agents decide their action for
period t + 1 comparing L�xt� and R�xt� according to

xt+1 = f �xt� =
{
xt + �Rg�	�R�xt�− L�xt����1− xt� if R�xt� ≥ L�xt�

xt − �Lg�	�L�xt�−R�xt���xt if R�xt� < L�xt�

(1)

where g � IR+→�0�1� is a continuos and increasing function, �R� �L ∈
�0�1� and 	 is a positive real number. Function g modulates how
the fraction of switching agents depends on the difference between
the previous turn payoffs; it must hold g�0� = 0 and limz→� g�z�=1.
Parameters �R and �L represent how many agents may switch to
R and L, respectively; when �R = �L, there are no differences in
the propensity to switch to either strategy. Finally, parameter 	
represents the switching intensity (or speed of reaction) of agents
as a consequence of the difference between payoffs. In other words,
decreasing values of 	 imply more inertia, that is, anchoring attitude,
of the actors involved.

Notice that if both the payoff functions are continuous, then the
map f also is continuous in the whole interval �0�1�, and its graph is
contained in the strip bounded by two lines, being �1− �L�x ≤ f �x� ≤
�1− �R�x + �R. However, even if L�x� and R�x� are smooth functions,
the map f in general is not smooth in the considered interval, since
f is not differentiable where the payoff functions intersect. When
studying the dynamics, this does not allow us to use the usual
approach which relies on the first derivative value in the equilibrium
point. As a consequence an approach based on the left and right side
slopes in the neighborhood of any interior fixed point is needed.

Finally, an interesting limiting case is obtained as 	 → +�. This is
equivalent to consider g�·� = 1; as a consequence the switching rate
only depends on the sign of the difference between payoffs, no matter
how much they differ. In this case the dynamical system assumes the
following form

xt+1 = f��xt� =



�1− �R�xt + �R if L�xt� < R�xt�

xt if L�xt� = R�xt�

�1− �L�xt if L�xt� > R�xt�

(2)

This limiting situation is quite extreme and somewhat unrealistic
since it describes a situation where a finite fraction of agents,
�R and �L, respectively, switch their strategies even when the
difference between payoffs is extremely small. In addition, from a
dynamic point of view, the map is not suitable to represent real time
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Global Dynamics in Binary Choice Models 283

patterns as internal equilibria, which are defined by the equation
L�x� = R�x�, represent points of discontinuity. However, as we shall
see, the global properties of f��xt� may give some insight into both the
global properties of the smooth map (2) and the role of the parameters
�R and �L.

3. PAYOFF FUNCTIONS WITH ONE INTERSECTION

In this section we consider payoff functions R�x� and L�x� with one
and only one internal intersection; that is, there exists a unique point
x∗ ∈ �0�1� such that R�x∗� = L�x∗�. We consider first the case where
the strategy R is preferred at the right of x∗ and L is preferred at the
left, as in Figure 1a. This situation is discussed in Schelling (1973),
where a vivid example is also provided (pp. 382, 384), by assuming
that L stands for carrying a visible weapon and R for going unarmed.
One may prefer to be armed if everybody else is but not if the
rest are not (individuals may also be nations; see, e.g., Appendix A
in Schelling, 1960), and the visibility of weapons is an essential
assumption for the model as it is proposed. According to the relative
position of the two payoff curves, in Schelling (1973, p. 403) the
author concludes that there exist two stable equilibria, namely x = 0
and x = 1, where everybody is choosing L and everybody is choosing

FIGURE 1 (a) Payoff functions R�x� = 1�5x and L�x� = 0�25+ 0�5x.
(b) Function f obtained with the same payoff functions as in (a) and parameters
�L = 0�3, �R = 0�7, 	 = 20 with switching function g�·� = 2



arctan�·�.
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284 G.-I. Bischi and U. Merlone

R, respectively, whereas the inner equilibrium x∗ is unstable. The
reasons given by Schelling to prove these statements are based on
the following arguments: at the equilibrium x = 0, where everybody
is choosing L, nobody is motivated to choose R because R�x� < L�x� in
a right neighborhood of 0, and analogously at x = 1, where everybody
is choosing R, nobody is motivated to choose L being L�x� < R�x� in a
left neighborhood of 1; instead, starting from the inner equilibrium x∗,
where both choices coexist, if x is displaced in a right neighborhood of
x∗ by an exogenous force, there R�x� > L�x� and a further increase of
x will be generated by endogenous dynamics. If x is displaced in a left
neighborhood of x∗, where R�x� < L�x�, then a further decrease of x
will be observed.

