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We propose a dynamic model to describe a fishery where both preys and predators are har-
vested by a population of fishermen who are allowed to catch only one of the two species at a
time. According to the strategy currently employed by each agent, i.e. the harvested variety,
at each time period the population of fishermen is partitioned into two groups, and an evo-
lutionary mechanism regulates how agents dynamically switch from one strategy to the
other in order to improve their profits. Among the various dynamic models proposed, the
most realistic is a hybrid system formed by two ordinary differential equations, describing
the dynamics of the interacting species under fishing pressure, and an impulsive variable that
evolves in a discrete time scale, in order to describe the changes of the fraction of fishermen
that harvest a given stock. The aim of the paper is to analyze the economic consequences of
this kind of self-regulating fishery, as well as its biological sustainability, in comparison with
other regulatory policies. Our analytic and numerical results give evidence that in some cases
this kind of myopic, evolutionary self-regulation might ensure a satisfactory trade-off
between profit maximization and resource conservation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The exploitation of unregulated open access fisheries is characterized by a typical prisoner dilemma, often referred to as
the ‘tragedy of the commons’ after [1]. As a consequence, individuals maximize short-term profits instead of pursuing long-
term objectives with overexploitation of the resource and economic inefficiency, i.e. lower levels of resource and profits in
the long run.

Indeed, the sustainability of fisheries exploitation is constrained by the growth rate of natural stocks as well as equilib-
rium patterns regulated by ecological interactions among species. Adding harvesting activity to such a complex (typically
non linear) dynamical system opens scenarios which are not easy to be understood and managed. Moreover, the overexploi-
tation of some fish stocks may have consequences for the whole ecosystem which are difficult to be forecasted, and may
eventually lead to depletion of some species, and thus decreasing yields, up to the danger of unexpected extinction of re-
sources. For these reasons, central institutions usually enforce forms of regulation either by imposing harvesting restrictions,
such as constant efforts, individual fishing quotas, taxations, or by limiting the kinds of fish to be caught or the regions where
exploitation is allowed (see e.g. [2–6]). Due to the peculiar issue, different sources of strategic interdependence among
exploiters are present, as pointed out in [4–7]. First, biological externalities must be taken into account, as overexploitation
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of the resource by some agents may have severe repercussions on the capacity of regeneration of the resource, thus giving a
negative externality for the whole community of exploiters. Second, market externalities may exist, due to price reduction as
a consequence of increasing harvesting, and finally cost externalities, due to the increase of harvesting costs when fish stock
is depleted. On the basis of these self-regulating economic externalities, some experiments on endogenous regulatory pol-
icies have been recently performed, in which central authorities only establish some general rules and then fishermen are
allowed to decide their fishing strategies according to short-period profit maximization arguments. For example, a recent
law proposed in Italy to regulate the harvesting of two non interacting shellfishes (Venerupis aurea and Callista chione) in
the Adriatic Sea, imposes that during a given time period (three years) each agent can harvest only one species, possibly
revising the choice in predefined successive periods. In other words, instead of imposing a difficult-to-control policy (e.g.
imposed effort, total allowable catch, etc.), the central authority just establishes that each vessel can harvest just a single
kind of fish and has to stick to this choice for a given time interval. A first analysis of this model with two independent spe-
cies has been carried out in [8].

Along these ideas, in this paper we propose, as an exercise, a dynamic model to describe a situation where exploiters can
harvest two different species which interact through a prey–predator relationship. According to the employed strategy, i.e.
the target species, at each time the population of fishermen is partitioned into two groups. We first study the dynamics of the
system in which these two groups do not change over time. Then, we introduce an evolutionary mechanism (replicator
dynamics) based on the observed profits, which regulates how agents dynamically switch from one strategy to another. First
we discuss the case in which this switching can take place continuously. Then we address the case of a discrete-time switch-
ing of the harvesting strategy (due to regulatory or logistic constraints).

Although discrete-time replicator models are know to generate more complicated behaviors in comparison with their
continuous-time counterparts (see for instance [9]), we do not discretize the prey–predator model because it is typically ex-
pressed in continuous time in biological modeling. Instead we embed the discrete replicator (decision driven) in a standard
continuous-time model. In this case the model becomes a hybrid dynamical systems, i.e. a dynamical systems evolving in
continuous time with some variables allowed to change at discrete times; moreover, these impulsive changes take place
according to an endogenous switching mechanism. Hybrid dynamical systems are widely employed to describe engineering,
biological and medical systems (see e.g. [10–13]) and can also be of great interest in economic science.

The aim of the paper is to analyze, by analytical and numerical methods, the economic consequences of this kind of
self-regulating fishery, as well as to shed some light on the sustainability of this form of exploitation in comparison to other
policies. In the evolutionary game literature, it is well documented that common pool resource games can lead to overex-
ploitation (or even extinction) when the Nash (myopic) strategy is played over time (see [14,7]). However, here we show
that the system could self-regulate even with the lack of cooperative behavior in the population of harvesters as a conse-
quence of multi-species targets and economic and biological externalities. Indeed, our analysis gives evidence of possible
advantages of profit-driven self regulated harvesting strategy choices over other practices, both from the point of view of
biomass levels (i.e. biological sustainability) and profits (economic sustainability). Even far from the real system we aim
at describing, the cases of nonevolutionary dynamics and evolutionary switching in continuous time provide useful sugges-
tions about the directions of investigation for the more realistic hybrid system, as well as some intuitive interpretations of
the properties observed through numerical simulation. Moreover, the simulation results suggest that this kind of myopic evo-
lutionary regulation could in some cases ensure a virtuous trade-off between profit maximization and resource conservation.

The plan of the paper is as follows. In section 2 the prey–predator model is defined and the three harvesting functions
employed in the paper are described: (1) imposed constant effort; (2) unrestricted harvesting; and (3) restricted harvesting;
in the latter, the regulator only imposes that each agent is allowed to harvest one species at a time whereupon agents are free
to decide their catch. In Section 3 we study the dynamics of the prey–predator model with the various harvesting functions
previously obtained, whereas in Section 4 we analyze the evolutionary models both with continuous and discrete switching
times. Numerical simulations of the dynamic equations described in Section 3 and Section 4 are compared in Section 5.
Section 6 concludes also providing suggestions for further work on the subject.

2. The bioeconomic model

Let us consider a marine ecosystem with two interacting fish species indexed by 1 and 2 with biomass (or density) mea-
sures X1 and X2 respectively, both subject to commercial harvesting. As customary, we assume that their time evolution is
described by a two-dimensional continuous dynamical system of the form
_X1 ¼ X1G1ðX1;X2Þ � H1 X1;X2ð Þ; ð1Þ

_X2 ¼ X2G2ðX1;X2Þ � H2 X1;X2ð Þ;
where _Xi; i ¼ 1;2, denote the time derivatives of biomass, Gi specify the natural growth functions and Hi represent the instan-
taneous harvesting of the two species.

Concerning the growth functions Gi, they may include different kinds of interspecific and intraspecific interactions (see
e.g. [15,16,2,17]). In the following, we focus on the well known Rosenzweig–MacArthur prey–predator model (see e.g.
[18–23]) characterized by saturation of predation uptake, described by a Holling type II functional response, given by
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G1ðX1;X2Þ ¼ q 1� X1

K

� �
� bX2

aþ X1
; G2ðX1;X2Þ ¼

gbX1

aþ X1
� d; ð2Þ
where q is the intrinsic growth rate, K is the environmental carrying capacity of prey population, b is the maximum uptake
rate for predator, g denotes the ratio of biomass conversion (satisfying the obvious restriction 0 < g < 1), d is the natural
death rate of predator and a represents the half-saturation constant. All these parameters are assumed to be real and posi-
tive. Throughout the paper, we shall consider growth Eqs. (2) such that the asymptotic behavior of the unexploited model (1)
gives rise to coexistence of the two species, i.e. positive biomass values (stationary or oscillatory), letting available positive
stocks of both species for sustainable intake.

