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ABSTRACT

In this paper, we run through an example of oligopoly, recently introduced in the literature,
where firms operate under constraints. The dynamical system describing firms’ choices
over time assumes the form of a piecewise-smooth map because of such constraints. By
carrying on a leading example, we show possible routes to complexity in the model, mainly
due to border collision and homoclinic bifurcations.

Keywords: piecewise-smooth dynamical system, border collision bifurcations, Cournot
oligopoly.
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1 Introduction

The presence of complex dynamic phenomena in Cournot oligopoly models is well docu-
mented in the mathematical economics literature, starting from (Rand, 1978) and (Dana and
Montrucchio, 1986). The first microfounded example was provided in (Puu, 1991), where it is
shown that a duopoly model with isoelastic demand curve and constant marginal costs can
lead to both simple and complex dynamics through the well-known period doubling route to
chaos (see also (Kopel, 1996)).
Often, dynamic oligopoly models are formulated under simplified assumptions, so that they
are analytically tractable. For instance, it is often postulated that firms can adjust outputs

International Journal of Applied Mathematics & Statistics,
Int. J. Appl. Math. Stat.; Vol. 26; Issue No. 2; Year 2012, 
ISSN 0973-1377 (Print), ISSN 0973-7545 (Online) 
Copyright © 2011-12 by IJAMAS, CESER Publications 

www.ceser.in/ijamas.html 
www.ceserp.com/cp-jour 
www.ceserpublications.com 



to their desired levels, without constraints on minimum and maximum production. Only few
works on the subject relax these assumptions (see for instance (Bischi, Chiarella, Kopel and
Szidarovszky, 2010), (Puu and Norin, 2003)). As a matter of fact, with such constraints firms’
production strategies over time often assume the form of piecewise smooth maps, i.e. discrete
dynamical systems whose state space can be partitioned into regions where the functional
form of the map changes (see (Mosekilde and Zhusubaliyev, 2003) and (Di Bernardo, Budd,
Champneys and Kowalczyk, 2008)).
For piecewise smooth maps, beside the standard bifurcations, well-studied for smooth systems
(either local or global), other interesting dynamic phenomena are possible. These are related to
the existence of borders (or switching manifolds) in the phase space where the functional form
defining the map changes, and thus to discontinuous Jacobian. The collision of an invariant
set of the piecewise smooth map with such a border may lead to a bifurcation often followed
by drastic changes in the dynamics of the system. The bifurcations phenomena related to
these border collisions are nowadays called Border Collision Bifurcations (BCB for short). This
term was first introduced by (Nusse and Yorke, 1992) and then adopted by many authors.
The simplest form of investigation consists in the analysis of a fixed point which crosses the
boundary of definition of a piecewise smooth map (or piecewise linear). The most complete
analysis is reported in (Banerjee, Ranjan and Grebogi, 2000), where the authors show that
such a contact may produce any kind of effect (transition to another cycle of any period or
to chaos), depending on the eigenvalues of the two Jacobian matrices involved on the two
sides with respect to the border. Clearly, in the case of a cycle of period m it is necessary to
investigate the fixed points of the related m-th iteration of the map.
In this paper, we run through an extension of Puu’s 1991 model, recently presented in (Bischi
et al., 2010), where besides isoelastic demand and constant marginal cost, firms are con-
strained to minimum and maximum production levels as a results of plants’ capacity limits or
agreements with trade unions, governments, etc. The particular example in (Bischi et al., 2010)
is referred to as a semi-symmetric oligopoly, since all firms have the same marginal cost but
one, which produces at lower expenses. Agents decide their production plans according to
the partial adjustment towards best replies, as explained below. All in all, firms’ decisions over
time can be modelled by means of a piecewise-smooth map. This example is particularly in-
teresting as many dynamic phenomena occur, mostly related to the introduction of production
constraints. Besides standard bifurcations, we also detect border collisions without qualita-
tive changes, true border collision bifurcations and homoclinic bifurcations possibly involving
the switching manifolds. Even though many global properties of this example were already
discussed in (Bischi et al., 2010), we prefer to go through the same steps and add further in-
sights on other interesting dynamic phenomena. In this way, we show a possible approach for
studying global bifurcations in piecewise smooth maps, by following, along a given path in the
parameters space, attracting sets of the map (and of iterates) and their contacts with critical
lines.
The paper is organized as follows. Section 2 recalls the economics of the Cournot game
and the corresponding piecewise smooth dynamical system, whose fixed points are studied in
terms of existence and stability in Section 3. Section 4 reports the possible routes to complex
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behavior as some parameters of the game are changed. Section 5 concludes.

