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a b s t r a c t

We consider a discrete-time dynamic model to describe the repeated choices of adaptive
consumers that at each time period adjust their request for a given good according to
the discrepancies between the observed price and the fair price perceived on the basis
of their utility function. Moreover, consumers’ preferences are endogenously modified
on the basis of past consumption experience. The model considered is derived from the
one proposed in D’Orlando and Rodano (2006), with a different assumption about the
way the utility function changes according to the past consumption. In fact, in D’Orlando
and Rodano (2006) the consumption preferences increase whenever past consumption
increases, whereas in the model proposed in this paper a saturation effect is introduced,
so that the same assumption holds for low and moderate past consumption, whereas
current consumption decreases if the quantity consumed in the previous time period
was too high. This leads to a unimodal preference function instead of an increasing
one, which implies that the two-dimensional map, whose iteration represents the
time evolution of the consumers’ choices, is transformed from an invertible map to a
noninvertible one. Hence different global dynamic properties are obtained that influence
the structure of the attractors and basins of attraction. These global dynamic features,
described by the method of critical curves, interact with the property that the map
is also characterized by the presence of a denominator that can vanish, giving rise to
different kinds of singularities denoted as focal points and prefocal curves in Bischi et al.
(1999), Bischi et al. (2003), Bischi et al. (2005), that strongly influence the structure of
the basins of attraction. We describe the structure of the basins of attraction, and the
contact bifurcations that change the qualitative properties of their global structure, by
using geometric and numerical methods guided by the combined study of critical and
prefocal curves.

© 2022 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we re-consider a dynamic model proposed in [1] to describe the iterated choices of boundedly rational
onsumers that at each time period update their consumption choices on the basis of the observed discrepancy between
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expected price (expressed as the relative utility gain due to good consumption) and the current one. Moreover, the
utility function is updated according to the consumption choice of the previous period, i.e. the consumers are assumed
to learn from past consumption. This evolutionary approach to consumers’ behavior departs from the one prevailing in
the traditional economic theory based on the assumption that consumers are rational agents, that is, they decide their
consumption of a given good according to the maximization of a given utility function, that depends on the quantities of
goods consumed, subject to budget constraints. This requires that consumers have a complete knowledge of their personal
utility function, are able to fully exploit all the available information on the economic parameters involved (e.g. prices
and budget) and have computational skillness required to solve the optimization problem. However, many authors have
recently argued that these assumptions are too strong, and economic models should take into account limited human
ability to solve maximization problems as well as the uncertainties that force real people to adapt to circumstances
(see e.g. [2]). This leads to the weaker concept of bounded rationality, which assumes that agents make repeated choices
following a trial and error (or adaptive) method, and at each time they correct the previous choices on the basis of their
observations. Sometimes this repeated adaptive process converges to an equilibrium point that corresponds to the same
choice of a rational agent, i.e. the agents learn to behave rationally in the long run. This possibility may be seen as an
‘‘evolutionary explanation’’ of the assumption of rational behavior. In this case we say that boundedly rational agents
are able to learn from their past experience and become rational in the long run. In the seminal paper [3] such an
‘‘evolutionary approach’’ is described to explain how non fully rational economic agents (firms in that case) follow a
‘‘Darwinian’’ evolution, characterized by adaptive trial and error methods, that may lead them to converge to a rational
behavior (i.e. they learn to be rational) in the long run.

Of course, if several stable equilibria coexist, a problem of equilibrium selection arises and the adaptive mechanism
proposed becomes a device for the selection of which equilibrium will prevail in the long run. In such a situation the
role of initial conditions is crucial, the process becomes path dependent, and the delimitation of the basins of attraction
must be considered in the study of the dynamical system. This requires a global analysis of the dynamical system, a
problem often approached by a combination of analytical, geometric and numerical methods. In particular, for the model
of evolutive consumer proposed in [1], this study of the structure of the basins and their global bifurcations is given in [4],
see also [5] and [6].