We can confirm the results of Schelling’s analysis by using
the explicit dynamic model (1). In fact, it is easy to prove that
f �0� = 0 so that x = 0 is a fixed point of (1); furthermore as f ′�0� =
1− �Lg�	�L�0�−R�0���, it holds 0 < f ′�0� < 1 being 0 ≤ �L ≤ 1 and
0≤g�·� < 1, as a consequence x = 0 is a stable fixed point with
monotonic convergence (see, e.g., Devaney, 1989; Robinson, 1999).
The same holds for x = 1, since f �1� = 1 and 0 < f ′�1� < 1. Finally
consider x∗ such that f �x∗� = x∗; there the slopes of both left and right
tangents, say f ′

−�x
∗� and f ′

+�x
∗� respectively, are greater than 1 as

f ′
−�x

∗� = 1− �L�	g
′�0��L′�x∗�−R′�x∗���x∗ > 1�

f ′
+�x

∗� = 1+ �R�	g
′�0��R′�x∗�− L′�x∗����1− x∗� > 1

since L′�x∗� < R′�x∗�.
If we consider the two payoff functions depicted in Figure 1a,

with the particular choice g�·� = 2


arctan�·� we obtain the function f ,

depicted in Figure 1b. Observe that with any other function g having
the properties listed above, it is possible to find a map f which is
similar in shape. Furthermore, on the basis of continuity arguments,
and without any assumption of differentiability for payoff functions
L and R, similar conclusions can be drawn.

These results can be summarized by the following:

Proposition 1. Assume that R � �0�1� → IR and L � �0�1� → IR are
continuous functions such that

• R�0� < L�0�
• R�1� > L�1�
• there exists unique x∗ ∈ �0�1� such that R�x∗� = L�x∗�,

then dynamical system (1) has three fixed points, x = 0, x = x∗ and
x = 1, where x∗ is unstable and constitutes the boundary that separates
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Global Dynamics in Binary Choice Models 285

the basins of attraction of the stable fixed points 0 and 1. All the
dynamics generated by (1) converge to one of the two stable fixed points
monotonically, decreasing if x0 < x∗, increasing if x0 > x∗.

This result confirms the same conclusions that Schelling (1973,
p. 403) deduced qualitatively by direct inspection of payoff curves.
Furthermore, the previous result can be reformulated locally as
follows:

Corollary 1. Assume that R � �0�1� → IR and L � �0�1� → IR are
continuous functions and that there exists x∗ ∈ �0�1� and a
neighborhood ��x∗� such that

• R�x∗� = L�x∗�
• R�x� < L�x� for all x ∈ ��x∗� such that x < x∗
• R�x� > L�x� for all x ∈ ��x∗� such that x > x∗

then x∗ is a repulsive fixed points, for the dynamical system (1).
Considering the restriction of any dynamics to ��x∗� the repulsiveness
of x∗ is monotonic: decreasing if x0 < x∗, and increasing if x0 > x∗.

By contrast, the situation is quite different when the payoff
functions are switched, that is, R�0� > L�0� and R�1� < L�1�, so that
R is preferred at the left of the unique intersection x∗ and L is
preferred at the right (see Fig. 2a). In this case we have a unique
equilibrium, given by the interior fixed point x∗.

Schelling (1973) describes this case as well and provides some
real-life examples of collective binary choices with this kind of payoff
functions. Among these examples one concerns the binary choice about
whether using the car or not, depending to the traffic congestion.
Let R represent the strategy “staying at home” and L “using the car.”
If many individuals choose L (i.e., x is small) then R is preferred
because of traffic congestion, whereas if many choose R (i.e., x is large)
then L is preferred as the roads are empty. This situation can be
represented with payoff functions as those depicted in Figure 2a.
Schelling (1973, p. 401), gives a qualitative analysis of this scenario
and classifies it as being characterized by global stability of the
unique equilibrium point. Using the words of Schelling (1973),
“[i]f we suppose any kind of damped adjustment, we have a stable
equilibrium at the intersection” (p. 401). His argument is based
on the fact that R�x� > L�x� on the left of x∗ (hence increasing x
whenever x<x∗) and R�x� < L�x� on the right of x∗ (hence decreasing
x whenever x>x∗). While this statement of global stability is true
when assuming a continuous time scale, in our case we observe a
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286 G.-I. Bischi and U. Merlone

FIGURE 2 (a) Payoff functions L�x� = 1�5x, R�x� = 0�25+ 0�5x� (b) Function
f obtained with g�·� = 2



arctan�·�, the same payoffs as in (a) and parameters

�L = �R = 0�5, 	 = 35. The interior equilibrium is unstable and the generic
trajectory converges to the attractor shown around x∗. (c) Bifurcation diagram
obtained with the same values of parameters � and payoff functions as in (b)
and bifurcation parameter 	 ∈ �0�70�.

different behavior since we consider discrete time. In fact, in our
discrete-time model we can observe oscillations of xt, an occurrence
which is a priori excluded in the continuous time dynamics.