2 The dynamic oligopoly with constraints

2.1 Microfoundation of the model

In this Section we recall the set-up of the semi-symmetric Cournot oligopoly with production
constraints, as proposed in (Bischi et al., 2010).
An homogeneous good is produced by n firms: the first firm currently produces and sells a
quantity denoted by x and the remaining n − 1 are identical firms, each of which currently
produces and sells the (same) quantity y. In particular, the difference between the first and the
remaining competitors pertains their cost functions. In the following, production costs of the
first firm and the remaining n− 1 ones are linear, given, respectively, by1

C1(x) = c1x and C2(y) = c2y

with c1 �= c2.
Assuming isoelastic demand function, i.e. that a representative consumer maximizes a Cobb-
Douglas utility function, the inverse demand function reads

p =
1

x+ (n− 1)y
,

where p is the actual commodity price (see (Puu, 1991)).
Expected profits for the first and one of the remaining n− 1 firms are then

π1(x, y
e) =

[
1

x+ (n− 1)ye
− c1

]
x, (2.1)

π2(x
e, y) =

[
1

xe + (n− 1)y
− c2

]
y,

respectively, where the superscript e denotes expected quantities.
As expected profits are strictly concave functions in own strategies, by first order conditions
on (2.1), it is straightforward to obtain the Cournot best reply (or best response) functions,
specifying the best strategy to adopt as a function of competitors’ expected strategies. Under
Cournot expectations, i.e. that firms’ expected quantities are equal to the last observed ones
(ye = y and xe = x), best replies for firm 1 and any other remaining firm can be written,
respectively, as

x1 (y) =

√
(n− 1)y

c1
− (n− 1)y, (2.2)

y1 (x, y) =

√
x+ (n− 2)y

c2
− x− (n− 2)y. (2.3)

Moreover, we assume that each firm can not exceed an equal capacity limit L, i.e. the produc-
tion of each agent must be chosen in the interval [0, L]. This constraint is exogenously given
and can be derived from total capacity production or can be imposed by a regulator agent.

1The introduction of fixed costs does not change the model set-up and is therefore omitted.
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Now we turn to the firms’ strategy update rules. At each time period, each firm observes
competitors’ current quantities, which are taken, by Cournot expectations, as a proxy for next
period productions. Then, next period quantities are calculated according to the partial ad-
justment towards the best replies, i.e. as a weighted average between actual and best reply
quantities. All in all, the firms’ dynamic choices are expressed by the following map (continuous
and piecewise differentiable) {

x′ = (1 − k1)x + k1xb,

y′ = (1 − k2)y + k2yb,
(2.4)

where ′ denotes the unit-time advancement operator, 0 < k1, k2 ≤ 1 are the speeds of ad-
justment to best reply, and xb and yb are the constrained best replies taking into account both
nonnegativity and capacity constraints, which are computed according to the following scheme:

xb =

⎧⎪⎨⎪⎩
0 if x1 < 0,

x1 (y) if 0 � x1 � L,

L if x1 > L,

(2.5)

yb =

⎧⎪⎨⎪⎩
0 if y1 < 0,

y1 (x, y) if 0 � y1 � L,

L if y1 > L,

(2.6)

where x1 (y) and y1 (x, y) are the unconstrained best replies given in (2.2) and (2.3). Notice
that the definition of the best replies forces the dynamic variables x, y to stay always in [0, L].

2.2 The piecewise smooth map

Following (Bischi et al., 2010), we fix in (2.2), (2.3), (2.5), (2.6)

c1 =
5
16

, c2 =
3
8

and L = 2,

and we focus on changes of the speeds of adjustment k1 and k2 and the number of competitors
n.
To study this continuous piecewise smooth map we divide the strategy space (x, y) into regions
where the map has different definitions. The curves that divide these regions are curves of non
differentiability and will be called critical lines, following the notation used in Mira et al., 1996,
for reasons that will be clear below commenting the routes to complexity in the model.
Notice that x1 (y) < 0 for 16 (n − 1) y < 5 (n − 1)2 y2 so that we have

x1 (y) < 0 for y < 0, or y >
16

5 (n − 1)
,

and x1 (y) > 2 for 16 (n − 1) y > 5 [(n − 1) y + 2]2 so that

x1 (y) > 2 for 5 (n − 1)2 y2 + 4 (n − 1) y + 20 < 0.