In order to model the fishery, i.e. the harvesting functions Hi in (1), let us assume that it is a common-pool resource and N
fishermen are allowed to land the stocks X1 and X2, and a regulator can manage the fishery in order to mitigate the effect of
overexploitation. Besides the benchmark cases of constant effort imposed by the regulator and unrestricted harvesting of the
stocks, the main case we develop in the paper involves a regulator which establishes ‘weak’ constraints on the fishery;
namely, each fisherman must commit himself to harvesting only one kind of fish for a given period of time. Accordingly,
the population of N fishermen is partitioned into two groups of exploiters. We denote by r 2 ½0;1� the fraction of agents har-
vesting species 1, hence agents in the complementary fraction 1� rð Þ only catch species 2. Let hi and pi be, respectively, the
instantaneous biomass intake of species i and the corresponding instantaneous profit of a representative agent in group
i; i ¼ 1;2.

As for this fraction r, in the following we shall consider both the cases of constant exogenously imposed r and endoge-
nously updated r ¼ rðtÞ. In the former case, the fraction of fishermen allowed to take a given species is imposed by the
authority, according to some economic or social optimum criteria, whereas in the latter case this fraction is decided by
the fishermen themselves, who are free to change the group they belong to over time. The cases of endogenously updated
strategies with continuous and discrete time switchings are then developed in Section 4.

2.1. Harvesting functions

Here we examine the different harvesting functions that will be considered in the paper in order to model different
exploitation behaviors regarding the two species.

2.1.1. Imposed constant effort
This is the simplest fisheries policy, where fishermen are allowed to harvest both stocks but a constant fishing effort E is

imposed by a central authority, so that the harvesting functions assume the form (see e.g. [2])
Hi ¼ qiEXi; ð3Þ
where qi is a technological coefficient and E depends on the total number of vessels (each vessel is assumed to harvest both
species with the same effort). Notice that, in principle, we should assume that the authority fixes a different effort level for
each species. However, since in this model the catch is directly proportional to biomass, we assume that this difference is
included in the specific intake factor qiE.

2.1.2. Unrestricted harvesting
Here we assume that the N fishermen, acting as oligopolists, are all free to harvest both kinds of fish (preys and predators),

whose current total stocks are, respectively, X1 and X2. Since no constraints are imposed, we assume that agents are all
homogeneous. We recall that h1 and h2 denote the quantities of the two species harvested by each representative agent.

Following [24] and [25], we assume a linear demand system defining the current selling prices of the two species as
p1 ¼ a1 � b1Nðh1 þ rh2Þ; p2 ¼ a2 � b2Nðrh1 þ h2Þ; ð4Þ
where ai and bi represent, respectively, the maximum price consumers are willing to pay and the slope of the demand for
species i;r 2 0;1½ � is the symmetric degree of substitutability between the two fish varieties: if r ¼ 0 the two varieties
are independent in demand, on the other hand for r ¼ 1 they are perfect substitutes (we disregard the case r < 0 modeling
varieties that are demand complementary). Many authors (see again [24] and [25]) assume b1 ¼ b2 ¼ b.

Concerning cost functions, as standard in models of fisheries we assume quadratic harvesting costs for both species1, i.e.
Ci Xi; hið Þ ¼ ci
h2

i
Xi

if Xi > 0;

0 if Xi ¼ 0;

(
ð5Þ
where ci is a technological parameter for catching species i. This cost function can be derived from a Cobb–Douglas type
‘‘production function’’ with fishing effort (labor) and fish biomass (capital) as production inputs (see e.g. [26,2]). It captures
the fact that congestion and gear saturation problems negatively affect the production function of the fishery.
adopted notation emphasizes that costs (as well as harvesting and profits) are equal to zero whenever Xi ¼ 0.
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The profit of the representative fisherman is
p ¼ a1 � b1N h1 þ rh2ð Þ½ �h1 þ a2 � b2N rh1 þ h2ð Þ½ �h2 � c1
h2

1

X1
� c2

h2
2

X2
: ð6Þ
As standard in game-theoretic models, each agent makes his/her own choice by considering that also other agents are
profit maximizers. The harvesting quantities h�i which maximize the instantaneous profit are given by
h�i ¼
ajðbj þ NbiÞXiXjr� aiXiðbjð1þ NÞXj þ 2cjÞ

ðbi þ NbjÞðbj þ NbiÞXiXjr2 � ðbið1þ NÞXi þ 2ciÞðbjð1þ NÞXj þ 2cjÞ
; i; j ¼ 1;2; i – j ð7Þ
In the trivial case of Xi ¼ 0, we set h�i ¼ 0 throughout the paper.
By inserting (7) into (6) the optimal individual profit becomes
p� ¼ b1 þ
c1

X1

� �
h�1
� �2 þ b2 þ

c2

X2

� �
h�2
� �2 þ h�1h�2r b1 þ b2ð Þ:
An assumption to get a more tractable algebra consists in letting b ¼ 0, i.e. perfectly elastic demands with fixed prices
pi ¼ ai. The assumption of fixed prices is often justified by the fact that there are many substitutes for each species and fish
is considered a staple food for most consumers. With fixed prices, individual optimal harvesting and profits read:
h�i ¼
aiXi

2ci
; p� ¼ c1

h�21

X1
þ c2

h�22

X1
¼ a2

1X1

4c1
þ a2

2X2

4c2
: ð8Þ
Therefore with unrestricted harvesting, total industry catch is Hi ¼ Nh�i .
2.1.3. Restricted harvesting
Here we consider N fishermen divided into two groups, say group 1 and 2, such that a fisherman belonging to group i can

only harvest fish of species i. Let hi be the actual quantity of species i harvested by the representative agent of group i. We
recall that r denotes the fraction of agents harvesting species 1. The linear demand system becomes
p1 ¼ a1 � b1Nðrh1 þ r 1� rð Þh2Þ; ð9Þ
p2 ¼ a2 � b2Nðrrh1 þ 1� rð Þh2Þ;
where the constants ai and r have been defined in Subsection 2.1.2. The profit function for the representative agent harvest-
ing species i is
pi ¼ pihi � CiðXi;hiÞ ¼ ai � biN rihi þ rrjhj
� �� �

hi � ci
h2

i

Xi
; i; j ¼ 1;2; i – j ð10Þ
where r1 ¼ r; r2 ¼ 1� r and with cost functions (5). The ‘optimal’ instantaneous harvesting level h�i for species i is
h�i ¼
aiXiðbjXj 1þ Nrj

� �
þ 2cjÞ � ajbiNrjXiXjr

ðbiXið1þ NriÞ þ 2ciÞðbjXjð1þ NrjÞ þ 2cjÞ � bibjN
2rirjXiXjr2

; i; j ¼ 1;2; i – j ð11Þ
By inserting (11) into (10), we get optimal individual profits
p�i ¼ bi þ
ci

Xi

� �
h�i
� �2

; ð12Þ
Also in this case, the assumption of perfectly elastic demands for both stocks (b ¼ 0) allows us to get a simpler expression of
the individual optimal harvesting and individual profits, given by
h�i ¼
aiXi

2ci
; p�i ¼

a2
i Xi

4ci
ð13Þ
and total industry profit
p� ¼ N rp�1 þ 1� rð Þp�2
� �

; ð14Þ
respectively. Notice that, as expected, the total instantaneous profits are greater in the case of unrestricted harvesting (com-
pare (8) and (14)). In order to capture the effects of the different harvesting strategies on the ecosystem as well as the time
evolution of profits, we now consider the dynamic models of the fishery system (1) with the different harvesting functions
obtained in this section.
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3. The non-evolutionary dynamic models

We now consider the general dynamic model (1) with the three different harvesting functions proposed in the previous
section, in order to compare the different time evolutions of the ecological system and profits. In particular, in this section,
the case of harvesting restricted to one species at a time is analyzed assuming that the proportion of agents exploiting the
two stocks is ex-ante decided by an authority and held fixed, i.e. we analyze a non-evolutionary version of the model. The
evolutionary counterpart is then considered in Section 4.

3.1. The dynamic model with undifferentiated constant effort harvesting

We first analyze the model (1) obtained under the assumption of imposed constant effort E P 0, i.e. with harvesting func-
tions (3). The time evolution of the fish biomasses is thus modelled by the following system of differential equations
_X1 ¼ qX1 1� X1

K

� �
� bX1X2

aþ X1
� q1EX1; ð15Þ

_X2 ¼ X2
gbX1

aþ X1
� d

� �
� q2EX2;
The model is practically the same as the classical Rosenzweig–MacArthur prey–predator model (see e.g. [18],[19], [27–29])
with linear extra mortality terms both in prey and predator equations. So, simply translating the results given in the quoted
references we obtain the following dynamic scenario.