By contrast, when considering the discrete-time dynamic model (1)
we realize that the slope of the function f at the steady state may be
positive or negative. More precisely, since L′�x∗� > R′�x∗�, both the the
left and right tangents f ′

−�x
∗� and f ′

+�x
∗� are less than 1:

f ′
−�x

∗� = 1+ �R

[
	g′�0��R′�x∗�− L′�x∗��

]
�1− x∗� < 1
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Global Dynamics in Binary Choice Models 287

and

f ′
+�x

∗� = 1− �L

[
	g′�0��L′�x∗�−R′�x∗��

]
x∗ < 1

Hence x∗ is stable as far as f ′
−�x

∗� > −1 and f ′
+�x

∗� > −1, and it may
becomes unstable2 when at least one of these slopes decrease below −1
(see, e.g., Devaney, 1989; Robinson, 1999).

This last situation may occur, for example, when considering
L�x�=1�5x, R�x�=0�25+0�5x, g�·�= 2



arctan�·�, �L = �R =0�5, 	=35,

as shown in Figure 2b. In this case, x increases in the right
neighborhood of 0 and decreases in the left neighborhood of 1;
nevertheless, the unique equilibrium x∗ may be unstable, and
persistent oscillations, periodic or chaotic, may be observed around it.
We can summarize the wide spectrum of asymptotic dynamic behaviors
by the bifurcation diagram depicted in Figure 2c, which is obtained
with the same values of parameters � and payoff functions as in
Figure 2b and by considering the parameter 	 that varies in the range
�0�70�. The complex behaviors depicted in Figure 2c are an example
of the chaotic behavior which characterizes many social systems; for a
discussion about the chaos and complexity in sociology the reader may
refer to Eve, Horsfall, and Lee (1997). However, as shown in Figure 2c,
for high values of the parameter 	, the asymptotic dynamics settle on
a given periodic cycle (of period 3 in this case) according to the values
of the parameters �L and �R. This can be easily forecasted from the
study of the limiting map (2), as shown in Section 4.

The occurrence of oscillations is typical of a discrete-time process
and is caused when individual players overshoot or overreact.
For example, in the model of binary choice in car usage described
above, overshooting occurs for sufficiently large values of 	 (high
speed of reaction). This means that whenever traffic congestion is
reported, on the following day most people will stay at home; when
no traffic congestion is reported most all of the people will use their
cars. This kind of reactions generates a typical oscillatory time pattern
which is a common situation observed in everyday life. This sort of
realistic situation would be completely ruled out when adopting a
continuous time one-dimensional dynamic model.

Obviously, even in a discrete time setting, oscillations may be
avoided or at least damped. In this case, if a sufficient degree of

2As the function f is not differentiable in its fixed points, when the derivative is
below −1 only on one side, the equilibrium may be stable or unstable according to
the global properties of the function, in the sense that the equilibrium may be locally
repelling from one side but globally asymptotically stable if the long run dynamics is
governed by the stable branch.
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288 G.-I. Bischi and U. Merlone

inertia is present, that is, low values of the speed of reaction 	� the
convergence to the equilibrium x∗ is achieved. In the same example
this means that people may learn to “discount the (traffic) warning”
and consequently may exhibit a “low propensity to switch.” Also,
reducing the time lags between traffic observations and decisions
may be effective in reducing oscillations; this could be obtained by
subscribing a service that keeps people currently informed so that they
can more frequently revise their decisions. All these factors may help
to reach the unique equilibrium, that is, giving it stability and avoiding
overshooting effects.

However, it is plain that several of the examples proposed in the
literature, and in particular in Schelling’s paper, are characterized
by decisions that cannot be continuously revised, and lags between
observations and decisions are often finite. As a consequence, decision
processes typically occur in a discrete time setting. This implies, as is
well known in general, a much richer spectrum of dynamic behaviors
than the one observed in continuous time one-dimensional models.
The reader may also refer to Schelling (1978, ch. 3), for several
others qualitative descriptions of overshooting and cyclic phenomena
in social systems.

The results of our discussion can be summarized in

Proposition 2. If R � �0�1� → IR and L � �0�1� → IR are continuous
functions such that

• R�0� > L�0�
• R�1� < L�1�
• there exists unique x∗ ∈ �0�1� such that R�x∗� = L�x∗�,

then the dynamical system (1) has only one fixed point at x = x∗, which
is stable if f ′

−�x
∗� > −1 and f ′

+�x
∗� > −1, and may be unstable if at

least one of these two slopes is smaller than −1. Both slopes decrease
as 	 or �L or �R increase, i.e., if the propensity to switch to the opposite
choice increases.

The previous result can be reformulated locally as well.