This second inequality is never satisfied, hence the constraint at x1 = 2 is ineffective.
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Analogously y1 (x, y) < 0 for 8 [x+ (n− 2) y] < 3 [x+ (n− 2) y]2 , so that we have

y1 (x, y) < 0 for (x+ (n− 2) y) [8− 3x− 3 (n− 2) y] < 0, or y >
8− 3x

3 (n− 2)
,

and y1 (x, y) > 2 for 8 [x+ (n− 2) y] > 3 [x+ (n− 2) y + 2]2 , thus

y1 (x, y) > 2 for 3 [x+ (n− 2) y]2 + 4 [x+ (n− 2) y] + 12 < 0.

This last inequality is never satisfied, hence the constraint at y1 = 2 is ineffective.
Thus, the map becomes {

x′ = (1− k1)x+ k1xb,

y′ = (1− k2)y + k2yb,

where

xb =

⎧⎨
⎩

√
16(n−1)y

5 − (n− 1)y if y < y,

0 if y � y,

yb =

⎧⎨
⎩

√
8(x+(n−2)y)

3 − x− (n− 2)y if y < ỹ,

0 if y � ỹ,

where y = 16
5(n−1) and ỹ = 8−3x

3(n−2) .

The lines y = y and y = ỹ divide the plane (x, y) into 4 regions:
In region I, where y < y and y < ỹ, we have the map T1 :

T1 :

{
x′ = (1− k1)x+ k1x1(y),

y′ = (1− k2)y + k2y1(x, y).
(2.7)

In region II, where y < y and y � ỹ, we have the map T2 :

T2 :

{
x′ = (1− k1)x+ k1x1(y),

y′ = (1− k2)y.
(2.8)

In region III, where y � y and y � ỹ, we have the map T3 :

T3 :

{
x′ = (1− k1)x,

y′ = (1− k2)y.
(2.9)

In region IV, where y � y and y < ỹ, we have the map T4 :

T4 :

{
x′ = (1− k1)x,

y′ = (1− k2)y + k2y1(x, y).
(2.10)

We notice that region IV has a small portion in the positive quadrant of interest only for low
values of n. In fact, the two lines y = y and y = ỹ which bound the region IV intersect in the
point (x, y) (which is the rightmost corner point of region IV) where x = 8

3 − 16(n−2)
5(n−1) and it is

x < 0 for any n > 7, thus in the case n > 7 region IV is in the half-plane x < 0 and it is never
visited by a trajectory starting in the positive quadrant of interest, so that the dynamic model is
described by three different maps, involving only regions I, II and III.
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2.3 Critical curves

We recall that the (rank-1) critical lines denoted LC of a continuos map T are the locus of points
in the plane having at least two coincident rank-1 preimages, located on the set LC−1, which is
called the (rank-0) critical line or set of merging preimages (see (Mira, Gardini, Barugola and
Cathala, 1996)). In case of a piecewise smooth map the curve along which the map changes
its definition, is also called critical line. As it will be clear below, the set LC−1 plays a crucial role
in explaining BCB and in obtaining the boundary of compact trapping regions, called absorbing
areas (see again (Mira et al., 1996)).
In our case, candidates to be critical curves LC−1 are:
a) Curves of non differentiability, i.e. the lines y = y and y = ỹ;

b) Curves of vanishing Jacobian DT (x, y) = 0, where in region I

DT =

⎡⎢⎢⎣ 1− k1 k1

[
2(n−1)√
5(n−1)y

− (n− 1)

]
k2

[ √
2√

3[x+(n−2)y]
− 1

]
1− k2 + (n− 2) k2

[ √
2√

3[x+(n−2)y]
− 1

]
⎤⎥⎥⎦ ;

in region II

DT =

⎡⎣ 1− k1 k1

[
2(n−1)√
5(n−1)y

− (n− 1)

]
0 1− k2

⎤⎦ ;

in region III

DT =

[
1− k1 0

0 1− k2

]
;

in region IV

DT =

⎡⎣ 1− k1 0

k2

[ √
2√

3[x+(n−2)y]
− 1

]
1− k2 + (n− 2) k2

[ √
2√

3[x+(n−2)y]
− 1

] ⎤⎦ .