The time evolution of the adaptive choices of the boundedly rational consumer considered in these papers is
represented by the iteration of a nonlinear invertible two-dimensional map, whose steady states represent possible
alternative choices of rational consumers. According to [1], all these papers assume that consumers increasingly prefer
a good consumed in the past due to habits or skillness gained, i.e. the learning mechanism connecting current to past
consumption of the good considered is based on an increasing function (more consumption in the past implies more
even now). By contrast, in this paper we assume a non monotonic relation, so that the same assumption holds for low
and moderate past consumption, whereas current consumption decreases if the quantity consumed in the previous time
period was too high, a typical consumption saturation effect (see [7,8] and [9]). This leads to a unimodal (or one-hump)
preference function instead of an increasing one, which implies that the two-dimensional map, whose iteration represents
the time evolution of the consumer’s choices, is transformed from an invertible map to a noninvertible one. This implies
different global dynamic properties of the map that influence the structure of the attractors as well as of the basins of
attraction. It is now well known that the global dynamic properties and bifurcations of a noninvertible map of the plane
can be usefully described by the method of critical curves (see e.g. [10]). Moreover, as already stressed in [4,5] and [6],
the map considered is also characterized by the presence of a denominator that can vanish, giving rise to different kinds
of singularities denoted as focal points and prefocal curves in [11–13], whose presence strongly influences the structure
of the basins of attraction. Roughly speaking, a prefocal curve is a set of points which are mapped (or “focalized”), by the
inverse function (if the map is invertible) or by at least one of the inverses (if the map is noninvertible), into a single
point, called focal point, where a component of the map assumes the form 0/0. In this paper we consider the interaction
etween critical and prefocal curves, i.e. between the properties of noninvertible maps and those of maps with a vanishing
enominator, as a consequence of the assumption of non monotonic function expressing learning of preferences from past
onsumption experiences.
The paper is organized as follows. In Section 2 a description of the economic dynamic model is given with a general

reference function as well as some particular assumptions about it. In Section 3 the existence of equilibrium points is
tudied and how their local stability conditions are influenced by the shape of the preference function. In Section 4 some
efinitions related to the basins are given together with a deep analysis of global geometric properties of the dynamic
odel considered. These definitions and results are applied to the study of the global bifurcations of the basins of the
conomic dynamic model considered in this paper through some numerical simulations. Section 5 concludes and outlines
urther studies.

. The model

Following [1], let us consider the utility function U (x, y) where x is the quantity of a given good and y represents the
ggregated quantity of all the other goods that the consumer can buy. The utility function, that loosely speaking represents
he satisfaction obtained by the consumer as a consequence of the consumption of the quantities of goods considered,
2
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is a smooth function of its arguments. If p is the unitary price of the good considered and the price of all other goods is
conventionally taken as a reference unitary price, the budget constraint becomes:

px + y = m (1)

where m is the amount of money that a consumer can use to buy goods. The rational choice of the consumer is the
solution (x∗, y∗) of the problem of maximization of U under the budget constraint (1). If we exclude corner solutions, the
rational solution is identified by:

MRS =
∂U/∂x
∂U/∂y

= p ; px + y = m (2)

where MRS is the Marginal Rate of Substitution, that represents the relative gain of utility caused by consumption of a
unit of good x with respect to the utility gain for consumption of complementary goods y. Under optimality conditions, in
the standard economic theory this ratio represents the fair price . However, under the assumption of bounded rationality,
in [1] the consumers are considered unable to compute the solutions of this problem, and they follow a discrete time
adjustment process:

xt+1 = xt + µ [MRS (xt) − p] (3)

where µ > 0 represents the speed of adjustment. This adaptive process is based on the assumption that at any time
period t the quantity xt+1 that the consumer decides to buy in the next period, xt+1, is obtained as a correction of the
quantity chosen in the current period, xt , according to the discrepancy between the given price p and the experienced
relative utility gain MRS(xt ). It is straightforward to notice that a steady state xt+1 = xt of this process is a rational choice,
i.e. a solution of (2).

A utility function which is commonly used in this context, also adopted in [1], is:

U (x, y) = xαy1−α (4)

known as the Cobb–Douglas function, where the real parameter α ∈ [0, 1] measures the preference (marginal utility) for
good x (if we multiply the quantity x by a factor k > 0, then the utility is multiplied by a factor kα). From (4) we get:

MRS(x) =
α

1 − α

y
x

=
α

1 − α

m − px
x

(5)

and the adjustment process (3) becomes:

xt+1 = xt +
µ

1 − α

(
mα

xt
− p

)
. (6)

In [1] it is also assumed that the consumer’s preferences are influenced by past choices, i.e. the preference parameter is
endogenized to become a dynamic variable depending on past consumption:

αt+1 = g (xt) (7)

and the dynamic model becomes two-dimensional, the evolutive process being represented by the iteration of the
two-dimensional map (xt+1, αt+1) = T (xt , αt), where:

T :

⎧⎨⎩ xt+1 = xt +
µ

1−αt

(
mαt

xt
− p

)
αt+1 = g (xt)

. (8)