Corollary 2. Assume that R � �0�1� → IR and L � �0�1� → IR are
continuous functions and that there exists x∗ ∈ �0�1� and a
neighborhood ��x∗� such that

• R�x∗� = L�x∗�
• R�x� > L�x� for all x ∈ ��x∗� such that x < x∗
• R�x� < L�x� for all x ∈ ��x∗� such that x > x∗
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FIGURE 3 An exemplary case where f ′
−�x

∗� < −1 and 0 < f ′
+�x

∗� < 1.
Even if the fixed point x∗ is locally repelling on the left, it is asymptotically
stable because all the trajectories converge to it in the long run.

then x∗ is a fixed points, which is stable if −1 < f ′
−�x

∗� and −1 < f ′
+�x

∗�,
and may be unstable if at least one of these two slopes is smaller
than −1.

We stress again that, due to the presence of a kink (point where the
map f is not smooth) at x = x∗, when f ′

−�x
∗� < −1 and 0 < f ′

+�x
∗�<1

even if the fixed point is locally repelling from one side, that is,
the derivative is below −1 only on one side, the equilibrium may
be stable if the dynamics are ultimately governed by the attracting
branch, as qualitatively shown in Figure 3.

4. PAYOFF FUNCTIONS WITH TWO INTERSECTION POINTS

The existence of nonmonotonic payoff functions may lead to the
existence of more than one intersection, that is, two or more interior
equilibria exist. This may imply the existence of several stable
equilibria, each with its own basin of attraction. An example that
exhibits the existence of two interior equilibria is given by the recent
threats posed by the resistance to antibiotics reported in the medical
literature (see, e.g., Seppala et al., 1992). Consider the introduction
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290 G.-I. Bischi and U. Merlone

of new antibiotic in a population and assume individuals are facing
the binary choice to adopt or not to adopt the antibiotic. On one
side, if the fraction of population which potentially could choose the
new antibiotic is small, then the production would be almost null
and any single individual will not find economically viable to use it
due to the high price. On the other side, if the fraction of population
using that antibiotic is very high, then it may become less effective
due to the appearance of bacteria resistant to that kind of antibiotic.
As a consequence, only for intermediate levels of diffusion adopting
the antibiotic would be the best choice. This will lead to the creation
of a stable equilibrium that gives an intermediate level of antibiotic
diffusion. However, if some marketing policy will force an excessive
spread of the antibiotic, it will become so ineffective that nobody will
choose it in the future, that is, an irreversible transition toward the
disappearance of the antibiotic occurs (see, e.g., Leclercq, 2002). This
is just an example; however, it is not difficult to find other situations
where an excessive diffusion of a given collective choice induces
an extreme form of over-reaction leading to fast transition to the
opposite choice. While this kind of occurrence is completely ruled out
in Schelling (1973), it may be explained parsimoniously by our model.
In fact, with our modellization it is possible to explain these kind of
phenomena, in terms of basins of attraction of competing equilibria
and global bifurcations that create non connected basins. They are
equivalent to the creation of multiple thresholds that mark different
equilibrium selections in the long run. In the antibiotics example
and, more generally, in the study of the evolution of social systems,
the problem of path dependence, is an important issue. Specifically,
the problem of path dependence concerns, which equilibrium will
prevail in the long run, how this is influenced by changes of the
initial conditions, as well as displacements of initial conditions due to
historical accidents, and, finally, also the irreversible departure from
an equilibrium similar to the one described above.

However, this problem requires a deeper analysis of the
mathematical properties of the dynamic model. Indeed, the results
of Section 3 have been obtained through a local stability analysis,
as we considered the linear approximation of the iterated map in
the neighborhood of the equilibria, that is, the slopes of the graph
of the map f at (or near) the fixed points. Instead, to understand
some global dynamic phenomena observed in the iteration of a
nonlinear dynamical system, local stability analysis alone is not
sufficient and may even be misleading. As a consequence, a global
analysis is required; this approach consist of the localization of
relative maximum and minimum values of the iterated map and
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their images (also called critical points; see Gumowski and Mira,
1980; Mira, Gardini, Barugola, and Cathala, 1996) as well as their
contacts with unstable fixed points or cycles. These contacts may lead
to interesting (and sometimes counterintuitive) qualitative changes,
also called global bifurcations, in the topological structure of the
attracting sets and their basins of attraction. Such changes can be
easily observed when non monotonic payoff functions are considered,
which may be a quite common situation (on this point, see also
Granovetter, 1978).