Proposition 1. The dynamical system (15) has three non-negative equilibria: 0; 0ð Þ; K q�q1Eð Þ
q ;0

� 	
,

X1
E;X2

E
� �

¼ a dþ q2Eð Þ
gb� d� q2E

;
agb
Kb

q� q1Eð ÞK gb� d� q2Eð Þ � qa dþ q2Eð Þ
gb� d� q2Eð Þ2

 ! !
:

The equilibrium K q�q1Eð Þ
q ;0

� 	
is positive as long as q > q1E and is a saddle point if the coexistence equilibrium X1

E;X2
E

� �
is in the

positive orthant. The coexistence equilibrium X1
E;X2

E
� �

belongs to the positive orthant iff
gb > dþ q2E and q� q1E >
qa dþ q2Eð Þ

K gb� d� q2Eð Þ ð16Þ
and it is stable for
qaðdþ q2EÞ < K q� q1Eð Þ gb� d� q2Eð Þ < qa gbþ dþ q2Eð Þ: ð17Þ
Notice that the second condition in (16) implies that the coexisting equilibrium exists only if q is sufficiently higher than
q1E. In analogy with the case of unexploited model (see e.g. [22]) the following bifurcation curves are defined in the param-
eters’ space
K ¼ KT ¼
qaðdþ q2EÞ

q� q1Eð Þ gb� d� q2Eð Þ ðtranscritical bifurcation curveÞ;

K ¼ KH ¼ KT þ
qagb

q� q1Eð Þ gb� d� q2Eð Þ ðHopf bifurcation curveÞ: ð18Þ
In Fig. 1, the bifurcation curves in the reference case of no harvesting (i.e. E ¼ 0) are represented, as well as the regions
bounded by them, denoted as region I (predator extinction region), region II (stable coexistence equilibrium) and region
III (oscillatory coexistence along a limit cycle). Three typical time evolutions, one for each region, are also represented in
Fig. 1(b). Instead, Fig. 2(a) exhibits the same bifurcation curves obtained with E > 0.

3.2. Dynamic fishery with unrestricted harvesting

Here we consider the model (1) with harvesting functions (7). Under the assumption b ¼ 0, i.e. fixed prices, the harvesting
functions are given in (8) and the model becomes
_X1 ¼ qX1 1� X1

K

� �
� bX1X2

aþ X1
� N

a1X1

2c1
; ð19Þ

_X2 ¼ X2
gbX1

aþ X1
� d

� �
� N

a2X2

2c2
for which the following results can be proved (see Appendix A).
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Proposition 2. The dynamical system (19) has three non-negative equilibrium points, given by S0 ¼ 0;0ð Þ; S1 ¼ K 2qc1�Na1ð Þ
2qc1

;0
� 	

provided that 2qc1 > Na1, and S2 ¼ X�1;X
�
2

� �
with
X�1 ¼ a
2c2dþ Na2

2c2gb� 2c2d� Na2
and X�2 ¼

X�1 þ a
Kb

qðK � X�1Þ � KN
a1

2c1

� �
;

that has non-negative components provided that
gb > dþ N
a2

2c2
and 2qc1 � Na1 >

2qc1a dþ N a2
2c2

� 	
K gb� d� N a2

2c2

� 	 ;

At gbK 2qc1�Na1ð Þ

K 2qc1�Na1ð Þþ2qc1a
� d� N a2

2c2
¼ 0 i.e. at
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K ¼ Kf
T ¼

2qc1aðdþ
Na2
2c2
Þ

2qc1 � Na1ð Þ gb� d� Na2
2c2

� 	 ; ð20Þ
a transcritical bifurcation occurs, at which the equilibrium S2 enters the positive orthant and S1 becomes a saddle point, whereas at

K 2qc1 � Na1ð Þ gb� d� N a2
2c2

� 	
� 2qc1a gbþ dþ N a2

2c2

� 	
¼ 0 i.e. at
K ¼ Kf
H ¼ Kf

T þ
2qc1agb

2qc1 � Na1ð Þ gb� d� Na2
2c2

� 	 ; ð21Þ
the equilibrium S2 loses stability through a supercritical Hopf Bifurcation.
3.3. Dynamics with restricted harvesting

Here we consider the model (1) with the harvesting functions of SubSection 2.1.3, where r 2 0;1½ � is an exogenous param-
eter. Again, in order to obtain some analytical results, we study the model with fixed prices, i.e. with harvesting functions
(13), thus having:
_X1 ¼ qX1 1� X1

K

� �
� bX1X2

aþ X1
� rN

a1X1

2c1
; ð22Þ

_X2 ¼ X2
gbX1

aþ X1
� d

� �
� 1� rð ÞN a2X2

2c2
:

The following characterization of equilibrium points holds (see Appendix A for a proof):

Proposition 3. The dynamical system (22) has three non-negative equilibrium points, given by S0 ¼ 0;0ð Þ; Sr
1 ¼

K 2qc1�rNa1ð Þ
2qc1

;0
� 	

and Sr
2 ¼ Xr

1;X
r
2

� �
, with Xr

1 ¼
a dþ 1�rð ÞN a2

2c2

� 	
gb�d� 1�rð ÞN a2

2c2

;Xr
2 ¼

aþXr
1ð Þ

b q� qXr
1

K � rN a1
2c1

h i
. The Equilibrium Sr

1 is positive if 2qc1 > rNa1 and Sr
2 is

positive provided that gb > dþ 1� rð ÞN a2
2c2

and Xr
1 <

K 2qc1�rNa1ð Þ
2qc1

.

Sr
2 becomes stable through a transcritical bifurcation at which Sr

1 and Sr
2 exchange stability, and loses stability through a

supercritical Hopf bifurcation; the analytical expressions for bifurcations curves are given by
K ¼ Kr
T ¼

2qc1a dþ 1� rð Þ a2N
2c2

� 	
2qc1 � Na1ð Þ gb� d� 1� rð Þ a2N

2c2

� 	 ðTranscritical bifurcation curveÞ; ð23Þ

K ¼ Kr
H ¼ Kr

T þ
2qc1agb

2qc1 � Na1ð Þ gb� d� 1� rð Þ a2N
2c2

� 	 ðHopf bifurcation curveÞ: ð24Þ
A graphical representation of the local bifurcation curves obtained is reported in Fig. 2: the central panel shows the bifur-
cation curves and the stability regions for the case of unrestricted oligopolistic competition (Proposition 2), whereas
Fig. 2(c) depicts the same curves and regions for the model with intake restricted to one species (Proposition 3). Visual
inspection reveals that the transcritical bifurcation curve is shifted down in the latter case, so that the region of coexistence
(region II plus region III) is wider in the latter case.

4. Evolutionary dynamics

In this section and in the next one, we analyze the case where fishermen are allowed to choose which species they prefer
to harvest on the basis of the observed profits, i.e. they can switch from a fishing strategy to the one expected to be more
profitable. Thus, r is no longer a fixed parameter but it becomes an endogenous dynamic variable.

We start our study with the case of continuous time replicator dynamics (see [30,31,14]), modelled through the following
nonlinear three-dimensional system of ODE
_X1 ¼ X1G1ðX1;X2Þ � NrðtÞh�1 X1;X2ð Þ; ð25Þ

_X2 ¼ X2G2ðX1;X2Þ � Nð1� rðtÞÞh�2 X1;X2ð Þ;

r
�
¼ r p1 � rp1 þ ð1� rÞp2ð Þ½ � ¼ rð1� rÞ p1 � p2½ �;
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where h�i ; i ¼ 1;2 are the instantaneous intakes of species i given in (11), which maximize the expected instantaneous profit
pi, so that the harvesting terms in (1) become H1 ¼ Nrh�1 and H2 ¼ N 1� rð Þh�2 respectively.

