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Abstract
A dynamic Cournot duopoly game, characterized by finns with bounded

rationality, is represented by a discrete-time dynamical system of the plane.
Conditions ensuring the local stability ofa Nash equilibrium, under a local (or
myopic) adjustment process, are given, and the influence ofmarginal costs and
speeds ofadjustment of the two finns on stability is studied. The stability loss
ofthe Nash equilibrium, as some parameter ofthe model is varied, gives rise to
more complex (periodic or chaotic) attractors. The main result of this paper is
given by the exact detennination ofthe basin ofattraction ofthe locally stable
Nash equilibrium (or other more complex bounded attractors around it), and
the study of the global bifurcations that change the structure ofthe basin from
a simple to a very complex one, with consequent loss ofpredictability, as some
parameters of the model are allowed to vary. These bifurcations are studied by
the use of critical curves, a relatively new and powerful method for the study
of noninvertible two-dimensional maps.

1 Introduction

The static Cournot oligopoly model, in which each firm, given the optimal
production decisions of the other firms selling the same homogeneous good, sets
its optimal production, is a fully rational game based on the following assumptions:

(i) each firm, in taking its optimal production decision, must know beforehand
all its rivals' production decisions taken at the same time;

(ii) each firm has a complete knowledge of the market demand function.

Under these conditions offull information the system moves straight (in one shot)
to a Nash equilibrium, if it exists, independently of the initial status of the market,
so that no dynamic adjustment process is needed. Dynamic Cournot oligopoly
models arise from more plausible assumptions of partial information, so that the
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players' behavior is not fully rational. For example, a dynamic model is obtained
if assumption (i) is replaced by some kind of expectation on the rivals' outputs.
The simplest kind of expectation, based on Cournot's assumption that each firm,
in taking its optimal decision, guesses that the output of the other firms remains at
the same level as in the previous period, has given rise to a flourishing literature
on dynamic oligopoly models, starting from the seminal paper of Teocharis [18]
(see, e.g., McManus and Quandt [11], Fisher [6], Hahn [10], and Okuguchi [15]).

Models where also assumption (ii) is relaxed have recently been proposed by
many authors, e.g., Bonanno and Zeeman [3], Bonanno [2], and Sacco [16]. In
these models firms are supposed to have a knowledge ofdemand function limited
to a small neighborhood of the status of the market in which they operate, and
use such local knowledge to update their production strategy by a local profit
maximization. Since they play the game repeatedly, they can gradually adjust their
production over time. In these dynamic models a Nash equilibrium, if it exists,
is a stationary state, i.e., if all the firms have outputs at the Nash equilibrium,
their production decisions will remain the same forever. Instead, if the oligopoly
system is outside a Nash equilibrium, then the repeated local adjustment process
may converge to the Nash equilibrium, where there is no further possibility for
improvement, or may move around it by a periodic or aperiodic time evolution, or
may irreversibly depart from it. Thus the main question addressed in the literature
on dynamic oligopoly models is that ofthe stability ofthe Nash equilibria, and how
such stability is influenced by the model structure and the values ofthe parameters
which characterize the model. Results ofglobal asymptotic stability, which means
that the adjustment process converges to the Nash equilibrium independently of
the initial condition, have been given both for linear models, by the analysis of
the eigenvalues of the model, and for nonlinear models by the second Lyapunov
method, as in Rosen [17]. On the contrary, the question of stability extent in
models, in which global stability does not hold, has been rather neglected in the
literature. In fact, for nonlinear models, the analysis is often limited to the study of
the linear approximation, but these results are in general quite unsatisfactory for
practical purposes, since they determine the attractivity ofa Nash equilibrium only
for games starting in some region around the equilibrium, and such a region may
be so small that every practical meaning of the mathematical concept of stability
is lost. In these cases the question of the stability extent, that is, the delimitation
of the basin of attraction of a locally stable equilibrium, becomes crucial for any
practical stability result. In fact, only an exact determination of the boundaries
of the basin of attraction can give a clear idea of the robustness of an attractor
with respect to exogenous perturbations, always present in real systems, since it
permits one to understand ifa given shock offinite amplitude can be recovered by
the endogenous dynamics of the system, or if it will cause an irreversible departure
from the Nash equilibrium.