Several different assumptions can be made about the function g (x). In [1] the authors assume that g (x) is a continuous
and increasing function, i.e. a consumer prefers to consume increasingly more a good according to the quantity consumed
in the previous period, due to acquired consumption habits or skills attributable to past consumption. In particular, they
propose the following sigmoidal function:

g(x) =
1

k1 + k2 · kx3
(9)

with 0 < k3 < 1, k2 > 0 and k1 > 1 in order to ensure α < 1 being the range of this function α ∈

(
1

k1+k2
, 1

k1

)
.

owever, as the same authors suggest, different assumptions can be made about the relation between past consumption
nd current preferences of a given good. For example, we may assume that if past consumption is too high then the
onsumer becomes tired of that good, or a saturation effect occurs due to a decreased necessity to buy that good or lack
f space to store it, etc. However, up to now these different assumptions have not been explored in the literature. So, in
his paper we assume that the function g (x) increases only for low values of x and it decreases for higher values of the
ast consumption. In other words, we assume a continuous unimodal function. As a particular example, to be compared
ith (9), we propose:

g(x) =
1
x2e−hx

+ l (10)

k

3
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with h > 0 and kh2 > 4
(1−l)e2

in order to ensure α < 1, as the range of (10) is α ∈

(
l, l + 4

4e2kh2

)
. The parameter l > 0 has

been introduced to mimic the shape of the sigmoid function (9)0 ≤ x < 2
h (the increasing portion of (10)).

In the following we study the existence and stability of steady states of the dynamic process described above, and
hen, in the cases of coexistence of stable equilibria, we shall focus our attention on the study of their basins of attraction,
ased on a global view of the dynamical system.

. Existence of rational equilibria

The steady states of the adaptive model described in the previous section are the fixed points of the map (8) obtained
y setting xt+1 = xt and αt+1 = αt , i.e. the solutions of the system:{

α =
p
m

x
α = g(x)

. (11)

he solutions of this system can be graphically represented as the intersections between a line through the origin, of
ngular coefficient p/m, and the curve that represents the relation between current preferences and past consumption
see Fig. 1).

It is worth noticing that from the first equation in (11) and (5) we get MRS = p, hence any steady state of the model is
a rational equilibrium, so convergence to a stable equilibrium means that the choices of a boundedly rational (adaptive)
consumer coincide in the long run with the choice of a rational consumer, i.e. such rational behavior can be learned
through the trial and error adaptive process.

Concerning the existence of equilibrium points, under the assumption of sigmoidal preference function (9) in [4] has
been proved that up to 3 positive fixed points, say 0 < x∗

1 < x∗

2 ≤ x∗

3 with respective α∗

i = g(x∗

i ) can be obtained, one
always exists and a further couple can be created through a fold (or saddle node) bifurcation as p

m decreases or increases
see the left panel of Fig. 1). A very similar situation holds if we consider the unimodal function (10), with the only
ifference that an equilibrium (the one characterized by higher consumption) may belong to the decreasing branch of
he function g(x) if the equilibrium consumption is greater than 2/h. This may imply some differences concerning the
tability and local bifurcations of such equilibrium.2
Unfortunately, general conditions for the existence of three equilibrium points, related to conditions of tangency

etween the line and the curve, cannot be expressed analytically, except for the particular case l = 0. In this case we can
rove the following proposition:

roposition 1. The map (8) with preference function (10) if l = 0 is characterized by two equilibria with consumptions x∗

1
nd x∗

2 such that 0 < x∗

1 ≤
1
h ≤ x∗

2 provided that kp
m ≤

1
eh , and x∗

1 = x∗

2 =
1
h for p

m =
1
ekh .

roof. From the equilibrium condition (11) we get:
1
k
x2e−hx

=
p
m

x

hich is solved by the value x = 0, that cannot be an equilibrium value because the map (8) is not defined there. Besides
that, by dividing both terms by x we obtain:

1
k
xe−hx

=
p
m

that can be rewritten as:

xe−hx
=

kp
m

where the function at the left hand side is unimodal with maximum at x∗
=

1
h and maximum value 1

eh . So, real positive
olutions 0 < x∗

1 ≤
1
h ≤ x∗

2 exist for kp
m ≤

1
eh , and x∗

1 = x∗

2 =
1
h for p

m =
1
ekh . □

Concerning the local stability of an equilibrium point E =
(
x∗,

p
mx∗

)
, let us consider the standard linearization

procedure based on the Jacobian matrix of (8):

J(x, α) =

[
1 −

µmα

x2(1−α)
µ

m−px
x(1−α)2

g ′(x) 0

]
(12)

omputed at the equilibrium:

J(x∗,
p
m

x∗) =

[
1 −

µmp
x∗(m−px∗)

µm2

x∗(m−px∗)

g ′(x∗) 0

]
(13)