However, in real systems the authority imposes that fishermen have to commit themselves to the decided strategy for a
given period of time s > 0 (switching time). Thus we consider a more realistic description of this type of endogenous evolu-
tionary adjustment mechanism through an hybrid dynamic model with discrete-time (or impulsive) switching. Fishermen
decide these updates on the basis of observed profits, thus giving rise to endogenous evolutionary dynamics, according to
the replicator equation in discrete time (see [30,31,7]). This leads to a dynamic model with continuous-time growth and har-
vesting of the fish species and discrete (or pulse) strategy switching. Thus the last equation in (25) is replaced by
rðtÞ ¼
rðt � sÞ p1

rðt�sÞp1þ 1�rðt�sÞ½ �p2
if t

s ¼ t
s


 �
r t

s


 �
s

� �
otherwise

(
where pi ¼

R t
t�s pi sð Þds

s
; ð26Þ
where xb c is the largest integer not greater than x (i.e. the floor of x) and pi represents the average profit of fishermen that
harvested species i in the previous period. Notice that in the limiting case s! 0, Eq. (26 ) becomes the replicator equation
with continuous-time switching (25).

4.1. Profit driven replicator dynamics in continuous time

In this case the dynamic model is given by a system of three ordinary differential equations: the usual two equations of
biomass dynamics in (1) and the third one of the replicator dynamics in (25), which regulates the time evolution of the frac-
tion of fishermen choosing to harvest species 1, where h�i and p�i are given, respectively, by (11) and (12). Notice that the set
r 2 0;1½ � is a trapping region, that is, if the initial condition rð0Þ 2 0;1½ �, then rðtÞ 2 0;1½ � for all values of t P 0. Moreover,
r ¼ 0 and r ¼ 1 are trapping surfaces, that is, if rð0Þ ¼ 0 then rðtÞ ¼ 0 for all t P 0; the analogous property holds for r ¼ 1.
From the replicator equation in (25), we have that the equilibria of the system must be located in the trapping regions
r ¼ 1; r ¼ 0 or in the isoprofit surface p�1 ¼ p�2. However, due to the complicated algebraic expressions of h�i and p�i , an anal-
ysis of the conditions for existence and stability of the equilibrium points is quite difficult in the general case. Therefore, we
rely on numerical simulations in Section 5 to explore the dynamics of this three-dimensional dynamical system.

In the remainder of this subsection, we consider the simpler case of constant prices, i.e. b1 ¼ b2 ¼ 0. In this case, according
to (13), the dynamic model is described by the following system of ODEs:
_X1 ¼ qX1 1� X1

K

� �
� bX1X2

aþ X1
� rN

a1X1

2c1
; ð27Þ

_X2 ¼ X2
gbX1

aþ X1
� d

� �
� 1� rð ÞN a2X2

2c2
;

r
�
¼ rð1� rÞ a2

1

4c1
X1 �

a2
2

4c2
X2

� �
:

The analysis of the equilibria of the model are given below.

Proposition 4. The system of ordinary differential equations (27) admits the following equilibria:

Se
0 ¼ 0;0; rð Þ, with r 2 0;1½ �; Se

1 ¼ K;0;0ð Þ; Se
2 ¼

K 2qc1�Na1ð Þ
2qc1

;0;1
� 	

, with 2qc1 > Na1; Se
3 ¼ Xe

1;X
e
2;0

� �
where Xe

1 ¼
a Na2þ2dc2ð Þ

2c2ðgb�dÞ�Na2

and Xe
2 ¼

q aþXe
1ð Þ

b 1� Xe
1

K

h i
; Se

4 ¼ eXe
1;
eXe

2;1
� 	

where eXe
1 ¼ da

gb�d and eXe
2 ¼

aþeX e
1

� �
b q�

eX e
1

K � N a1
2c1

� 

; Se

5 ¼ bXe
1;
bXe

2;br� 	
, where

bXe
1 ¼ a 2dc2þð1�brÞNa2

2gbc2�2dc2�ð1�brÞNa2
and bXe

2 ¼
c2a2

1
c1a2

2

bXe
1, where br can assume at most two values inside 0;1ð Þ given by the real solutions (if

any) of a second degree algebraic equation.
The global extinction equilibria Se

0 are stable if 2c1q < rNa1; the equilibrium Se
1, with predator’s extinction and no prey

harvesting, is always unstable; the equilibrium Se
2, with predator’s extinction and all fishermen harvesting preys, is unstable if

K 2qc1 � Na1ð Þ gb� dð Þ > 2dqc1a the equilibrium Se
3, with coexisting preys and predators and no prey harvesting, is stable if

p�1 < p�2; b 2
Na2þ2dc22c2g

; þ1
� 	

and K 2 0;� aðNaÞ2þ2c2ðdþbgÞÞ
Na2þ2c2ðd�bgÞ

� 	
the equilibrium Se

4, with coexisting preys and predators and all

fishermen harvesting preys, is stable if p�1 > p�2 and K 2 0; aðdþbgÞ
bg�d

� i
or, when K 2 aðdþbgÞ

bg�d ;þ1
� 	

for qd ðdðKþaÞ�ða�KÞbgÞ
Kbgðd�bgÞ < Na1

2c1
; the

equilibria (if any) Se
5 where both prey and predators are harvested, is unstable if abc2a2

1
bX e

1

c1a2
2 aþbX e

1

� 	2 P q
K whereas, if the reverse inequality

holds, it is possible to find suitable parameter values such that Se
5 is stable.

Proof and details are in Appendix B.
It is worth noticing that the most interesting equilibrium is Se

5, as it is characterized by harvesting of both stocks (so that

consumers can found both fish species in the market) with a given proportion defined by the isoprofit condition X2 ¼
c2a2

1
c1a2

2
X1.
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The isoprofit condition has a clear economic meaning, and the parameters involved can be easily controlled by properly tun-
ing cost and price parameters.

4.2. Discrete time impulsive switching based on profit driven replicator dynamics

We finally consider the model (26) characterized by stocks dynamics and harvesting activities in continuous time with
strategy switches at discrete decision-driven times; the length s of the time interval between decisions is the only form
of regulatory policy in the model. In particular, we deal with the dynamical system (26) where h�i and p�i are given, respec-
tively, in (11) and (12). Assuming again constant prices, i.e. b ¼ 0, the dynamical system reads
_X1 ¼ qX1 1� X1

K

� �
� bX1X2

aþ X1
� rN

a1X1

2c1
; ð28Þ

_X2 ¼ X2
gbX1

aþ X1
� d

� �
� 1� rð ÞN a2X2

2c2
;

rðtÞ ¼
rðt � sÞ a2

1X1

4c1

� 	
4c1

rðt�sÞa2
1X1
þ 4c2

1�rðt�sÞ½ �a2
2X2

� 	
if t

s ¼ t
s


 �
;

r t
s


 �
s

� �
otherwise:

8<:

Of course, any equilibrium point for the evolutionary model in continuous time (see Proposition 4) is also an equilibrium

for the hybrid system (28), because the first and the second dynamic equations are identical, and the replicator dynamics in
discrete time has the same equilibrium conditions being rðtÞ ¼ rðt � sÞ for r ¼ 0; r ¼ 1 or p�1 ¼ p�2. However, the converse is
not necessarily true. In fact, in the hybrid model an equilibrium is characterized by the condition that the average profits of
the two strategies over the interval s are equal, but instantaneous profits could differ over time.

Some insights on the dynamics of model (28) and the comparison with the other benchmarks are given in next section. As
we shall see, rðtÞ becomes a piecewise-constant function, like an endogenously driven bang-bang parameter whose discon-
tinuous jumps occur at discrete times and leads to sudden switch among different dynamic scenarios, which is a typical
behavior of hybrid systems, see e.g. [32,13,33].

5. Numerical simulations

In this section we propose the results of some numerical explorations of the different models described in the previous
sections, in order to compare the different exploitation behaviors both from the biological and the economic point of view.
All the numerical simulations shown in this section are essentially obtained by using a reference constellation of parameters,
and only the two bifurcation parameters K and g are varied. However, the dynamic scenarios observed are representative of
the behaviors we observed in many more cases.