The present paper moves toward this less explored direction. We propose a
nonlinear, discrete-time, duopoly model, where a Nash equilibrium exists that is,
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under given conditions on the model's parameters, locally asymptotically stable,
but not globally stable.

The adjustment mechanism considered in this paper is based on the pseudo­
gradient of the profit functions, i.e., each player changes its own production so as
to obtain the maximum rate of change of its own profit with respect to a change
in its own strategy. Such an adjustment has been proposed, in a continuous time
model, by Rosen [17], and similar mechanisms are also considered by Furth [8],
Sacco [16], Varian [19], and Flam [7]. In the paper by Rosen it is shown that, under
the assumption of strict diagonal concavity of the payoffs, the unique equilibrium
is globally asymptotically stable. In this paper we show that if a discrete-time
model is considered the situation is more complex, since even if the conditions
for stability required by Rosen are satisfied, local stability does not imply global
stability.

The plan ofthe paper is as follows. A detailed description ofthe model is given
in Section 2. In Section 3 the existence and local stability ofthe equilibrium points
ofthe model are studied. The main results ofthe paper are given in Section 4, where
the exact delimitation ofthe basin ofattraction ofthe Nash equilibrium is obtained.
The occurrence, as some parameter is allowed to vary, ofsome global bifurcations
causing qualitative changes in the structure of the basins is studied by the use
of critical curves, a powerful tool for the analysis of noninvertible maps of the
plane. In this section we also show that even when the Nash equilibrium becomes
unstable, the process may be characterized by periodic or chaotic trajectories which
are confined in a bounded region around the Nash equilibrium, so that the duopoly
system continues to have an asymptotic behavior which is not far from optimality.
In any case, the global analysis of the dynamical system reveals that bifurcations
can occur, as some parameter is left to vary, that cause qualitative changes in the
structure of the basins of attraction.

2 The Duopoly Model: Assumptions and Notations

We consider an industry consisting of two quantity-setting finns, labeled by
i = 1, 2, producing the same good for sale on the market. Production decisions
of both firms occur at discrete-time periods t = 0, 1,2, .... Let qi(t) represent
the output of the ith firm during period t, at a production cost Ci(qi). The price
prevailing inperiodt is determined by the total supply Q(t) = q\(t)+q2(t) through
a demand function

p = f(Q)

from which the single-period profit of ith firm is given by

(1)

(2)

As stressed in Section 1, we assume that each duopolist does not have a complete
knowledge of the demand function, and tries to infer how the market will respond
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to its production changes by an empirical estimate of the marginal profit. This
estimate may be obtained by market research or by briefexperiments ofsmall (or
local) production variations performed at the beginning ofperiod t (see Varian [19])
and we assume that even if the firms are quite ignorant about the market demand,
they are able to obtain a correct empirical estimate of the marginal profits, i.e.,

i = 1,2. (3)

Ofcourse, this local estimate ofexpected marginal profits is much easier to obtain
than a global knowledge of the demand function (involving values of Q that may
be very different from the current ones). With this kind of information the pro­
ducers behave as local profit maximizers, the local adjustment process being one
where a firm increases its output if it perceives a positive marginal profit ct>j(t),
and decreases its production if the perceived ct>j(t) is negative. This adjustment
mechanism has been called by some authors myopic (see Dixit [5] and Flam [7]).
Let GjO, i = 1,2, be an increasing function, such that

i = 1,2. (4)

Then the dynamic adjustment mechanism can be modeled as

i = 1,2, (5)

where CXj(qj) is a positive function which gives the extent ofproduction variation
ofthe ith firm following a given profit signal ct>j. It is important to note that a Nash
equilibrium, if it exists, is also a fixed point of the dynamical system (5). In fact,
a Nash equilibrium is located at the intersection of the reaction curves, defined
by (8ni/8qj)(ql, q2) = 0, i = 1,2 (as noticed by Dixit [5], the term "reaction
curve" is not appropriate in models like (5), since they describe a simultaneous­
move game, but we follow the tradition ofusing the same term also in this context).
Since (4) implies Gj(O) = 0, i = 1,2, the dynamic process (5) is stationary if
the strategy point (ql' q2) is at a Nash equilibrium. The converse is not necessarily
true, that is, stationary points of (5) that are not Nash equilibria can exist, as we
shall see in the particular model studied in the following.