As in regions II and III it is |DT | = (1− k1) (1− k2) > 0, only in regions I and IV we may have
points at which the Jacobian determinant vanishes.
As we have already mentioned, in general both kinds of critical curves are important: the lines
along which the Jacobian changes the sign and the ones along which the Jacobian changes its
expression, i.e., the lines of non differentiability. Sometimes both curves have important effects
on the dynamics, but in other cases just one of them is involved. For the sets of parameters we
use in the paper, the lines of non differentiability play an important role in bifurcations: as we
shall see, collisions with them of some cycles lead to qualitatively different dynamics (i.e., the
BCBs are observed). Let us remark that, in general, the lines of vanishing Jacobian influence
only the shape of chaotic attractors.
In fact, when a portion of LC−1, independently of its nature, crosses a chaotic set, then its
images of increasing rank become portions of the boundaries of the chaotic area, and, as a
result, we observe folding of the attractor along such boundaries. Moreover, the critical lines
may cover only some parts of such boundaries, because some portions can be bounded by
the unstable sets of saddle points or cycles leading to the so-called mixed chaotic areas (see,
for example, Fig.5b or Fig.7).
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Given that, in the following we mainly focus on the routes to complexity induced by lines of non
differentiability, i.e. on the different bifurcation sequences in the model.

3 Fixed points and local stability

In this Section, we discuss the existence and the stability of fixed points of (2.4), already out-
lined in (Bischi et al., 2010). Regarding existence, it holds the following
Proposition. Two fixed points of (2.4) exist in region I, given by

O = (0, 0) and E = (x∗, y∗) =
(
16 (n− 1) (n+ 4)

(6n− 1)2
,
80 (n− 1)

(6n− 1)2

)
with 0 < x∗ < 2 and y∗ < x∗ for any n ≥ 2, whereas no fixed points exist in regions II, III, IV.

Proof. The unique fixed point of T2 (2.8) is (0, 0) that does not belong to its definition region,
i.e., to the region II; the unique fixed point of T3 (2.9) is (0, 0) that does not belong to the region
III; the unique fixed point of T4 (2.10) is

(
0, 8

3(n−2)

)
that does not belong to region IV being

8
3(n−2) > ỹ for each x > 0.
So, let us compute the fixed points in region I, which are solutions of the system√

16(n− 1)y

5
− (n− 1)y = x,√

8 (x+ (n− 2)y)

3
− x− (n− 2)y = y,

i.e.,

16(n− 1)y = 5 [x+ (n− 1)y]2 , (3.1)

8 [x+ (n− 2)y] = 3 [x+ (n− 1)y]2 .

Dividing we get
2 (n− 1) y

x+ (n− 2)y
=

5

3
,

from which
y =

5

n+ 4
x.

Substituting this expression into the first equation (3.1) we get

x = 0 and x∗ =
16 (n− 1) (n+ 4)

(6n− 1)2
.

Moreover 0 < x∗ < 2 and y∗ < x∗ for any n ≥ 2.

Two observations are worth noticing. First, the unique non-trivial fixed point E corresponds to
the Cournot-Nash equilibrium of the oligopoly game, whose existence for this particular model
is granted by the results in (Rosen, 1965)2. Second, at the Cournot point, the firm with the

2In fact, the strategy space of each agent is a nonempty, compact interval of R and each player’s individual profit
is concave in his own strategy sets.
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lower marginal cost sells a greater quantity than any other competitor (x∗ > y∗) and gains the
highest payoff, being

π1(x
∗, y∗) =

(n+ 4)2

(1− 6n)2
>

25

(1− 6n)2
= π2(x

∗, y∗),

which is very easy to justify from an economic point of view (see also (Puu, 1998)).
To investigate the local stability of the positive fixed point E, we employ Jury’s stability condi-
tions ⎧⎪⎨⎪⎩

P (1) = 1− tr + det > 0,

P (−1) = 1 + tr + det > 0,

P (0) = det < 1,

where tr and det denote, respectively, the trace and the determinant of the Jacobian matrix at
fixed point. The Jacobian matrix of the function T1 evaluated in E is