2 In the literature it is called saturation (or bliss) point (see [7–9]).
4
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Fig. 1. Left. Sigmoidal preference curve (9) proposed in [1] with k1 = 1, k2 = 45, k3 = 0.4. The case of three equilibrium points is shown (solid line)
s well as the two cases of tangent bifurcations (dashed lines). Right. The same for the unimodal preference curve (10) proposed in this paper with
= 2, h = 0.6 and l = 0.1.

here m−px∗
= m (1 − α∗) > 0. The trace and the determinant of (13), Tr∗

= 1−
µmp

x∗(m−px∗)
and Det∗ = −

µm2g ′(x∗)
x∗(m−px∗)

, allow
s to state that Tr∗

2
− 4Det∗ > 0 if g ′(x∗) > 0, i.e. the eigenvalues are always real if the preference curve is increasing at

the equilibrium. From the Schur stability conditions (see e.g. [14–16]):

1 − Tr∗
+ Det∗ =

µm
m − px∗

(
p − mg

′

(x∗)
)

> 0

1 + Tr∗
+ Det∗ =

1
x∗(m − px∗)

(
2x∗(m − px∗) − µmp − µm2g ′(x∗)

)
> 0

1 − Det∗ = 1 +
µm2g ′(x∗)

x∗ (m − px∗)
> 0

we can state that:
A saddle–node (or fold) bifurcations at which a couple of fixed points is created can only occur when g ′(x∗) > 0, i.e. x∗

belongs to the increasing portion of the preference curve, and the bifurcation is characterized by the tangency condition
g ′(x∗) =

p
m ;

A Neimark–Sacker bifurcation, at which the equilibrium loses stability and a closed invariant curve is created around
it, can only occur if x∗ belongs to the decreasing portion of the preference curve, and the bifurcation is characterized by
he condition g ′(x∗) = −

x∗(m−px∗)
µm2 .

4. Global properties of the map, basins of attraction and numerical simulations

We first recall some basic definitions and properties3 of the basins of attraction for a discrete dynamical system defined
y the iteration of a two-dimensional map T : (xt , αt ) → (xt+1, αt+1). The point (xt+1, αt+1) ∈ R2 is called a rank-1 image
f the point (xt , αt) under T , and (xt , αt) is called a rank-1 preimage of (xt+1, αt+1). A set A ⊂ R2 is trapping if it is mapped

into itself, T (A) ⊆ A, i.e. if (x, α) ∈ A then also T (x, α) ∈ A. A trapping set is invariant if it is mapped onto itself: T (A) = A,
i.e. all the points of A are images of points of A. A closed invariant set A is an attractor if it is asymptotically stable, i.e. if
a neighborhood U of A exists such that T (U) ⊆ U and T t (x, α) → A as t → +∞ for each (x, α) ∈ U .

The Basin of an attractor A is the set of all points that generate trajectories converging to A:

B (A) =
{
(x, α)|T t (x, α) → A as t → +∞

}
. (14)

tarting from the definition of stability, let U be a neighborhood of an attractor A whose points converge to A. Of course
U ⊆ B (A), but also the points of the phase space which are mapped inside U after a finite number of iterations belong
to B (A). Hence, the basin of A is given by the open set B (A) =

⋃
n≥0 T

−n(U), where T 0(x, α) = (x, α) and T−n(x, α)
represents the set of rank-n preimages of (x, α), i.e. the set of points that are mapped into (x, α) after n iterations of the
map T . The basin B(A) is trapping under T and invariant under T−1, i.e.:

T−1(B (A)) = B (A) , T (B (A)) ⊆ B (A) .

The boundary ∂B(A) behaves as a repelling set for the points near it, since it acts as a watershed for the trajectories of the
map T . Points belonging to ∂B(A) are mapped into ∂B(A) both under forward and backward iteration of T . More exactly:

T−1(∂B(A)) = ∂B(A), T (∂B(A)) ⊆ ∂B(A).

3 For a more detailed and rigorous treatment, see e.g. [10].
5
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We remark that T−1(∂B(A)) = ∂B(A) implies that if a curve segment belongs to ∂B(A) then also all its preimages must
elong to ∂B(A). In particular, ∂B(A) includes the stable set of any fixed point (or cycle) of T belonging to ∂B(A). So, in

order to study the structure of the boundaries of a basin, the properties of the inverse (or inverses if a map is noninvertible,
see e.g. [10]) must be considered.