A typical trajectory of the prey–predator model without harvesting is depicted in Fig. 3(a), where the biological param-
eters are set as follows: q ¼ 250;K ¼ 140;a ¼ 140; b ¼ 100;g ¼ 0:6; d ¼ 9. According to Proposition 1, an oscillatory conver-
gence to the coexistence equilibrium X1

E;X2
E

� �
is obtained. Now let us suppose that the Fishing Authority decides to give 50

licences for fishing both preys and predators according to the unrestricted oligopolistic competition described in Sec-
tion 2.1.2, with economic parameters c1 ¼ 4; c2 ¼ 6:2;r ¼ 0:5; a1 ¼ a2 ¼ 10; b1 ¼ b2 ¼ 0. In Fig. 3(b) the corresponding tra-
jectory is shown, which leads to the equilibrium S1 where predators are extinct, according to Proposition 2. Similarly, if
the Fishing Authority decides to give 25 licences for fishing the prey only and 25 licences for fishing the predator only,
i.e. N ¼ 50 and r ¼ 0:5 (fixed) for preventing overexploitation, then the system converges to the predator extinction equilib-
rium Sr

1, as determined in Proposition 3 and shown in Fig. 3(c). Of course the value of r in this numerical simulation is not
optimally chosen by solving a suitable optimal control problem, but we just assumed the rough rule of thumb of dividing the
fishermen into two groups of equal number. Instead, Fig. 3 (d,e) show the time evolutions of preys and predators when the
parameter r is not fixed but it is endogenously chosen by fishermen on the basis of the profit-driven evolutionary mechanism
in continuous time and discrete time respectively, as described in Section 4. It is worth specifying that Fig. 3 (d,e) represent
the projection on the two-dimensional space X1;X2ð Þ of trajectories generated by three-dimensional dynamical systems
where the third dynamical variable rðtÞ is modeled with a discrete switching time s ¼ 3 in Fig. 3 (e), and continuous time
evolution, i.e. s! 0, in Fig. 3 (d). The two trajectories exhibit a similar asymptotic behavior, even if their transient portions
are different. Indeed, they converge to the same coexistence equilibrium Se

5 (see Proposition 4), with the same final share of
agents fishing species 1, given by r ’ 0:664564. However, in the discrete case the dynamic is characterized by ‘‘jumps’’,
which are evident in Fig. 4 (f), where the evolution of rðtÞ is shown versus time along the trajectory of Fig. 3 (e), compare
Fig. 4 (e,f). This example confirms that for some parameter settings the model with continuous-time switching may provide
a good benchmark for understanding the dynamical properties of the more realistic, but also more involved, hybrid system.
In both cases the state variable r converges to the same equilibrium value, with the only difference in the speed of conver-
gence, which is much higher in the continuous switching case. For the fishermen this means less profits in case of discrete
adjustment mechanism during the initial transient. However, in the two examples the same biomass of preys and predators



Fig. 3. Trajectories in the phase space X1;X2ð Þ with parameters as in Fig. 1 and K ¼ 140;g ¼ 0:6; c1 ¼ 4; c2 ¼ 6:2;N ¼ 50; a1 ¼ a2 ¼ 10; b1 ¼ b2 ¼ 0 and
initial condition X1ð0Þ ¼ 300;X2ð0Þ ¼ 485; rð0Þ ¼ 0:5. (a) Rosenzweig–MacArthur prey-predator model without harvesting. (b) Unrestricted harvesting. (c)
Restricted harvesting with imposed r ¼ 0:5. (d) Endogenous rðtÞ in continuous time. (e) Hybrid model with rðtÞ in discrete time. In all the figures of the
paper gray points represent unstable equilibria and gray points with a hole represent stable equilibria for the continuous evolutionary model.
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as well as the same profits are obtained in the long run. Fig. 4 (a,b,c,d), where the time evolutions of total profits computed
along the same trajectories of Fig. 3 (b,c,d,e) are represented, show that the model with the endogenous adaptive switching
mechanism could also exhibit good performances.

In this specific example, the highest profits are obtained under unrestricted harvesting, so that unrestricted harvesting
would seam to be a good practice for the fishermen. However, here unrestricted harvesting leads to overexploitation, as
it reduces the carrying capacity of the prey so that predators become extinct, see again Fig. 3 (b). On the contrary, the endog-
enous pulse switching mechanism is able to ensure a good compromise between profits and sustainable exploitation of both
species.

In Fig. 5, we increase the value of the carrying capacity to K ¼ 600, so that the model without harvesting presents per-
sistent oscillations along a stable limit cycle, as described in Section 3.1 see Fig. 5(a). This means that the prey–predator eco-
system is characterized by oversupply of nutrients at the bottom of the food chain that leads to persistent oscillations
(according to the ‘‘paradox of enrichment’’ see e.g. [34,27,35,36]). In the long run, the model with unrestricted harvesting
Fig. 5(b) leads to predators’ extinction and with imposed r ¼ 0:5 Fig. 5(c) it has persistent oscillations. On the contrary, with
the same initial conditions and parameter values, both models with endogenous switching in continuous time Fig. 5(d) and
in discrete time Fig. 5(e) converge to a stable equilibrium where preys and predators coexist in the stationary state denoted
by Se

5 in Proposition 4. We notice that in this case the evolutionary model with endogenous switching helps to stabilize the
preys–predators coexistence equilibrium, i.e. it helps avoiding the problem of enrichment. Therefore, from a practical point
of view, while the definition of an optimal value of r is not an easy task, as it requires time, money and farsightedness, the
evolutionary switching mechanism described in this paper seems to bring good results, although exploiters are allowed to
adopt short-run optimizing strategies, which would lead to overexploitation or extinction when totally unregulated.

The simulations depicted in Fig. 6 are obtained with K ¼ 600 and the other parameters as in Fig. 5. The initial condition of
the system is taken sufficiently close to the inner equilibrium Se

4. According to Proposition 4, the border equilibrium

Se
4 ¼ eXe

1;
eXe

2;1
� 	

has already lost its stability through a supercritical Hopf bifurcation since K > KH ¼ 2c1a dþqgbð Þ
2c1q�Na1ð Þ gb�dð Þ ’

219:74, being KH the Hopf bifurcation curve for that equilibrium, according to Proposition 4. It follows that for suitable initial



Fig. 4. Versus-time representation of total profits along the trajectories of the model with: (a) Unrestricted harvesting; (b) Restricted harvesting with
imposed r ¼ 0:5; (c) Endogenous rðtÞ in continuous time; (d) Hybrid model with rðtÞin discrete time. Versus time evolution of rðtÞ in: (e) continuous time. (f)
discrete time (all parameters as in Fig. 3).
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conditions, the system with replicator dynamics in continuous time (27) converges to a stable limit cycle, see Fig. 6(d).
Therefore, in this case the model in continuous time admits the coexistence of two stable attractors, the stable steady state
Se

5 and the stable limit cycle bifurcating from Se
4. However, in the hybrid case we always detected the convergence to the

inner equilibrium, no matter what the initial condition is. This indicates that in some cases the presence of pulse dynamics
could stabilize the system. This stabilizing effect can also be stressed through the inspection of the basins of attraction,
shown in Fig. 7. In Fig. 7(a) the white region represents the basin of attraction of equilibrium Se

5 and the black region is
the basin of attraction of the limit cycle depicted in Fig. 6(d). For the hybrid system, the generic trajectory with initial con-
dition in the square X1;X2ð Þ 2 0:1;600ð Þ � 0:1;600ð Þ always converges to the inner equilibrium Se

5. With respect to the third
dynamic variable, all the basins here shown are obtained with initial condition r ¼ 0:5. However, other simulations not re-
ported here show similar scenarios also for different initial values of r.

With all parameters as in Fig. 6, except K ¼ 650, we obtain the example shown in Fig. 8. In Fig. 8(a) two coexisting stable
limit cycles are created through supercritical Hopf bifurcations of Se

4 (black curve) and Se
5 (gray curve) in the model with con-

tinuous replicator dynamics (27). Notice that no stable equilibrium exists in this case for the system (27) according to Prop-
osition 4. This case gives us the opportunity to discuss some similarities and differences between the continuous and the
hybrid model. So far, the numerical analysis has shown that the dynamics of the hybrid model converged to the inner equi-
librium whenever Se

5 was locally asymptotically stable for the evolutionary system in continuous time. In addition, Fig. 8(b)
shows that the stability of the inner equilibrium Se

5 in the hybrid model may hold even when it is not a stable equilibrium in
the model with continuous time switching (27). In Fig. 8(a) the trajectory of the model with continuous switching is plotted
without a transient to better emphasize the two stable limit cycles. The two initial conditions taken in the basins of attraction
of the two different limit cycles are, respectively, X1ð0Þ ¼ 300;X2ð0Þ ¼ 485; rð0Þ ¼ 0:5 and X1ð0Þ ¼ 60;X2ð0Þ ¼ 60; rð0Þ ¼ 0:5.
In Fig. 8(b), the whole trajectory (i.e. with the transitory part) of the hybrid dynamical system is plotted.2
2 For graphical reasons in Fig. 8(b) we have only shown the trajectory starting from X1 ¼ 300;X2 ¼ 485; r ¼ 0:5, although also the trajectory with the other
initial condition converges to the inner equilibrium.