An adjustment mechanism similar to (5) has been proposed by some authors,
mainly with continuous time and constantCXj (see, e.g., Rosen [17], Furth [8], Sacco
[16], Varian [19], and Flam [7]). However, we believe that a discrete-time decision
process is more realistic since in real economic systems production decisions
cannot be revised at every time instant. We also assume that CXj are increasing
functions ofqj (hence ofthe "size" of the firm). This assumption captures the fact
that in the presence of a positive profit signal ct>j > 0, a bigger firm has greater
capacity to make investments in order to increase its production, whereas in the
presence ofa negative profit signal a bigger producer must reduce more drastically
its production to avoid bankruptcy risks.
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In the following we shall assume, for sake of simplicity, a linear relation
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i = 1,2, (6)

where Vj is a positive constant that will be called speed ofadjustment. We also
assume a linear demand function

f(Q) =a -bQ

with a, b positive constants, and linear cost functions

(7)

Cj(qj) = Cjqj, i = 1,2, (8)

where the positive constants Cj are the marginal costs. With these assumptions

i = 1,2, (9)

and the marginal profit for firm i at the point (q\, q2) of the strategy space is

anj
<l>j = -'}- = a - Cj - 2bqj -bqj, i,j = 1,2, j f. i. (10)

uqj

If, as in the quoted papers of Varian, Furth, Flam, and Sacco we consider a linear
adjustment function

G(<I» = <I> (11)

(12)

the model (5), with the above assumptions, gives rise to the following two­
dimensional nonlinear map T (q" q2) ~ (q;, q2) defined as

I
' 2q, = (1 + v,(a - c\»q, - 2bv\q\ - bV\q\q2,

T:
, 2

q2 = (1 + V2(a - C2»q2 - 2bv2q2 - bV2q\q2,

where I denotes the unit-time advancement operator, that is, if the right-hand side
variables are productions ofperiod t, then the left-hand ones represent productions
of period (t + 1).

The map (12) is a noninvertible map of the plane, that is, starting from some
nonnegative initial production strategy

(q\o, q2o) (13)

the iteration of(12) uniquely defines the trajectory (q\(t), q2(t» = Tt(q\o' q2o),
t = 1,2, ... , whereas the backward iteration of (12) is not uniquely defined. In
fact, a point (q; , q2) ofthe plane may have several preimages, obtained by solving
the fourth-degree algebraic system (12) with respect to q\ and q2 (see Mira et al.
[12] for a complete treatment ofthe properties ofnoninvertible maps of the plane).
The study of the dynamical properties of (12) allows us to have information on
the long-run behavior of a bounded rationality adjustment process starting from
a given initial condition (13), and how this is influenced by the parameters of the
model.
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3 Equilibrium Points and Local Stability

We define equilibrium point (or stationary point) of the dynamic duopoly
game as a nonnegative fixed point of the map (12), i.e., a solution of the algebraic
system

!q\(a - c\ - 2bql - bq2) = 0,

q2(a - C2 - bql - 2bq2) = 0,
(14)

obtainedbysettingq; = qi, i = I, 2,in(12). We can have at most four fixed points:
Eo = (0,0), E\ = [(a - cI)/2b, 0] if CI < a, E2 = [0, (a - c2)/2b] if C2 < a,
which will be called boundary equilibria, and the fixed point E* = (qj, qi), with

provided that

(15)

!
2C\ - C2 < a,

2C2 - CI < a.
(16)

It is easy to verify that the equilibrium point E*, when it exists, is the unique Nash
equilibrium, located at the intersection of the two reaction curves given by the
two straight lines which represent the locus ofpoints ofvanishing marginal profits
(10). In the following we shall assume that (16) are satisfied, so that the Nash
equilibrium E* exists.