For the model (8) considered in this paper, if the function g(x) is invertible, then also the two-dimensional map (8)
is invertible. In fact, in this case from αt+1 = g(xt ) a unique preimage xt exists, given by xt = g−1(αt+1). After inserting
such xt in the right hand side of the first component and solving with respect to αt (a first degree algebraic equation) the
following solution is obtained:

αt =
(xt+1 − g−1(αt+1))g−1(αt+1) + µpg−1(αt+1) − γ

(
xr − g−1(αt+1)

)
µm + (xt+1 − g−1(αt+1))g−1(αt+1)

.

For example, for the increasing sigmoid function (9) we get:

xt = g−1(αt+1) =
ln(1 − k1αt+1) − ln(k2αt+1)

ln k3
.

On the other hand, if a unimodal preference map g (x) is considered, then the two dimensional map T is a noninvertible
Z0 − Z2 map, as explained in the next subsection. For example, with the function (10), given αt+1 ∈

(
l, l + 4

e2kh2

)
two

distinct preimages are 0 < xt,1 ≤
2
h ≤ xt,2, and if αt+1 = l + 4

e2kh2
then xt,1 = xt,2 =

2
h ; instead, if αt+1 = l then xt,1 = 0

nd xt,2 → ∞.

.1. Critical curves

The global properties of a noninvertible map can be studied by using the critical curves LC (from the French “Ligne
ritique”) defined as the locus of points having two, or more, coincident rank-1 preimages, located in a set denoted
y LC−1. Arcs of LC separate regions of the plane characterized by different numbers of rank-1 preimages, say region
k, whose points have k distinct preimages, from region Zk+2, as pairs of real preimages appear or disappear crossing
hrough LC . Accordingly, such boundaries are characterized by the presence of two coincident (merging) preimages.
C is the two-dimensional generalization of the notion of critical value (local minimum or maximum value) of a one-
imensional map, and LC−1 is the generalization of the notion of critical point (local extremum point). Analogously to
he case of differentiable one-dimensional maps, where the derivative necessarily vanishes at the local extremum points,
or a two-dimensional differentiable map LC−1 belongs to the set of points in which the Jacobian determinant vanishes,
.e. LC−1 ⊆

{
(x, α) ∈ R2

| det J = 0
}
, and LC is obtained as the image of LC−1, i.e., LC = T (LC−1).

The Jacobian determinant of the map (8) is det J(x, α) = −µ
m−px

x(1−α)2
g ′(x), hence it vanishes along the lines x =

m
p

nd x = x whenever x exists such that g ′(x) = 0. If the unimodal preference function (10) is considered, then
g ′(x) =

1
k xe

−hx (2 − hx), hence x =
2
h . The image of the line x =

2
h is a critical curve:

LC = T
(
x =

2
h
, α

)
=

(
2
h

+
µ

2

(
mhα − 2p
1 − α

)
, l +

4
e2kh2

)
.e. the line α = l+ 4

e2kh2
separates the region Z2 =

{
(x, α) ∈ R2

|α < l + 4
e2kh2

}
, whose points have two rank-1 preimages,

rom the complementary region Z0, whose points have no preimages.
Instead, the image of the line x =

m
p is a single point:

T (x =
m
p

, α) = Q−1
=

(
m
p

− µp,
m2

kp2
e−hm

p + l
)

.e. the whole line is ‘‘focalized’’ by T into the point Q−1. By using the terminology introduced in [11], we can say that the
ine x =

m
p is a prefocal line of T−1, as explained in the next subsection. As we shall see, a consequence of this property

s that if a chaotic attractor crosses the line x =
m
p , then it must include a ‘‘knot’’.

4.2. Definition of focal point and prefocal set

Let us consider a two-dimensional map with at least one of the components that contains a denominator which can
vanish. This implies that the map is not defined in the whole plane. For example, in the map (8) the first component has
a denominator D(x, α) = x (α − 1) that vanishes along the lines x = 0 and α = 1, on which the map is not defined. Let
us denote this as the set of nondefinition of the map T :

δs = {(x, α) ∈ R2
|D(x, α) = 0}. (15)

Now let us consider a bounded and smooth simple arc γ transverse to δs. In general, the image T (γ ) is made up of two
disjoint unbounded arcs, but a different situation may occur if the point where γ intersects δs is such that not only the
enominator but also the numerator vanishes in it, as it occurs in the point Q = (0, 0) for the map (8). In this case the

curve T (γ ) may be bounded, and the following definition of focal point and prefocal curve can be given (see [11]):
6



G.-I. Bischi and F. Tramontana Communications in Nonlinear Science and Numerical Simulation 117 (2023) 106984

A

D
s
d

a

T
a
i
n

Fig. 2. Upper panel. Arcs through a focal point Q with different slopes are mapped into arcs crossing through δQ in different points. Lower panel.
preimage of an arc crossing through the prefocal line δQ into distinct points is a loop with double point in the focal point Q .

efinition. A point Q is a focal point for the map T if at least one component of T takes the form 0/0 in Q and there exist
mooth simple arcs γ through Q such that their image T (γ ) is finite. The set of all the finite images of Q computed along
ifferent arcs γ through Q is the prefocal set δQ .