Fig. 5. Trajectories in the phase space X1;X2ð Þ with initial condition and parameters as in Fig. 3 but K ¼ 600. (a) Rosenzweig–MacArthur prey–predator
model without harvesting. (b) Unrestricted harvesting. (c) Restricted harvesting with imposed r ¼ 0:5. (d) Endogenous rðtÞ in continuous time. (e) Hybrid
model with rðtÞin discrete time.
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Another way to compare the different dynamical systems is the numerical study of the two-parameters bifurcation dia-
gram in the space g;Kð Þ.3 In Fig. 9(a,b) we show these diagrams for the cases of continuous and discrete evolutionary dynamics.
The parameter constellation is the same as in Fig. 1(a) and Fig. 2(a,c), so that a direct comparison can be carried out4. The two-
parameters bifurcation diagrams in Fig. 2 and Fig. 9 emphasize that in all the considered dynamical systems, there are three
possible long-run behaviors: (1) convergence to a stable border equilibrium, characterized by predator extinction or one-species
harvesting (grey region); (2) convergence to a stable inner equilibrium, characterized by coexistence and harvesting of both spe-
cies (white region); and (3) convergence to an attractor with persistent oscillations dynamics, characterized by coexistence and
harvesting of the two species (black region). The bifurcation diagrams give numerical evidence that the dynamical systems
without harvesting and the one with evolutionary switching have several analogies. Indeed, the transcritical bifurcation curves,
marking the transition from grey to white areas, look very similar for these two models. This means that, if there are suitable
ecological conditions for the stable coexistence of the two stocks, then it is highly probable that these conditions also ensure the
coexistence in case of harvesting with evolutionary switching. Moreover, from the bifurcation diagrams, it is clear that persis-
tent oscillations are more common for the natural model without harvesting than in the evolutionary model, because the region
of stationary coexistence (i.e. stability of the positive equilibrium) is larger for the model with harvesting under evolutionary
switching. In other words, the evolutionary fishery mechanism modeled in this paper can even enhance stability in cases where
the unexploited resource exhibits persistent oscillatory dynamics, as it may reduce the destabilizations caused by an excess of
nutrients available to the preys, i.e. an increase of K. Notice that, in the case of unrestricted harvesting, see Fig. 2(a), the grey
region extends over almost the entire parameter space, thus leading to a low probability that predators will survive in the long
run, much lower than in the other scenarios, according to the paradigm of the tragedy of the commons. The two parameters
bifurcation diagrams of Fig. 9 also suggest that, in general, the two proposed evolutionary models have different stability re-
gions. On the contrary to what one would expect, the pulse dynamics model may have a stabilizing effect. In fact, in the case
3 The choice of K as bifurcation parameter is standard for the Rosenzweig–MacArthur model (see e.g. [27]) while g is chosen for convenience. The same
analysis with other parameters may also be useful, but it would lead to quite similar results.

4 Notice that, apart from the bifurcation parameters g and K, the remaining parameters are fixed as in Fig. 3. The same set of parameters is employed also in
all the other figures of this paper, with the exception of Fig. 10 where b1;2 – 0.



Fig. 6. Trajectories in the phase space X1;X2ð Þ with parameters as in Fig. 5 but initial condition X1ð0Þ ¼ 60;X2ð0Þ ¼ 60; rð0Þ ¼ 0:5 (a) Rosenzweig–
MacArthur prey-predator model without harvesting. (b) Unrestricted harvesting. (c) Restricted harvesting with imposed r ¼ 0:5. (d) Endogenous rðtÞ in
continuous time. (e) Hybrid model with rðtÞ in discrete time.

Fig. 7. Basin of attractions with initial conditions (X1ð0Þ;X2ð0Þ) in the square 0:1;600ð Þ � 0:1;600ð Þ and with initial r ¼ 0:5 for the model with endogenous
rðtÞ in: (a) continuous time. (b) discrete time. Parameters as in Figs. 5 and 6. White region is the basin of attraction of the inner equilibrium Se

5; Black region
is the basin of attraction of the stable closed invariant orbit in Fig. 6d.
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under consideration, there are pairs of parameter values K;gð Þ for which the inner equilibrium is unstable for the continuous
time evolutionary model and stable for the discrete time evolutionary model. In this particular case, these pairs are located near
the left upper corners of Fig. 9(a,b). Notice that this is precisely what we have already observed in the numerical simulations
shown in Fig. 8.



Fig. 8. Trajectories in the phase space X1;X2; rð Þ with parameters as in Fig. 6 but K ¼ 650. (a) Endogenous rðtÞ evolving according to a continuous time
replicator dynamics. The stable gray orbit appears through a supercritical Hopf bifurcation of Se

5; the stable black one appears through a supercritical Hopf
bifurcation of Se

4. (b) Hybrid model with rðtÞ in discrete time.

Fig. 9. Bifurcation diagrams in the parameters space g;Kð Þ 2 0:5;1ð Þ � 1;700ð Þ: white region represents couple of parameters such that the system
converges to the stable inner equilibrium Se

5; for parameters in the black region there is persistent cyclic behavior along a stable limit cycle around Se
5; in the

gray areas Se
5 is not feasible. (a) continuous replicator dynamics. (b) Hybrid model.
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Up to now, we only considered cases with perfectly elastic demand for the two species. In the following example we relax
this assumption in order to understand the possible effect of non-constant prices in the dynamics of the models. For the sake
of comparison, all the parameters are set as in Fig. 3, but b ¼ 0:01. The different dynamic behaviors are evident by comparing
Figs. 3 and 10. In this case, the higher is the quantity of fish in the market, the lower is its selling price, so that this effect
reduces the overexploitation and the long-run dynamics settle to an inner equilibrium in all the cases.

In conclusion, the hybrid model exhibits in most cases convergence to the inner equilibrium, despite a strange transient
dynamics. However, also attractors different from fixed points can be present, as indicated in the two parameters bifurcation
diagram of Fig. 9b. A plausible explanation of the stabilizing effect observed in the numerical simulations is based on the role
played by s, i.e. the length of time after which fishermen are allowed to change their harvesting strategies according to past
profits. As s! 0, the hybrid model tends to the continuous one and fishermen react immediately to changes in instantaneous
harvesting strategy profits. As s increases the fishermen decisions occur with a higher degree of inertia. Moreover, they base
their decision upon a more sophisticated time-structure information about past profits, i.e. mobile time averages of profits
observed in the past, and this has a stabilizing role as well.



Fig. 10. Trajectories in the phase space X1;X2ð Þwith initial condition and parameters as in Fig. 3 but b1 ¼ b2 ¼ 0:01 and r ¼ 1=2 (a) Rosenzweig–MacArthur
prey-predator model without harvesting. (b) Unrestricted harvesting. (c) Restricted harvesting with imposed r ¼ 0:5. (d) Endogenous rðtÞ with continuous
time replicator dynamics. (e) Hybrid model.

G.-I. Bischi et al. / Applied Mathematics and Computation 219 (2013) 10123–10142 10137
6. Some conclusions and further developments

In this paper a hybrid dynamical system is proposed to model a fishery where two species in prey–predator relationship
are harvested by a population of fishermen who are allowed to catch only one of the two species at a time, and to change the
caught variety at discrete time pulses, according to a profit-driven replicator dynamics. However, the dynamic equations
describing the growth and interaction of the two fish species are always in continuous time. The analytical and numerical re-
sults show that this type of evolutionary mechanism may lead to a good compromise between profit maximization and re-
source conservation thanks to an evolutionary self-regulation based on cost and price externalities. In fact, the reduction
of biomass of one species leads to increasing landing costs and it consequently favours the endogenous switching to the more
abundant species. Moreover, severe overfishing of one species causes decreasing prices and consequently decreasing profits.