An important feature of the map (12) is that it can generate unbounded
(i.e., divergent) trajectories (this can also be expressed by saying that (12)
has an attracting set at infinite distance). In fact, unbounded (and negative)
trajectories are obtained if the initial condition (13) is taken sufficiently far
from the origin, i.e., in a suitable neighborhood of infinity, since if qiO >
(I + a - Ci)/bvi, i = 1,2, then the first iterate of (12) gives negative values
q; < 0, i = 1,2, so that the successive iterates give negative and decreasing
values because q; = qi + Viqi (a - Ci - 2bqi - bqj) < qi being (a - Ci) > 0
if (16) hold. This implies that any attractor at finite distance cannot be globally
attracting in 1R~, since its basin of attraction cannot extend out of the rectangle
[0, (I +a - cI)/bvIl x [0, (I +a - C2)/bv2].

The study ofthe local stability of the fixed points is based on the localization,
on the complex plane, of the eigenvalues of the Jacobian matrix of (12)

[
I + vI(a - C\ - 4bq\ - bq2) -v\bq\ ]

J(q\,q2) = .
-v2bq2 1+ v2(a - C2 - bq\ - 4bq2)

(17)
It is easy to prove that whenever the equilibrium E* exists (i.e., (16) are satisfied),
the boundary fixed points Ei , i = 0, 1,2, are unstable. In fact, at Eo the Jacobian
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(18)
[

1+VI(a-Cd 0 ]
J(O, 0) = ,o 1+ V2(a - C2)

whose eigenvalues, given by the diagonal entries, are greater than 1 if CI < a and
C2 < a. Thus Eo is a repelling node with eigendirections along the coordinate
axes. At E I the Jacobian matrix becomes a triangular matrix

J (a - CI ,0) = [1 - vI(a - CI) -(vi/2)(a - CI) ] (19)
2b 0 1+ (v2/2)(a - 2C2 + Cl)

whose eigenvalues, given by the diagonal entries, are AI = 1 - VI (a - CI), with
eigenvector r~l) = (1,0) along the ql-axis, and A2 = 1 + (v2/2)(a - 2C2 + CI),

with eigenvector r~2) = (1,2[1 - VI (a - CI))/VI (a - CI». When (16) are satisfied
EI is a saddle point, with local stable manifold along the ql-axis and the unstable
one tangent to r~2), if

2
VI<--,

a -CI
(20)

otherwise EI is an unstable node. The bifurcation occurring at VI =2/(a - CI) is
a flip bifurcation at which E I from attracting becomes repelling along the qI-axis,
on which a saddle cycle of period 2 appears.

The same arguments hold for the other boundary fixed point E2. It is a saddle,
with local stable manifold along the q2-axis and the unstable one tangent to r~2) =
(1,2[1 - v2(a - C2)]/v2(a - C2», if

2
V2 < --,

a - C2
(21)

(22)

otherwise it is an unstable node. Also, in this case, the bifurcation that transforms
the saddle into the repelling node is a flip bifurcation creating a 2-cycle saddle on
the q2-axis.

To study the local stability of the Nash equilibrium we consider the Jacobian
matrix at E*

J * * _ [ 1 - 2vlbq~ -vlbq~ ]
(ql' q2) - b * 1 2 b * .-V2 q2 - V2 q2

Its eigenvalues are real because the characteristic equation A2 - Tr A+ Det =
0, where Tr represents the trace and Det the determinant of (22), has positive
discriminant

T~ - 4Det = 4b2 [(vlq~ - v2q;)2 + VI V2q~q;] > O.