DT1(E) =

[
1− k1 k1

(9−4n)
10

k2
(11−6n)
12(n−1) 1− k2 + (n− 2) k2

(11−6n)
12(n−1)

]
,

whose trace and determinant are given by

tr = 2− k1 − k2 + (n− 2) k2
(11− 6n)

12(n− 1)
=

= 2− k1 − k2 − (n− 2) k2
(n− 11

6 )

2(n− 1)
,

and

det = (1− k1)

(
1− k2 + (n− 2) k2

(11− 6n)

12(n− 1)

)
− k1k2

(9− 4n)

10

(11− 6n)

12(n− 1)
=

= (1− k1)(1− k2)− (1− k1) (n− 2) k2
n− 11

6

2(n− 1)
− k1k2

(4n− 9)

10

(n− 11
6 )

2(n− 1)
.

Thus, for n > 2 the condition det < 1 is always satisfied, and regarding the other stability
conditions we have:

P (1) = k1k2

(
1 + (n− 2)

(n− 11
6 )

2(n− 1)

)
− (4n− 9)

10

(n− 11
6 )

2(n− 1)
=

= k1k2

(
1 +

(6n− 11)2

120(n− 1)

)
> 0,

which implies that a bifurcation with eigenvalue equal to +1 cannot occur to the fixed point E,
while

P (−1) = 2(2− k1 − k2) + k1k2 − (2− k1) (n− 2) k2
(n− 11

6 )

2(n− 1)
− k1k2

(4n− 9)

10

(n− 11
6 )

2(n− 1)
,

and it is clear that for n > 2 the condition P (−1) > 0 will not be satisfied and the fixed point E
undergoes a flip bifurcation.
Regarding the local stability of the origin, we notice that the map is not differentiable in O =

(0, 0). However the trace of the Jacobian matrix tends to infinity as a point approaches the
origin, denoting that the eigenvalues are increasing so that, as it is usual in duopoly games,
we can consider this fixed point unstable.
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Figure 1: Two-dimensional bifurcation diagram in the (k1, k2)-parameter plane for (a) n = 5 and
(b) n = 14. Numbers denote periods of the related stable cycles.

4 Routes to complexity in the Cournot game

Let us consider the dynamic behaviors of the model as a function of the parameters n, k1, k2.

In general, as long as the number of competitors (n) is low, the model is quite stable, in the
sense that we have the unique positive equilibrium, which is locally stable for a wide range of
values of the other parameters (see on this points also (Puu and Panchuk, 2009)). As already
noted, for n < 7 all the 4 regions (and thus the 4 maps) are involved in the dynamics, but we
mainly have convergence to a fixed point or to a stable cycle derived from flip bifurcations of
it. As an example, let us consider the bifurcation diagram in the parameters (k1, k2) at a fixed
value of n, say n = 5, as reported in Fig.1a. It can be seen that the attractor changes from a
stable fixed point to a stable cycle of period 2 (it occurs via flip bifurcations), and then to cycles
of period 4 and 8 (again through flip bifurcations). Only in the upper corner of the bifurcation
diagram of Fig.1a we can see the existence of a region with more complicated dynamics, that
is, for high values of both k1 and k2 some complex dynamics may occur, and the borders are
involved in some border-collision bifurcations (as explained below).
For higher values of n, the phase plane involves only three regions (and thus only three maps),
as region IV is in the negative half-plane. In Fig.1b (n = 14) we can see that the dynamics are
mainly stable (converging to a stable fixed point or to a stable cycle of period 2 or 4), and the
existence of such a stable cycle for high values of k2 is due to the piecewise smooth nature
of the model. However, as n is further increased, also complex phenomena can be observed:
in the white regions in Fig.2 the dynamics is often chaotic and the attracting set is a chaotic
attractor.
In Fig.2b (n = 18) we can see the existence of an area associated with a stable cycle of
period 3, which reflects the role played by the borders of the three maps; in fact, such a
cycle is associated with the piecewise smooth nature of the map, and its appearance and
destruction are caused by border collision bifurcations. The role played by such a 3-cycle
becomes more relevant when the number n is further increased, as the portion of parameter
values in which it exists, becomes wider and wider. An example of it is shown in Fig.3a (n =
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Figure 2: Two-dimentional bifurcation diagram in the (k1, k2)-parameter plane for (a) n = 15

and (b) n = 18.