Indeed, let us assume that the first component of the map has the form N(x,α)
D(x,α) . The point Q = (0, 0) is a simple focal

point, i.e. a simple root of the algebraic system:

N(x, y) = 0, D(x, y) = 0.

We recall that Q is simple if NxDy − NyDx ̸= 0, where Nx =
∂N
∂x (Q ) and analogously for the other partial derivatives. In

this case the prefocal line α = g(0) where g(0) is the preference function computed in the focal point. Following [11], a
one-to-one correspondence is defined between the point (x, α(0)), in which T (γ ) crosses δQ , and the slope s of γ in Q ,
given by:

s → (x(s), g(0)), with x(s) = (Nx + sNy)/(Dx + sDy) (16)

nd

(x, α(0)) → s(x) with s(x) = (Dxx − Nx) / (Ny − Dyx). (17)

hese relations can be obtained by using a method either based on a series expansion of the functions N(x, y) and D(x, y) in
neighborhood of Q = (x0, y0), or by considering the Jacobian determinant of the inverse map T−1 (or one of the inverses
f the map is noninvertible). In fact, from the definition of the prefocal curve, it follows that the Jacobian det

(
J−1

)
must

ecessarily vanish in the points of δQ . Indeed, if the map T−1 is defined in δQ , then all the points of the line δQ are mapped
by T−1 into the focal point Q . This means that T−1 is not locally invertible in the points of δQ , being a many-to-one map,
and this implies that its Jacobian cannot be different from zero in the points of δQ . So, roughly speaking, a prefocal curve
is a set of points for which at least one inverse exists which maps (or “focalizes”) the whole set into a single point, called
focal point or, more concisely, that T−1(δQ ) = Q . From the relations (16), (17) it follows that different arcs γj, passing
through a focal point Q with different slopes sj, are mapped by T into bounded arcs T (γj) crossing δQ in different points(
x(sj), g(0)

)
, and interesting properties are obtained if the inverse of T (or the inverses, if T is a noninvertible map) is

(are) applied to a curve that crosses a prefocal curve. Let δQ be a prefocal curve whose corresponding focal point is Q .
Then each point sufficiently close to δQ has its rank-1 preimage in a neighborhood of the focal point Q , and if an arc ω

crosses δQ in two distinct points, say (x1, g(0)) and (x2, g(0)) then its preimage T−1(ω) must include a loop with double
point in Q , as shown in the qualitative picture in Fig. 2.

In the map (8), the first component can be written as:

xt+1 =
N(xt , αt )

=
(1 − αt )x2t − µpxt + µmαt
D(xt , αt ) xt (1 − αt )
7
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and it becomes 0/0 in Q = (0, 0) and R =

(
m
p , 1

)
. These are both focal points, with corresponding prefocal curves:

δQ = {(x, α) |α = l}

nd

δR =

{
(x, α) |α =

m2

kp2
e−

hm
p + l

}
.

he one-to-one relations (16) between slope s (through the focal point) and position x(s) along the corresponding prefocal
ine are given by:

x(s) = µms − µp

or the focal point Q , and:

x(s) =

(
m2

− µmp2 + m
)
s − µp3

pms
or the focal point R. The existence of such biunivocal relations proves that, indeed, both Q and R are focal points.

The presence of these focal points and corresponding prefocal curves has important effects on the geometrical and
dynamical properties of the dynamical system considered. In fact, a contact of an arc ω with a prefocal curve gives
rise to important qualitative changes in the shape of the preimages T−1

j (ω), and when ω is an arc belonging to a basin
boundary ∂B, the qualitative modifications of the preimages T−1

j (ω) of ω, due to a tangential contact of ω with a prefocal
curve can be particularly important for the global structure of the basin boundary. In fact, as ∂B is backward invariant,
i.e. T−1(∂B) = ∂B, if ω is an arc belonging to ∂B, then all its preimages of any rank must belong to ∂B. This implies that if
a portion ω of ∂B crosses a prefocal curve in two points, then the basin boundary must include loops, denoted as ”lobes”,
somewhere along the basin boundary. As we shall see in the next section, this occurrence, together with the contacts
and intersections of basin boundaries with critical curves LC , constitute the basic mechanisms leading to the involved
structures of the basins of attraction.