It is easy to realize that Ai < 1, i = 1, 2, since 1 - Tr + Det > 0 when
(16) hold, thus a sufficient condition for the local asymptotic stability of E* is
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Figure 1: The shaded area represents, in the plane ofspeeds ofadjustment (VI, V2), the region
of local asymptotic stability of the Nash equilibrium. The values of the other parameters
are CI = 3, C2 = 5, a = 10.

1 + Tr + Det > 0, which ensures Ai > -1, i = 1,2 (see, e.g., Gumowski and
Mira [9, p. 159]). This condition, which becomes

(23)

defines a region ofstability in the plane of the speeds ofadjustment (VI, V2) whose
shape is like the shaded area of Figure 1. This stability region is bounded by the
portion of hyperbola, with positive VI and V2, whose equation is given by the
vanishing of the left-hand side of (23). For values of (VI, V2) inside the stability
region the Nash equilibrium E* is a stable node, and the hyperbola represents a
bifurcation curve at which E* looses its stability through a period doubling (or
flip) bifurcation. This bifurcation curve intersects the axes VI and V2 in the points
AI and A2, respectively, whose coordinates are given by

and (
3 )A2 = 0, .

a + Cl - 2C2
(24)

From these results we can obtain information on the effects of the model's
parameters on the local stability of E*. For example, an increase of the speeds
of adjustment, with the other parameters held fixed, has a destabilizing effect. In
fact, an increase of VI and/or V2, starting from a set of parameters which ensures
the local stability of the Nash equilibrium, can bring the point (VI, V2) out of the
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stability region, crossing the flip bifurcation curve. This destabilizing effect has
already been evidenced by many authors (see, e.g., Fisher [6] and Flam [7]).

Similar arguments apply if the parameters VI, V2, CI, C2 are fixed and the pa­
rametera, which represents the maximum price ofthe good produced, is increased.
In this case, the stability region becomes smaller, as can easily be deduced from
(24), and this can cause a loss of stability of E* when the moving boundary is
crossed by the point (VI, V2). An increase of the marginal cost CI, with C2 held
fixed, causes a displacement of the point Al to the right and of A2 downward. In­
stead, an increase of C2, with CI held fixed, causes a displacement of Al to the left
and of A2 upward. In both cases the effect on the local stability of E* depends on
the position ofthe point (VI, V2). In fact, if VI < V2, i.e., the point (VI, V2) is above
the diagonal VI = V2, an increase of CI can destabilize E*, whereas an increase of
C2 reinforces its stability. The situation is reversed if VI > V2.

From these arguments the combined effects due to simultaneous changes of
more parameters can be deduced. For example, if E* becomes unstable because of
a price increase (due to a shift of the demand curve), its stability can be regained
by a reduction of the speeds ofreaction, whereas an increase ofa marginal cost Ci

can be compensated for by a decrease ofthe corresponding Vi, i.e., in the presence
ofa high marginal cost stability is favored by a more prudent behavior (i.e., lower
reactivity to profit signals).

Another important property of the map (12) is that each coordinate axis qi =
0, i = 1,2, is trapping, that is, mapped into itself, since qi = 0 gives q; = 0
in (12). This means that starting from an initial condition on a coordinate axis
(monopoly case) the dynamics is confined in the same axis for each t, governed by
the restriction ofthe map T to that axis. Such a restriction is given by the following
one-dimensional map, obtained from (12) with qi = 0

qj = h(qj) = (1 + vj(a - Cj»qj - 2bvjqJ, j = 1,2, j # i. (25)

This map is conjugate to the standard logistic map

x = /LX (1 - x)

through the linear transformation

from which we obtain the relation

(26)

(27)

(28)

This means that the dynamics of (25) can be obtained from the well-known dy­
namics of(26). A briefdescription ofthe main features ofthe map (25) is given in
Appendix B, because the dynamic behavior ofthe restrictions of T to the invariant
axes plays an important role in the understanding of the global properties of the
duopoly model.
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4 Basin Boundaries and Their Bifurcations