23): the white region including chaotic behavior is reduced to two thin strips, inside which
complicated periodic behaviors occur (see in particular the enlargement of Fig.3b). However,
the predominant dynamics is related to a stable cycle of period less than 5. It is worth to note
that the bifurcations associated with the dynamics of our model are mainly nonstandard with
respect to those occurring in smooth maps. Interesting examples can be obtained, for instance,
increasing k2 and keeping constant k1. From the point of view of the oligopoly model, it means
that, in deciding their own outputs, the n − 1 homogeneous firms increase the weight of best
reply quantities, whereas the single heterogeneous firm maintains the same weights. In this
case, whenever an attracting set has a contact with the lines on the boundary of definition of
the maps (i.e. the critical lines) a border collision bifurcation occurs, whose effects is not easy
to be predicted.
Regarding our model we can show a few of such nonstandard bifurcations, both from the point
of view of the BCB theory, and also with respect to the investigation of the structure of the
attracting set (which also may depend on the constraints).
To this scope, as an example, let us fix k1 = 0.4 in Fig.3a and increase k2. At k2 ≈ 0.1653

the fixed point E undergoes a flip bifurcation, which creates a stable 2-cycle. Soon after the
bifurcation the two periodic points belong to region I and are close to the saddle E. As the
parameter k2 is further increased the two periodic points move far away from E, and one
periodic point intersects the boundary of region I, i.e. the critical line LC−1. This first merging
could produce any kind of effect, however here no bifurcation occurs: one of the periodic points
moves in region II (while the other persists in region I) and the two-cycle is still attracting. This is
an example of border collision without qualitative dynamic changes. At k2 ≈ 0.2462 the 2-cycle
undergoes a flip bifurcation and a stable 4-cycle appears. As before, soon after the bifurcation
the four periodic points are close to the 2-cycle saddle, and far from the critical lines. However,
as the parameter k2 is increased more, one of the periodic points moves towards the critical
line and at k2 ≈ 0.2466 one periodic point intersects the boundary of region I, i.e. the critical line
LC−1 (in Fig.4a, the points of the stable 4-cycle and of the 2-cycle saddle are represented in
the phase space as filled and unfilled circles respectively). This merging is a true BCB whose
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Figure 3: Two-dimentional bifurcation diagram in the (k1, k2)-parameter plane for n = 23 (a),
and its enlarged part (b).

effect is the transition to a 4-pieces chaotic attractor, say G4 (see Fig.4b)
As it can be seen in Fig.4, at first the attracting set involves only regions I and II: region III is
above the second critical line, called LC ′−1, and for now it plays no role.
From Fig.4b, we can stress another property of piecewise smooth maps: when the invariant
area including the (chaotic) attracting set intersects the critical line LC−1 (as it can be seen for
example in Fig.4b), then the boundary of the area includes points belonging to critical curves
of higher rank (obtained by taking the images under the map of the involved portion of LC−1).
The saddle 2-cycle in between, as well as the saddle fixed point E, will be relevant for the
structural changes of the chaotic attractor. In fact, as k2 is increased more, the four pieces
become wider and approach the stable set of the saddle 2-cycle. A contact of the chaotic
area with the stable set causes the reunion of the pieces by pair, leaving a two-pieces chaotic
attractor G2; at the same time, this corresponds to the first homoclinic bifurcation of the saddle
2-cycle. In fact, at the contact bifurcation the stable and unstable sets of the saddle have
infinitely many contact points (and this occurs at k2 ≈ 0.2765), while soon after the contact (see
Fig.5a) the stable and unstable sets of the saddle have infinitely many transverse intersections,
in homoclinic points. Similarly, increasing further the same parameter, the two pieces of the
chaotic attractor enlarge, approaching the stable set of the saddle E, and a contact of the
chaotic area with the stable set of E causes the reunion of the two pieces, thus leaving a one-
piece chaotic attractor G1: at the same time, this corresponds to the first homoclinic bifurcation
of the saddle point E. In fact, at the contact bifurcation, the stable and unstable sets of the
saddle E have infinitely many contact points (and this occurs at k2 ≈ 0.2965, see Fig.5b),
while soon after the contact the stable and unstable sets of E have infinitely many transverse
intersections in homoclinic points. Moreover, after this bifurcation, the boundary of the chaotic
area G1 is given by the images of suitable portions of the involved critical curves LC−1 and
LC ′−1 and portions of the stable set of the saddle E.
In addition, Fig.5b shows that, when the latter bifurcation occurs, also another border has been
crossed, without any qualitative dynamic change. That is, the two pieces of the chaotic attractor
G2 increase and a contact with the critical line LC ′−1 occurs, before the reunion into G1. As
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Figure 4: Phase portrait of the map T at k1 = 0.4 and (a) k2 = 0.2466; (b) k2 = 0.26.