In order to show what type of dynamic scenarios one may expect in
such situations, and how the global bifurcations involved can explain
some observed phenomena, we propose a specific example, where
L�x� = 1

2x and R�x� = −8x2 + 12x − 4 (see Fig. 4a). We indicate x∗
1 < x∗

2
the two distinct points where L�·� and R�·� intersect; in this case
there exist three equilibria: x = 0, x = x∗

1 and x = x∗
2. In the same

figure the map f , obtained with the usual choice g�·� = 2


arctan�·�,

is also reported. With reference to the example of antibiotic diffusion
described above, x∗

1 represents the lower threshold below which it
choosing the given antibiotic is difficult due to lack of demand,
x∗
2 represents the upper equilibrium above which the side effect of

bacteria resistance to a too diffused antibiotic becomes important.
Schelling (1973, p. 414) and Granovetter (1978, p. 1438) analyze

nonmonotonic payoff curves that assume such a configuration, and

FIGURE 4 (a) Payoff functions L�x� = 1
2x and R�x� = −8x2 + 12x − 4

together with the map f obtained with g�·� = 2


arctan�·�, �R = �L = 0�5, 	 = 6.

(b) Two trajectories starting from initial condition x0 = 0�95 and x0 = 0�5.
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292 G.-I. Bischi and U. Merlone

relate them to several real life situations. Schelling (1973, p. 414)
also describes an example concerning the binary choice of using
or not insecticide in the garden, in the presence of other gardens
around. Let R represent “use insecticide” choice and L not using it.
If nobody around use insecticide (low value of x) then the effectiveness
local application of insecticide is very low because there are many
bugs coming from gardens around. Hence one may decide that it
is not convenient spending money to buy it. On the other side, if
all neighbors use insecticide (high values of x), then there are not
enough bugs around to warrant spending money to spray insecticide
locally. As a consequence, only in the presence of moderate usage by
others (i.e., intermediate values of x) it becomes cost-effective to apply
insecticide locally. The payoff curves shown by Schelling (1973, p. 414)
to describe this situation are similar to the ones shown in Figure 4.

Also, Granovetter (1978, p. 1439), provides a vivid example related
to the presence of two threshold values, concerning the decision of
going or not to a restaurant: if the place is nearly empty it is probably
a bad sign and one would try another place, but if the restaurant is so
crowded that the waiting time is unbearable it will also lead to choose
another place.

Another meaningful example may be found in economics when
one considers the trade-off between research and development (R&D)
expenditures and knowledge spillovers among firms producing similar
goods in an industrial district (see, e.g., Bischi and Lamantia, 2002;
Bischi, Dawid, and Kopel, 2003a, 2003b). Research and development
investments in order to produce and sell a given product may be quite
inefficient if nobody else produces the same good because no available
information exist. On the other side, if, in an industrial district, too
many firms produce the same good and invest in R&D, then a firm can
take advantage, for free, of the competitors’ R&D results, due to the
difficulties to protect intellectual properties or to avoid the movements
of skilled workers among competing firms.

These are just a few among several interesting real-life examples
that can be described by nonmonotonic payoff functions with two
internal intersections; consequently a detailed study of the dynamic
scenarios generated by such kind of payoff functions may be
interesting in terms of both results and predictions. Moreover, as it
will become clearer in the following, the global dynamics effects of
the dynamical systems we are considering are interesting since they
may explain in a parsimonious way, just changing the time scale of
Schelling’s model, phenomena that are common in social systems.
In fact, studying the bifurcations and global dynamic properties, we
can observe some typical non linear effects that lead to the creation
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of particular structures of the basins of attraction that help to explain
the extreme forms of path dependence and irreversible overshooting
described so far.

For example, consider the same payoff functions as in Figure 4a;
fix parameters values as �R = �L = 0�5, 	 = 6, then while x = 0 and
x = x∗

2 are stable, fixed point x∗
1 is unstable and is the unique

separator of the two basins of attraction (see Fig. 4b). This map is
such that, for all initial conditions x0 > x∗

1� the corresponding time
evolutions (or trajectories) converge3 to the upper equilibrium x∗

2,
and for all the initial conditions x0 < x∗

1 the trajectories converge to
x=0. This is illustrated in Figure 4b where two trajectories, starting
from initial conditions x0 = 0�95 and x0 = 0�5 respectively, are shown.
As a consequence, the unstable fixed point x∗

1 is the watershed that
separates the two basins of attraction.

The local stability results we presented in Section 3 can be applied:
Corollary 1 to x∗

1 and Corollary 2 to x∗
2. In particular, we stress that

as in the neighborhood of x∗
2 slopes can be negative an oscillating

behavior may occur; these oscillations may be either damped when x∗
2

is stable, periodic or chaotic when x∗
2 is unstable. The latter situations

can be easily obtained when the speed of reaction 	 is sufficiently
large, provided that �L and �R are not too small. In other words,
a periodic or a chaotic attractor, say A�x∗

2�, may exist around x∗
2.