In Section 3 we have shown that if the conditions (16) are satisfied then
the Nash equilibrium E* = (q;, qi) exists, and it is locally asymptotically
stable provided that (23) holds true. In this section we consider the question
of the stability extent of the Nash equilibrium, or of different bounded at­
tracting sets around it. In the following we call attractor at finite distance,
denoted by A, a bounded attracting set (which may be the Nash equilibrium
E*, a periodic cycle, or some more complex attractor around E*) in order to
distinguish it from the limit sets at infinite distance, i.e., the unbounded tra­
jectories, which represent exploding (or collapsing) evolutions of the duopoly
system. We denote by V(A) the basin of attraction of an attractor A, defined as
the open set of points (ql' q2) of the phase plane whose trajectories Tt (ql' q2)
have limit sets belonging to A as t --+ +00. We also denote by V(oo) the
basin of infinity, defined as the set of points which generate unbounded trajec­
tories. Let F be the boundary (or frontier) separating V(A) from V(oo). An
exact determination of F is the main goal of this section. Indeed, this bound­
ary may be rather complex, as evidenced by the numerical results shown in
Figure 2. In Figure 2(a) the attractor at finite distance is the Nash equilibrium
E*, and its basin of attraction is represented by the white area, whereas the grey­
shaded area represents the basin ofinfinity. Two typical trajectories are also shown
in Figure 2(a), one converging to E* and one divergent. Notice that in Figure
2(a) the adjustment process which starts from the grey region, and consequently
exhibits an irreversible departure from the Nash equilibrium, starts from an initial
production strategy which is closer to the Nash equilibrium than the convergentone,
a rather counterintuitive result. In the situation shown in Figure 2(a), the boundary
separating V(A) from V((0) has a fractal boundary, as will be explained below. In
Figure 2(b) the bounded attractor A is a chaotic set, with a multiply connected (or
connected with holes) basin of attraction. The same property can be expressed by
saying that V((0) is a nonconnected set, with nonconnected regions given by the
holes inside V(A) (see Mira et al. [12] or Mira et al. [13]). In this situation there
is a great uncertainty about the long-run behavior of a given adjustment process,
since a small change in the initial strategy of the game may cause a crossing
ofF.

4.1 Determination of the Basin Boundaries

TheboundaryF = 8V(A) = 8V(00) behaves as a repelling line for the points near
it, since it acts as a watershed for the trajectories of the map T. Points belonging
to F are mapped into F both under forward and backward iteration of T, that is,
the boundary is invariant for application of T and T- 1• More exactly T (F) ~
F, T- 1 (F) = F (see Mira et al. [12] and Mira and Rauzy [14]). This implies
that if a saddle point, or a saddle cycle, belongs to F, then F must also contain
all the preimages of such singularities, and it must also contain the whole stable
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(b)

o

VI ~ 0.4065 v, ~ 0.535 c, ~ 3 c, ~ 5 a ~ 10 b ~ 0.5
7

(a)
o

0 _

Figure 2: Numerical representation of the basins of attraction for the duopoly map. The
two figures are obtained by taking a grid of initial conditions (qlO, Q20) and generating, for
each of them, a numerically computed trajectory of the duopoly map. If the trajectory is
diverging (i.e., if it reaches large negative values) then a grey dot is painted in the point
corresponding to the initial condition, otherwise a white dot is painted. In Figure (a) the
white region represents the basin of attraction of the Nash equilibrium, which is the only
attractor at finite distance for that set of parameters. In this figure also the early points of
two typical trajectories, one convergent to E., denoted by lao, aj, ... }, and one divergent,
denoted by l.Bo, f31, ...},are represented. In Figure (b) the attractor at finite distance is given
by a chaotic attractor surrounding the unstable Nash equilibrium.

manifold WS (see Gumowski and Mira [9] and Mira et al. [13]). For example, the
saddle fixed points (or the saddle cycles, if (20) or (21) no longer hold) located
on the coordinate axes belong to F, and also the invariant coordinate axes, which
form the local stable manifold (or inset) of the saddles, are part of F.