Figure 5: Phase portrait of the map T at k1 = 0.4 and (a) k2 = 0.276; (b) k2 = 0.2965.

said, this border-crossing has no dynamic effect: the attractor is a two pieces chaotic attractor
G2 both before and after the crossing. What is to be emphasized is that after this crossing all
the three regions are involved in the asymptotic behavior, i.e. all the three maps are applied for
a trajectory on the chaotic attractor. Thus, the only difference is in the boundary of the chaotic
area, which before the contact involves only the images of a suitable portion of LC−1, while
after the crossing it involves the images of suitable portions both of LC−1 and of the critical line
LC ′−1 (more precisely, the images of the pieces involved in the chaotic area).
Instead, a true BCB is the one causing the destruction (or disappearance) of the chaotic at-
tractor G1. In fact, as k2 is further increased, we suddenly observe the appearance of a stable
3-cycle (this occurs at k2 ≈ 0.3448), as depicted in Fig.6a, where one point of the three-cycle
seems on the critical line LC−1. Then the three periodic points move from the critical set, and a
stable 3-cycle exists for a wide interval of values of the parameter k2. Its disappearance occurs
at k2 ≈ 0.783 through a second BCB (see Fig.6b), whose effect is the transition again to a
one-piece chaotic attractor G1, an example of which is shown in Fig.7.
After this bifurcation we observe a decreasing in the complexity of the attracting set, as re-
verse bifurcations occur, both for the saddle fixed point E and for the saddle 2-cycle. That
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Figure 6: Phase portrait of the map T at k1 = 0.4 and (a) k2 = 0.3448; (b) k2 = 0.783.

Figure 7: Phase portrait of the map T at k1 = 0.4 and k2 = 0.784.

is, increasing k2 we get the transition of the one piece chaotic attractor G1 into a two-pieces
chaotic attractor G2 by disappearance of all the homoclinic points of E: when the stable and
unstable set of E become disjoint again, we have the transition of G1 into G2 (see Fig.8a).
In addition, also the homoclinic points of the two-cycle disappear, so that, when the stable and
unstable sets of the two-cycle become in touch and then disjoint, we have the transition of the
two-pieces chaotic attractor G2 into a four-pieces chaotic attractor G4 (see Fig.8b).
Ultimately, a border collision bifurcation gives rise to a stable cycle of period 4, which disap-
pears by a reverse flip bifurcation leading to a stable 2-cycle again, but with periodic points in
regions I and III.

5 Conclusions

In this paper, we showed as a simple economic model of oligopoly can generate rich dynamic
scenarios, as constraints are added to the original formulations. In fact, these constraints lead
to piecewise smooth maps, for which we can have all standard bifurcations of smooth maps
and the so-called border collision bifurcations, proper of these models.
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Figure 8: Phase portrait of the map T at k1 = 0.4 and (a) k2 = 0.8099; (b) k2 = 0.81125.

In particular, we run through an example in (Bischi et al., 2010), exploring the dynamic of the
model as the number of players and their speeds of reaction are changed. When the number
of firms is low, the dynamic mainly converges to fixed points or low-period cycles. However,
when the number of competitors is increased, then changes in agents’ speed of reaction lead
to homoclinic bifurcations and to BCB, as those associated with the sudden appearance or
disappearance of chaotic attractors. The main example has been carried out by fixing the
speed of reaction of an agent while increasing the other ones. In particular, we observed an
increment in the complexity of the model, due to BCB, when the speeds of adjustment are
increased over a given amount; convergence to simpler attractor, as a consequence of reverse
BCB, are reported for higher values of the same parameter. In these cases, we explored
how these bifurcations are created by closely following the attracting sets of the map and their
contact with the critical lines, which represent an extremely useful instrument of analysis. As a
final remark, this specific example could also serve for didactic purposes.
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