However, all the arguments given above about the basins of attraction,
as well as the considerations on basins’ bifurcations we shall make in
the following, remain the same when applied to the basin ��A�x∗

2�� of
the more complex attractor A�x∗

2�.
However, it is even more interesting that with no change in the

local stability properties of the three equilibria, a global (or contact)
bifurcation may occur, if some parameters vary opportunely, then the
topological structure of the basins of attraction changes, as they are
transformed into nonconnected sets. Such a structure of the basins
can only be observed in discrete dynamical systems represented by
the iteration of noninvertible maps (see, e.g., Mira et al., 1996; Agliari,
Bischi, and Gardini, 2002), and the transition from simple connected
basins (separated by an unstable fixed point) to nonconnected basins
is caused by a contact between the unstable fixed point and the
relative minimum value of the function f , say cmin, located on the right
of x∗

2.
The main point is that the map f is noninvertible: there exist at

least a pair of distinct points that are mapped into the same point,

3Notice that also in this case x∗
2 is globally asymptotically stable even if f ′+�x∗

2� < −1.
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294 G.-I. Bischi and U. Merlone

that is, distinct points with the same image, say x1 �= x2 such that
f �x1� = f �x2�. This can be equivalently stated by saying that, in the
range of the map f , there exist at least one point with several distinct
preimages; the consequence is that the range of the map can be
divided into different portions, or zones, characterized by a different
number of preimages. Following the notation introduced in Mira et al.
(1996), we denote by Zk the subset of points, in the range of f , that
have k preimages.

In the particular case of the map f represented in Figure 4b,
Z1 = �0� cmin�, Z2 = �cmin� cMax�, and Z0 = �cMax�1�, where cmin and cMax,
respectively, represent the relative minimum and maximum values.
In addition, as it concerns the unstable fixed point x∗

1 (located on
the boundary that separates the two basins) it can be observed that
x∗
1 < cmin; as a consequence x∗

1 ∈ Z1 and the point itself is its unique
preimage as in an invertible map. This is the reason why x∗

1 is the
unique point that forms the boundary separating the two basins of
attraction. In fact, when as the result of a parameter variation that is
large enough, the minimum value cmin is shifted downwards, and we
have cmin < x∗

1. In this case, then x∗
1 ∈ Z2 and there exists one more

preimage, say x
∗�−1�
1 belonging to the basin boundary as well. Figure 5,

which is obtained with all the same parameters as Figure 4 but
	 = 10, illustrates this situation. As it can be observed in Figure 5a,

FIGURE 5 Map f obtained with the same parameters as Figure 4 but 	 = 10.
(a) The trajectory starting from x0 = 0�9 converges to x∗

2. (b) The trajectory
starting from x0 = 0�98 converges to the fixed point x = 0.
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while any initial condition x0 ∈ �x∗
1� x

∗�−1�
1 � generates a trajectory that

converges to x∗
2, on the contrary any initial condition x0 ∈ �x

∗�−1�
1 �1� is

first mapped below �0� x∗
1� and then converges to the fixed point x = 0.

In other words, the basin of the stable fixed point x = 0 (everybody is
choosing L) is now ��0� = �0� x∗

1� ∪ �x
∗�−1�
1 �1�, that is, a nonconnected

set, with the “hole” ��x∗
2� = �x∗

1� x
∗�−1�
1 � “nested” inside. We recall that

the widest component of the basin that contains the attractor is called
immediate basin of the attractor.

To sum up, in this case there exists a value 	 such that the
the topological structure of the basins exhibits a qualitative change;
this value is characterized by the contact cmin = x∗

1 between a critical
point (relative minimum value) and an unstable fixed point. This
global bifurcation leads to a counterintuitive behavior of the system.
As the initial fraction of the populations of players choosing strategy
R (the initial condition x0) increases from 0 to 1, we first move from
the basin of the lower equilibrium x = 0 into the basin of the upper
one x∗

2, to finally re-enter into the basin of attraction of 0; that is,
while when many players initially choose R the process will evolve
towards a final equilibrium such that a large fraction of population
chooses R, on the contrary when even more players initially choose R
then nobody will end up playing R in the long run.

The situation may become even more involved when the position
of the minimum is shifted horizontally so that global shape of the
map f implies a new zone Z3. This is illustrated in Figure 6, where
parameters are �R = �L = 0�4, 	 = 40. In this case x∗

1 ∈ Z3, actually
as 	 increases a global bifurcation occurs: from cmin > x∗

1 to cmin = x∗
1

where the contact bifurcation occurs and, finally, cmin < x∗
1 as in

Figure 6. At this stage, there exist three distinct preimages of the
boundary point x∗

1: x
∗
1 itself and two more preimages denoted by x

∗�−1��1
1

and x
∗�−1��2
1 in Figure 6. The result is that so that both basins consist of

two disjoint portions: ��0� = �0� x∗
1� ∪

(
x
∗�−1��1
1 � x

∗�−1��2
1

)
and ��A�x∗

2�� =(
x∗
1� x

∗�−1��1
1

) ∪ (
x
∗�−1��2
1 �1

)
.