Let us consider the two segments W j = [0, O~~ ], where O~~, j = 1, 2, is the

rank-l preimage of the origin computed according to the restriction (25), i.e.,

(j) 1+ vj (a - Cj )
0_ 1 = 2bv. ' j = 1,2. (29)

J

Instead, negatively divergent trajectories along the invariant axis qj are obtained
starting from an initial condition out of the segment W j' The segments WI and W2
on the two coordinate axes play an important role in the determination of :F. In
fact:

(a) from the computation of the eigenvalues of the cycles belonging to WI and W2
we have that the direction transverse to the coordinate axes is always repelling;
and

(b) a point (qlo, q2o) generates a divergent trajectory if qlo < 0 or q20 < O.
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From (a) and (b) it follows that WI and W2 belong to F, as well as their preimages
of any rank. From these arguments the following proposition can be stated, that
gives an exact determination ofF.

Proposition 4.1. Let WI = [0, o~~] and W2 = [0, o~~] be the segments ofthe

coordinate axes ql and q2, respectively, with o~~, j = 1, 2, defined in (29). Then

(30)

where T-n represents the set ofall the preimages ofrank-no

In order to compute the preimages in (30) let us consider a point P = (0, p) E

W2. Its preimages are the real solutions of the algebraic system obtained from (12)
with (q~, q;) = (0, p):

1
ql [1 + VI (a - CI) - 2bvlql - bVlq2] = 0,

(31)

(1 + V2(a - C2»q2 - 2bv2qi - bV2QlQ2 = p.

From the first of (31) we obtain ql =°or

(32)

which means that if the point P has preimages, then they must be located either
on the same invariant axis or on the line of (32). With Ql = 0 the second equation
becomes a second degree algebraic equation which has two distinct, coincident or
no real solutions if the discriminant

(33)

is positive, zero, or negative, respectively. A similar conclusion holds if (32) is
used to eliminate a state variable in the first equation of (31). From this we can
deduce that the point P can have no preimages or two preimages on the same axis
(which are the same obtained by the restriction (25) of T to the axis q2) or four
preimages, two on the same axis and two on the line of (32). This implies that the
set of the rank-I preimages of the Q2-axis belongs to the same axis and to the line
(32). Following the same arguments we can state that the other invariant axis, Ql,
has preimages on itself and on the line of equation

(34)

It is straightforward to see that the origin 0 =(0, 0) always has four preimages:
0 (0) (0 0) 0(1) (0_1 0) 0(2) (0 0_1) h 0-1' 1 2 ._1= , , _1= Ql ' , -1= ,Q2 ,wereqj ,)=, ,areglven
by (39), and
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8

o

o

VI = 0.24 v2 = 0.48 c i = 3 c2 = 5 a = 10 b = 0.5

12

Figure 3: With CI = 3, Cz = 5, a = 10, b = 0.5, VI = 0.24, Vz = 0.48, the boundary of
the basin of attraction of the Nash equilibrium £. is formed by the invariant axes, denoted
by WI and wz, and their rank-l preimages wt l and wi"'l. For this set of parameters the
boundary fixed point £1 is a saddle point with local stable manifold along the q\-axis, £z
is a repelling node with a saddle cycle of period two around it, since Vz > a!c2'

located at the intersection of the lines (32) and (34) (see Figure 3). In the situation
shown in Figure 3 the segments W2 and WI of the coordinate axes, together with
their rank-l preimages, belonging to the lines (32) and (34), and labeled by w21

and w11
, respectively, delimitate the quadrilateral region 0 o~l o~l o~l of the

strategy space (q1, q2) which is exactly the basin of attraction of E*.

These four sides, given by the segments 0 o~l and 0 o~l of the coordinate
axes and their rank-I preimages, constitute the whole boundary F because no
preimages of higher rank exist, since w~1 and w~1 belong to the region 20 of the
plane whose points (q;, q~) have no preimages, i.e., the fourth degree algebraic
system has no real solutions. This fact can be characterized through the study
of the critical curves of the noninvertible map (12) (some basic definitions and
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properties of the critical curves are given in Appendix A; see Mira et al. [13], for
a more complete treatment).