The employed prey–predator model, namely logistic growth and Holling type II function response, is simple and widely
employed in the literature. Nevertheless, introducing harvesting with impulsive evolutionary switching in discrete time
makes the model quite complicated to be studied analytically. For this reason, some simpler benchmark cases, with fixed
prices or continuous time switching, have also been developed here. Although these benchmarks may seem quite unrealistic,
they constitute a useful guide, even a sort of basic foundation on which the (mainly numerical) analysis of the more realistic
model with variable market prices and impulsive strategy switching can be built upon.

In the paper we have carried out several comparisons between continuous time and discrete time (or impulsive) switch-
ing according to the profit-driven replicator dynamics. Our numerical results show that in some cases the region of stability
of the inner equilibrium is larger in the hybrid system than in the continuous-time model. Other remarkable features of the
hybrid system are related to the possibility of reducing long run oscillation dynamics as well as to avoiding the occurrence of
bistability. This seems to be in contrast with some results in the literature stressing the fact that discrete replicator dynamics
generated oscillatory behaviors (see e.g. [9]). However in our case we have a hybrid model where the discrete replicator
switching is embedded in an underlying model in continuous time. Moreover, the switching is decided according to a moving
average of profits, and this has a stabilizing effects because it introduces a form of inertia.

From the point of view of population dynamics, the endogenous switching mechanism, by which fishermen decide the
variety to catch on the basis of their profits, attenuates some negative effects of unrestricted harvesting. In fact, in some cases
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if the dynamics of the unexploited species converge to the stable coexistence equilibrium, then it is highly probable that
coexistence is achieved with harvesting strategy switching (in continuous or discrete time), thus significantly reducing
the negative effects of exploitation. Another surprising characteristic of this endogenous switching is the reduction of the
‘‘oscillatory effect’’ due to oversupply of food. In fact, it is well known that, in a food-chain population model, the presence
of self-sustained oscillations means oversupply of nutrients. In [27] some practical rules are given to reduce oscillations
caused by overabundance of food at the bottom of the food chain.

The exercise carried out here offers glimpse into the interesting properties of myopic and adaptive harvesting mecha-
nisms driven by endogenous evolutionary processes. However this is just a starting point for further and deeper analysis.
There are several aspects of the model that deserve to be explored more deeply. For example, the variable r, i.e. the fraction
of fishermen harvesting a given fish stock, is assumed to unconstrainedly range in the interval 0;1½ �, where 0 and 1 are al-
ways equilibria. When r converges to 0 or 1, one of the two species is no longer harvested and consequently it is not available
in the market. This could be an acceptable outcome only if the two species of fish are perfect substitute in consumers tastes
(corresponding to the case r ¼ 1 in our model). Otherwise consumers may be heavily penalized by such equilibrium strat-
egies. This issue will be addressed in future work, for example by introducing constraints on the dynamics of r. The research
could be extended in other different directions as well. First of all, it would be interesting to compare the results obtained
here with those where an optimal fraction r is computed according to an optimal control problem, in which a social welfare
function is maximized over time. Moreover, the stability analysis for the model with continuous evolutionary switching
mechanism may be extended to provide indications on the behavior of the hybrid dynamical system in the long run.
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Appendix A

A.1. Proof of Proposition 2

To investigate the stability properties of the equilibria by linearization, we consider the Jacobian matrix of (19):
J ¼
q� 2qX1

K �
abX2

aþX1ð Þ2
� Na1

2c1
� bX1

aþX1

gbaX2

aþX1ð Þ2
gbX1
aþX1
� d� a2N

2c2

24 35:

At the extinction equilibrium S0 the Jacobian matrix is diagonal:
J S0ð Þ ¼
q� Na1

2c1
0

0 �d� a2N
2c2

24 35;

with eigenvalues k1 ¼ q� Na1

2c1
and k2 ¼ �d� a2N

2c2
< 0. Therefore S0 is a stable node for 2c1q < Na1, i.e. when the total fishing

effort level exceeds the intrinsic growth rate of the prey population. Instead, S0 is a saddle point, and S1 becomes positive
(through a transcritical bifurcation) when 2qc1 > Na1. From the triangular structure of the Jacobian matrix in S1 ¼ X1;0

� �

JðS1Þ ¼

�qþ Na1
2c1

� bX1

aþX1

0 gbKð2qc1�Na1Þ
a2qc1þKð2qc1�Na1Þ

� d� a2N
2c2

24 35;

it is easy to see that S1 is a stable node when q > Na1

2c1
and gbK 2qc1�Na1ð Þ

a2qc1þK 2qc1�Na1ð Þ � d� a2N
2c2

< 0. Instead, when the interior equilibrium

S2 enters the positive orthant the boundary equilibrium S1 becomes a saddle, with stable manifold along the X1 axis and
unstable manifold transverse to it, via transcritical bifurcation.

The Jacobian of the system in S2 is:
J S2ð Þ ¼

dþN
a2

2c2

� 	
q2c1�Na1ð ÞK gb�d�N

a2
2c2

� 	
�2qc1a gbþdþN

a2
2c2

� 	� 	
2Kc1gb gb�d�N

a2
2c2

� 	 � bX�1
aþX�1

gbaX�2
aþX�1ð Þ2

0

266664
377775:
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When 2qc1 � Na1ð Þ K gb� d� N a2
2c2

� 	
� 2qc1 a dþ N a2

2c2

� 	
decreases across zero, S2 merges with S1 and then it exits the po-

sitive orthant, and S1 becomes stable through a transcritical bifurcation. Instead, if q2c1 � Na1ð Þ K gb� d� N a2
2c2

� 	
� 2qc1

a gbþ dþ N a2
2c2

� 	
< 0 the equilibrium is stable, while, when this inequality is reversed, it becomes an unstable focus through

a supercritical Hopf bifurcation5 after which an attractive limit cycle appears around it.h

A.2. Proof of Proposition 3

The Jacobian matrix of (22)
5 A r
derivati
nature
J ¼
q� 2qX1

K �
abX2

aþX1ð Þ2
� r Na1

2c1
� bX1

aþX1

gbaX2

aþX1ð Þ2
gbX1
aþX1
� d� 1� rð Þ a2N

2c2

24 35

computed at the global extinction equilibrium S0 ¼ 0;0ð Þ becomes
J S0ð Þ ¼
q� r Na1

2c1
0

0 �d� 1� rð Þ a2N
2c2

24 35;

so the eigenvalues are both negative if 2c1q < rNa1. If 2qc1 > rNa1 then S0 is a saddle point and Sr

1 is positive. From
J Sr
1

� �
¼
�qþ r Na1

2c1
� bX1

aþX1

0 gbK 2qc1�Na1ð Þ
a2qc1þK 2qc1�Na1ð Þ � d� 1� rð Þ a2N

2c2

24 35;

it is plain to see that Sr

1 is a stable node whenever the elements in the principal diagonal of J Sr
1

� �
are negative.

If the interior equilibrium Sr
2 is positive, then the boundary equilibrium Sr

1 is a saddle. From
J Sr
2

� �
¼

dþ 1�rð ÞN a2
2c2

� 	
2c1q�rNa1ð ÞK gb�d� 1�rð ÞN a2

2c2

� 	
�2c1qgba

h i
2c1Kgb gb�d� 1�rð ÞN a2

2c2

� 	 � bXi�
1

aþXi�
1

gbaXi�
2

aþXi�
1ð Þ2

0

266664
377775
it is easy to see that Sr
2 is stable for 2c1q� rNa1ð Þ Kðgb� d� ð1� rÞÞ ðN a2

2c2
Þ � 2c1qa gbþ dþ ð1� rð Þ ðN a2

2c2
Þ < 0 and unstable

otherwise, with stability loss occurring via a supercritical Hopf bifurcation, as it can be seen numerically (see footnote at the
end of the proof of Proposition 2).