In Figures 7a–c, three different trajectories can be observed; they
are generated by initial conditions x0 = 0�8, x0 = 0�91 and x0 = 0�95
respectively (of course, any x0 < x∗

1 generates a trajectory converging
to 0). We also notice that, for this set of parameters, the larger fixed
point x∗

2 is not stable, as around it there may exist a chaotic or high-
period periodic attractor. However, we can observe that the occurrence
of the global bifurcation that changes the topological structure of the
attractors is not influenced by the kind of coexisting attractors.

It is also worth noticing how the position of the maximum value
cMax is important in bounding a trapping region which confines the
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296 G.-I. Bischi and U. Merlone

FIGURE 6 Map f obtained with �R = �L = 0�4, 	 = 40. In this case x∗
1 ∈ Z3.

asymptotic dynamics of any trajectories originating in a neighborhood
of x∗

2. In fact, as can be seen in Figure 7, the chaotic attractor that
exists around the fixed point x∗

2 is bounded above by the maximum
value cMax and below by its image f �cMax�. It is quite evident that if
we iterate the map f starting from any initial condition in the basin
��A�x∗

2��, no values can be obtained above cMax, and consequently
no values can be mapped below its image f �cMax�. In other words,
interval formed by the critical point cMax and its image is trapping:
any trajectory generated from an initial condition in ��A�x∗

2��, after
a finite number of iterations enters �f �cMax�� cMax�, and then it never
escapes out of it.

It is interesting to investigate whether, as 	 increases, the global
bifurcation leading to the creation of nonconnected basins always
occurs. In order to answer this question consider the piecewise linear
(and piecewise continuous) map (2), which is the limiting case of
map (1) obtained as 	 → �. This map, presents discontinuities at each
point x such that R�x� = L�x�, furthermore it consists of portions of
the lower line rL�x� = �1− �L�x (where R�x� < L�x�) and of the upper
line rR�x� = �1− �R�x + �R (where R�x� > L�x�). Since 0 ≤ g�·� ≤ 1,
for all x ∈ �0�1� it results rL�x� ≤ f �x� ≤ rR�x� (see Figure 8a). As a
consequence, the study of the map (2) gives some general properties of
the map f independently of the value of 	, and allows us to emphasize
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FIGURE 7 Three different trajectories obtained for the same map shown in
Figure 6. (a) x0 = 0�8. (b) x0 = 0�91. (c) x0 = 0�95.

the role of the parameters �L and �R. For example, with the payoff
functions we have been considering in this section, we have cMax ≤
�1− �R�x

∗
2 + �R and cmin ≥ �1− �L�x

∗
2 (see Fig. 8b). As 	 increases,

these inequalities allow us to find both a lower and an upper bound
for the attractors A�x∗

2�. Moreover, from the second inequality we can
deduce that if �1− �L�x

∗
2 > x∗

1 then no global bifurcation leading to
nonconnected basins may occur.

The study of the dynamic behaviors of the limiting map (2) can
give some insight about the kind of dynamics we can expect as the
parameter 	 increases. For example, assume the same two payoff
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298 G.-I. Bischi and U. Merlone

FIGURE 8 (a) The graph of the map f is always included in the strip
bounded by the two parallel lines rL�x� = �1− �L�x and rR�x� = �1− �R�x + �R.
(b) The limiting map f��x�.

functions we have been considering so far. When �R = �L = 0�4, for
sufficiently large values of 	 the only long run dynamics we can
observe is the convergence to the equilibrium x = 0 (see Fig. 9a)
whereas when assuming �R = 0�4 and �L = 0�25 then for sufficiently
high values of 	 we have both the coexistence of the stable equilibrium
x = 0 and a stable cycle of period three around x∗

2, given by A�x∗
2� =

�0�877�0�657�0�794� (Fig. 9b); finally observe that each basins of
attraction is connected and that they are separated by x∗

1� Recall
that assuming �R �= �L may be interpreted as the two choices being
culturally nonequivalent.