4.3. Numerical explorations of basins of attraction and their global bifurcations

In this section we show some numerical explorations of attractors and basins of attraction of the dynamic model
(8) with preference function (10), and explain their geometric structures, as well as their qualitative changes (i.e. global
bifurcations) as some parameters are varied, on the basis of the global properties and singularities of the map defined in
the previous section.

The dynamic situation shown in the left panel of Fig. 3 is obtained with parameters m = 10, p = 2.5, µ = 0.98 and
k = 0.95, h = 1 and l = 0.01 in the preference function. For this parameters’ constellation there are three equilibrium
points, characterized by rational consumptions x∗

1 = 0.05, x∗

2 = 0.26 and x∗

3 = 2.26 (with corresponding equilibrium
preference values α∗

1 ≃ 0.0125, α∗

2 ≃ 0.064866 and α∗

3 ≃ 0.571, respectively). The two equilibria with lower consumption
are unstable (saddle point and unstable node respectively) whereas the one with higher consumption, located in the
decreasing portion of the preference curve being x∗

3 > 2/h, is a stable focus, denoted by E in the picture, with eigenvalues
λ1,2 = −0.75 ± 0.35i (hence with modulus |λi| = 0.83). The basin of attraction of this stable rational equilibrium is
represented by the white region, whereas the gray region represents the set of initial conditions that generate unfeasible
trajectories because they involve negative values of consumption x. Indeed, the initial conditions with small values of
x and α (gray region in the bottom-left) as well as the initial conditions with high values of x and α generate negative
values of x according to the model (8). It can be noticed that the boundary of the gray region with small values of x and
α, crossing in two points the prefocal line δQ of equation α = l, also includes a small lobe issuing from the focal point
Q = (0, 0). A second preimage of it is visible in the upper right portion of the picture, but it generates no further gray
preimages because it is in Z0. However, we can notice that a portion of this gray region representing the set of unfeasible
initial conditions, is quite close to the critical line LC . Indeed, if some parameter is varied so that LC moves upwards, then
a portion of such gray region will enter the zone Z2 and new preimages will be created belonging to the basin of unfeasible
initial conditions. This is shown in the right panel of Fig. 3, obtained with a slightly decreased value of the parameter k.
This parameter change causes a contact between the basin’s boundary and LC and then a portion of the gray basin enters
Z2, as indicated by the arrow in Fig. 3, obtained with k = 0.9. This portion, denoted by H0, has two preimages located
around LC−1 (more exactly two preimages joining along LC−1) indicated by H−1 in the picture. Following the terminology
introduced by [10], we say that this is a hole (or lake) of the gray basin nested inside the white basin of the rational
equilibrium E, or equivalently we may say that the white basin from simply connected set has been transformed into a
multiply connected set (or connected with holes). This occurrence is not possible when dealing with invertible maps. So,
we may say that this kind of qualitative change (or global bifurcation) of the basin of the rational equilibrium is caused
by the modification of the preference function from increasing to non monotonic.

No other preimages exist because H−1 ∈ Z0. However, if k is further decreased then LC is further shifted and a portion

of H−1 enters Z2 after a contact with LC , as shown in the left panel of Fig. 4. This gives rise to the creation of further holes.

8



G.-I. Bischi and F. Tramontana Communications in Nonlinear Science and Numerical Simulation 117 (2023) 106984

R

M
b
m
b
e
a
a
t
e

p
a
t

Fig. 3. Left. Phase portrait of the model (8) with preference function (10) and parameters m = 10, p = 2.5, µ = 0.98, k = 0.95, h = 1, l = 0.01.
ight. k = 0.9.

Fig. 4. Parameters used in the simulations are the same as Fig. 3 with k = 0.86 (left panel) and with k = 1, h = 0.87 (right panel).

oreover, H−2 ∈ Z2 and this generates other holes, some of them again in Z2 and so on. These holes are too small to
e seen in the picture, however zooming it would show an arborescent sequence of holes. Incidentally, the parameter’s
odification introduced also caused a stability loss of the rational equilibrium E through a supercritical Neimark–Sacker
ifurcation. Of course, for the set of parameters used to get the picture in the left panel of Fig. 4, the two complex conjugate
igenvalues of the Jacobian matrix computed at the equilibrium E moved out of the unit circle of the complex plane
nd their modulus became |λ1| = 1.07. So, for this parameters’ constellation the adaptive process does not converge to
rational equilibrium, but continues to move around it along a stable closed invariant curve. This is another effect of

he unimodal preference function because, as stressed in the previous section, rational equilibria cannot have complex
igenvalues if an increasing preference function is considered.
Up to now no role has been played by the focal point R. However, if a basin boundary crosses the corresponding

refocal curve δR then a lobe belonging to that basin will arise from R. This can be easily obtained by moving δR upwards,
s shown in the right panel of Fig. 4, obtained for h = 0.87 (and k = 1 in order to avoid other qualitative changes). Now
he non connected portion of the basin H ∈ Z crosses δ hence one of its two preimages H has the shape of a lobe
−2 2 R −3