It is worth noticing that for gb� d� 1� rð Þ a2N
2c2

� 	
K 2qc1 � Na1ð Þ � 2qc1 a dþ 1� rð Þ a2N

2c2

� 	
¼ 0; Sr

2 merges with Sr
1 and

when the left hand side is negative the equilibrium Sr
2 is no longer in the positive orthant and the equilibrium Sr

1 becomes

stable through a transcritical bifurcation.h

Appendix B. Proof of Proposition 4

Existence of equilibria.
Equilibrium points are the solutions of the algebraic system
X1 q 1� X1

K

� �
� bX2

aþ X1
� rN

a1

2c1

� 

¼ 0;

X2
gbX1

aþ X1
� d� 1� rð ÞN a2

2c2

� 

¼ 0; ð29Þ

rð1� rÞ a2
1

4c1
X1 �

a2
2

4c2
X2

� �
¼ 0;
from which it is straightforward to obtain the equilibria Se
0; S

e
1; S

e
2; S

e
3; S

e
4.

As for the equilibrium Se
5, when r 2 0;1ð Þ, the third equation in (29) is satisfied when X2 ¼

c2a2
1

c1a2
2

X1 so that the first and sec-
ond equations become
igorous proof of the supercritical or subcritical nature of Hopf bifurcation requires a center manifold reduction and the evaluation of higher order
ves, up to the third order (see e.g. [37]). This is rather tedious in a two-dimensional system, and we claim numerical evidence in order to ascertain the
of such bifurcations.
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X1

aþ X1
q� qX1

K

� �
aþ X1ð Þ � ba2

1c2X1

a2
2c1

� rNa1

2c1
aþ X1ð Þ

� 

¼ 0;

c2a2
1

c1a2
2

X1
gbX1

aþ X1
� d� 1� rð ÞNa2

2c2

� �
¼ 0:
From the second one we have X1ðrÞ ¼ a 2dc2þð1�rÞNa2ð Þ
2gbc2�2dc2�ð1�rÞNa2

, so that the first equation in (29) can be written as
aðNa2ð1� rÞ þ 2dc2Þ
2a2

2Kc1gð�a2Nð1� rÞ � 2c2ðd� bgÞÞ2
Ar2 þ Br þ C
h i

¼ 0; ð30Þ
with
A ¼ a1a2
2KN2 a1 � a2gð Þ;

B ¼ a2Na1K � 2a1ða2N þ 2dc2 � bc2gÞ þ a2g½a2N þ 2c2ðd� bgÞ� þ 2a2
2ðK þ aÞc1gq;

C ¼ a2
1Kða2N þ 2dc2Þ½a2N þ 2c2ðd� bgÞ� � 2a2

2c1g½ðK þ aÞða2N þ 2dc2Þ � 2Kbc2g�:q
We observe that one root of Eq. (30) never belongs to the interval 0;1½ �, being r ¼ 1þ 2dc2
Na2

> 1 and so an inner equilibrium
is a root of the second degree equation in square brackets in (30). Specific conditions for the existence of an equilibrium with
r 2 0;1ð Þ can be given. For instance, assuming that a1 > a2, then the second degree equations has always two real solutions
r�1 < r�2 with lim

c2!0þ
r�1 ¼ 1�, so that, by continuity, a sufficiently low cost coefficient c2 ensures the existence of at least one

equilibrium with r 2 0;1ð Þ.
Stability analysis
The Jacobian matrix
J X1;X2; rð Þ ¼

q� rNa1
2c1
� 2q

K X1 � abX2

aþX1ð Þ2
� bX1

aþx1
� Na1X1

2c1

gabX2

aþX1ð Þ2
gbX1
aþX1
� d� ð1�rÞNa2

2c2

Na2
2c2

X2

rð1�rÞa2
1

4c1
� rð1�rÞa2

2
4c2

ð1� 2rÞ a2
1

4c1
X1 �

a2
2

4c2
X2

� 	
266664

377775;

at the global extinction equilibrium Se

0 ¼ 0;0; rð Þ becomes:
J Se
0

� �
¼

q� rNa1
2c1

0 0

0 �d� ð1�rÞNa2
2c2

0
rð1�rÞa2

1
4c1

� rð1�rÞa2
2

4c2
0

26664
37775;
which is a triangular matrix with a vanishing eigenvalue along the trapping line of equilibria (r axis), stable along the X1 axis
provided that, as usual, 2c1q < rNa1. Instead, at the equilibrium Se

1 ¼ K;0;0ð Þwith predator’s extinction and no prey harvest-
ing, the Jacobian matrix is triangular again
J Se
1

� �
¼

�q � bK
aþK � Na1K

2c1

0 gbK
aþK � d� Na2

2c2
0

0 0 a2
1

4c1
K

26664
37775;
but the equilibrium is always unstable due to the third eigenvalue which is always positive (unstable along a direction trans-
verse to X1 axis, due to the time evolution of r that has the tendency to increase in a neighborhood of the equilibrium). At the

equilibrium Se
2 ¼ K

2qc1
2qc1 � Na1ð Þ;0;1

� 	
with 2qc1 > Na1, where predator is extinct and all fishermen harvest preys, the

Jacobian is triangular again and two eigenvalues are always negative. Therefore Se
2 is unstable if the natural conditions for

predators’ survival gbX�1
aþX�1

> d hold true, i.e. K 2qc1 � Na1ð Þ gb� dð Þ > 2dqc1a, otherwise it is stable. At the equilibrium

Se
3 ¼ Xe

1;X
e
2; 0

� �
, with coexisting preys and predators and no prey harvesting, the Jacobian matrix reads
J Se
3

� �
¼

q 1� 2Xe
1

K

� 	
� abXe

2

aþXe
1ð Þ2

� bXe
1

aþXe
1

�N a1Xe
1

2c1

agbXe
2

aþXe
1ð Þ2

0 N a2Xe
2

2c2

0 0 a2
1

4c1
Xe

1 �
a2

2
4c2

Xe
2

2666664

3777775; ð31Þ
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from which it is straightforward to observe that a2
1

4c1
Xe

1 �
a2

2
4c2

Xe
2 is an eigenvalue, and the other two eigenvalues are solutions of

the equation k2 � J11k� J12J21 ¼ 0, where Jij is the entry at row i-th and column j-th of J Se
3

� �
. So, being �J12J21 > 0, the con-

ditions for the asymptotic stability of Se
3 become
a2
1

4c1
Xe

1 �
a2

2

4c2
Xe

2 < 0;
q 1� 2Xe
1

K

� �
� abXe

2

aþ Xe
1

� �2 < 0;
which can be restated, substituting the equilibrium values as
b 2 Na2 þ 2dc2

2c2g
;þ1

� �
and K 2 0;

aðNa2 þ 2c2ðdþ bgÞÞ
2c2ðbg� dÞ � Na2

� �
:

For b 2 Na2þ2dc2
2c2g

;þ1
� 	

and K ¼ aðNa2þ2c2ðdþbgÞÞ
2c2ðbg�dÞ�Na2

, the characteristic equation has one negative root and two complex conjugate

roots with zero real part, i.e. the equilibrium can undergo a Hopf bifurcation if nondegeneracy conditions are satisfied. A sim-

ilar analysis holds for the equilibrium Se
4 ¼ eXe

1;
eXe

2;1
� 	

.

Finally, for the equilibria (if any) Se
5 ¼ bXe

1;
bXe

2;br� 	
where both prey and predators are harvested, substituting the equilibria

conditions in the Jacobian matrix we get
J Se
5

� �
¼

bXe
1

abc2a2
1
bX e

1

c1a2
2

aþbX e
1

� �2 � q
K

" #
� bbX e

1

aþbX e
1

�N
a1
bX e

1
2c1

agbc2a2
1
bX e

1

c1a2
2 aþbX e

1

� �2 0 N
a2

1
bX e

1
2c1a2

brð1� brÞ a2
1

4c1
�brð1� brÞ a2

2
4c2

0

2666666664

3777777775
:

By applying the Routh-Hurwitz criterion to J Se
5

� �
, we can deduce that no stable equilibrium with r 2 ð0;1Þ exists whenever

abc2a2
1
bX e

1

c1a2
2 aþbX e

1

� �2 P q
K, whereas, when the reverse inequality holds, i.e. when the biomass equilibrium level bXe

1 belongs to a given

interval, stability of the inner equilibrium can be achieved for specific parameter values. The equilibrium can undergo a Hopf
bifurcation for J21 J12J11 þ J13J32ð Þ þ J31 J13J11 þ J12J23ð Þ ¼ 0. h
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