The results discussed in this section may be summarized as follows:

Proposition 3. If R � �0�1� → IR and L � �0�1� → IR are continuous
functions such that

• R�0� < L�0�
• R�1� < L�1�
• there exist two points x∗

1 < x∗
2 both in �0�1� such that R�x∗

i � = L�x∗
i �,

i = 1�2

then dynamical system (1) has three fixed points x = 0, x = x∗
1, and

x = x∗
2, where 0 is always stable, x∗

1 is always unstable, and x∗
2 may

be stable or unstable. When x∗
2 is unstable, then a cyclic (periodic or
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FIGURE 9 (a) Limiting map f� with �R = �L = 0�4, all the trajectories
converge to the equilibrium x = 0; (b) With �R = 0�4 and �L = 0�25 then the
iteration of f� shows coexistence of the stable equilibrium x = 0 and a stable
cycle of period three.

chaotic) attractor A�x∗
2� ⊆ �f �cMax�� cMax� exists around it and bounded

inside the trapping set �f �cMax�� cMax�, provided that f �cMax� > x∗
1. The

unstable fixed point x∗
1 is both the upper boundary of the immediate

basin of the stable fixed point 0, and the lower boundary of the
immediate basin of x∗

2 (or A�x∗
2� if it exists); furthermore, if �1− �L�

x∗
2 > x∗

1 then as 	 increases nonconnected portions of the basins are
created.

The application of these results to the examples of insecticide
or R&D investments, described at the beginning of this section, is
quite straightforward. Assume that both �L (the maximum fraction
of agents switching to the strategy L in one time period) and the
speed of reaction 	 are sufficiently high. In this case an initial
condition such that too many agents choose R may lead to so many
switches to strategy L that the endogenous dynamics is no longer
able to move back to R; the system remains trapped inside the
everybody is choosing L equilibrium, that is, x = 0. By contrast,
intermediate values of the fraction of agents initially choosing R does
not cause a so strong reaction against R; then either the collectivity
settle to the upper equilibrium where the majority chooses R, or
the number of agents choosing R may oscillate forever around such
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equilibrium value, with average values approximately close to such
upper equilibrium value.

5. CONCLUSIONS

In this article we considered an explicit discrete-time dynamic model
to simulate an adaptive adjustment process of repeated binary choices
with externalities, based on the qualitative properties described
by Schelling (1973).

The choice of a discrete time scale, also suggested by Schelling
(see footnote 9 in Schelling, 1960 and Schelling, 1978, pp. 85–87)
and Granovetter (1978), allowed us to stress the occurrence of
overshooting and cyclic phenomena in social systems. In particular,
with monotonic payoff functions, the model proposed in this article
allowed us to study the occurrence of oscillatory time series (periodic
or chaotic).

The implicit dynamic adjustment proposed by Schelling fails in
describing some important phenomena observed in real situations,
such as oscillations caused by overshooting (or overreaction) of the
actors involved in choices repeated over time, as well as problems of
equilibrium selection when nonmonotonic payoff curves lead to the
presence of several stable equilibria. In the latter case, the explicit
dynamic model proposed in this paper acts as an equilibrium selection
process and allows us to analyze structure of the basins of attraction,
a problem not fully considered by Schelling. Our main result is
given by the global analysis of the dynamic properties of the model
that reveals the occurrence of a global bifurcation that causes the
transition from connected to nonconnected basins of attraction. This
implies that several basin boundaries (or thresholds, following the
terminology of Granovetter, 1978) are suddenly created that may be
seen as a possible mathematical description of an extreme form of
path dependence, observed social systems, which is responsible of
irreversible transitions from one equilibrium to another (and distant)
one as final outcome.

Even if the results of this article are obtained for a particular
dynamic model, proposed to simulate a repeated adaptive adjustment
process, the mathematical methods used to obtain these results are
quite general, and the conclusions obtained about the two kinds of
complexity, related to complex attracting sets and complex structure of
the basins of attraction, can be extended to general classes of discrete-
time adaptive models used to describe collective binary choices in
social systems. The presence of overshooting and oscillatory behaviors
should not be seen as an artificial effect or a distortion of reality
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due to discrete time scale. Instead, as stressed by Schelling (1978),
overshooting and overreaction arise quite naturally in social systems
due to emotional attitude, excess of prudence or lack of information. In
fact, in our formal model overshooting appears as agents’ propensity
to switch to the opposite choice increases.

From a mathematical point of view, the kind of global dynamic
analysis of the discrete time dynamical system we performed, based
on a continuous dialogue among analytic, geometric and numerical
methods, is based on the properties of noninvertible one-dimensional
maps (see, e.g., Mira et al., 1996; Agliari et al., 2002). Such a global
study of the dynamical system proposed here allow us to analyze, for
given payoff functions, the quantitative and qualitative effects of the
variations of the relevant parameters of the dynamic model on the
topological structure of the basins of attraction, and we could obtain a
delimitation of trapping intervals where the long-run behaviors of the
model are confined. Finally, we gave some examples in the limit case of
infinite switching propensity 	 → +� and pointed to the consequences
of relaxing the assumption of culturally equivalent choices �R = �L.

In future research we will further the analysis along two
main avenues. On one hand, we are interested in analyzing the
mathematical properties of piecewise maps; on the other hand,
it would be quite interesting to analyze the consequences of
heterogeneity of agents. This could be done either considering
different individual payoffs or also assuming different social network
structures in the agents population.
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