9
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Fig. 5. Phase portrait of the model (8) with preference function (10) and parameters m = 13, p = 2.5, µ = 0.77, k = 1, h = 1, l = 0.01.

ssuing from R. This lobe has no further preimages (being entirely included into Z0) whereas the other hole is H−3 ∈ Z2
nd generates a sequence of holes (two are visible in the picture).
The role of the two focal points Q and R is much more evident in Fig. 5, obtained with the set of parameters m = 13,

= 2.5, µ = 0.77, k = 1, h = 1, l = 0.01. In this case a stable cycle of period 3 (indicated by three black dots inside
he red basin of attraction) coexists with the stable rational equilibrium E (whose basin is again represented by the white
egion).

In the previous section we noticed that the whole line x =
m
p is mapped by T into the single point Q−1

=(
m
p

− µp,
m2

kp2
e−hm

p + l
)
. As explained in [11], this implies that whenever a chaotic attractor crosses the line x =

m
p ,

hen it must include what is called a ‘‘knot’’. This occurrence is shown in Fig. 6, obtained for a set of parameters so that
he attracting invariant curve created around the rational equilibrium E via the Neimark–Sacker bifurcation has been
ransformed into an annular (and rather involved) chaotic attractor. Such attractor intersects the line x =

m
p , denoted as

δ−1
Q in Fig. 6, and all the intersections with this line are shrunk into the knot Q−1.

5. Conclusions

In this paper a dynamic adaptive process which describes the repeated choices of a boundedly rational consumer
has been considered. A first version of the economic model was proposed in [1] and its dynamical properties have
been studied in [4,5] and [6]. In this paper a substantial modification has been introduced, concerning the way the
consumers’ preferences are endogenously determined by the past consumption: instead of an increasing relation,
i.e. higher consumption in a given period implies higher consumption in the next period as well, a unimodal relation has
been proposed, i.e. an excessive consumption in a given period implies less consumption in the next one, i.e. an adverse
reaction or saturation effect. This implies that the discrete-time two-dimensional map, whose iteration describes the
time evolution of the economic process, becomes noninvertible from invertible. This mathematical feature has important
consequences on the structure of the basins of attraction, and this is particularly meaningful in this economic model
because stable equilibria represent rational choices, i.e. the same consumption decisions that a rational consumer takes
by solving an optimization problem under the assumption of full information.

After a study of existence and local stability of equilibrium points, the main global dynamic properties of the dynamical
system have been analyzed, both related with noninvertibility of the map and the ones arising from the existence of a
vanishing denominator. The first property was studied by the analytical determination of the critical curves, following [10],
the second one by the analytical study of focal points and related prefocal curves, following [11,12] and [13]. The economic
model considered in this paper allowed us to study, through a trade-off of analytical, geometric and numerical methods,
the interactions and reciprocal influences among these different kinds of singularities.

Related to the economic consequences of the assumption of preferences saturation introduced in the model proposed
in [1], we detected that non monotonic preferences may cause the loss of stability through a Neimark–Sacker bifurcation,
10
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Fig. 6. Phase portrait of the model (8) with preference function (10) and parameters m = 10, p = 2, µ = 1, k = 1, h = 0.9, l = 0.01.

n occurrence that is not possible with increasing preference functions. This kind of bifurcation is related with complex
igenvalues of the Jacobian matrix calculated at the equilibrium and imply that preferences and consumption oscillate,
lternating periods with high preference and consumption that are the consequence of a decrease in both due to the
aturation effect. When the consumption decreases the saturation effect disappears and the preference for the good rises
gain, and so on. Moreover, the creation of complex structures of the basins of attraction typical of noninvertible maps,
uch as non connected and multiply connected basins, can be observed as a consequence of saturation effects.
This work can be extended in several directions. We can combine the saturation effect with other behavioral features

f consumers, such as the imitative behavior and the presence of a reference level of consumption [17]. It is also possible
o conduct a more in depth investigation into the main features of the basins of attractions of coexisting attractors, in
rder to check the robustness of the results with respect to initial consumption habits and starting preferences. All the
xtensions can also be compared with the original D’Orlando and Rodano model [1].
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