Since the map T is continuously differentiable, the critical curve LC_I is the
locus ofpoints in which the determinant of J(ql' q2), given in (17), vanishes, and
the critical curve L C, locus ofpoints having two coincident rank-I preimages, can
be obtained as the image, under T, of LC_I (see Appendix A). For the map (12~

LC_I is formed by the two branches ofanhyperbola, denoted by LC~? and LC~I
in Figure 4(a) (its equation is given in Appendix A). Thus also LC = T(LC_I)
consists of two branches, Lc(a) = T(LC~?) and LC(b) = T(LC~?), represented
by the thicker curves ofFigure 4(a). These two branches ofLC separate the phase
plane into three regions, denoted by Zo, Z2, and Z4, whose points have 0, 2, and 4
distinct rank-I preimages, respectively. It can be noticed that, as already stressed
above, the origin always belongs to the region Z4. It can also be noticed that the
line LC_I intersects the axis qj, j = 1,2, in correspondence of the critical point
C-I of the restriction (25) of T to that axis, whose coordinate is given by (36), and
that the line LC intersects each axis in correspondence of the critical values of
(25), given by (41).

4.2 Contact Bifurcations

In order to understand how complex basin boundaries, like those shown in Figure 2,
are obtained, we start from a situation in which F has a much simpler shape,
and then we study the sequence of bifurcations that cause the main qualitative
changes in the structure of the basin boundaries as some parameter is varied. Such
bifurcations, typical of noninvertible maps, can be characterized by contacts of
the basin boundaries with the critical curves (see Mira et a1. [13], and references
therein).

The simple shape that the frontier F assumes for values ofthe parameters like
those used in figure 4(a), where the basin ofattraction of E* is a simply connected
set, is due to the fact that the preimages of the invariant axes, denoted in Figure 4(a)
by wi l

, i = 1,2, are entirely included inside the region Zo, so that no preimages of
higher rank exist. The situation is different when the values of the parameters are
such that some portions of these lines belong to the regions Z2 or Z4. In this case,
preimages of higher order of the invariant coordinate axes are obtained, which
form new arcs of the frontier F, so that its shape becomes more complex. The
switch between these two qualitatively different situations can be obtained by a
continuous variation of some parameters of the model, and determines a global
(or nonclassical) bifurcation (see Mira et al. [13]). The occurrence of these global
bifurcations can be revealed by the study of critical curves. In order to illustrate
this, in the rest of this section we fix the marginal costs and the parameters of
the demand function at the same values as those used to obtain figures 2, 3, i.e.,
CI = 3, C2 = 5, a = 10, b = i, and we vary the values of the speeds of
adjustment VI and V2. However, similar bifurcation sequences can be obtained
with fixed values of VI and V2 and changing the other parameters. For example,
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Figure 4: Graphical representation ofthe basin ofattraction of the Nash equilibrium (white
region) and the basin D (00) ofunbounded trajectories (grey region) together with the basic
critical curve LC_1, formed by the two branches of an equilateral hyperbola and the critical
curve L C (represented by heavy lines). The values of parameters CI , C2, a, b are the same
as in Figure 2, whereas in Figure (a) VI = 0.24 and V2 = 0.55 , in Figure (b) VI = 0.24
and V2 = 0.596 (just after the contact of LC with wi l

).
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the same effect of increasing VI can be obtained by decreasing the corresponding
marginal cost CI or by increasing the marginal cost C2 of the other finn, whereas a
simultaneous increase ofboth VI and V2 is equivalent to a decrease ofthe parameter
a in the demand function.

If, starting from the parameters' values used to obtain the simple basin struc­
ture of Figure 4(a), the parameter V2 is increased, the two branches of the critical
curve LC move upward. The first global bifurcation of the basin occurs when
the branch of LC, which separates the regions Zo and Z2, becomes tangent to
F, that is, to one of the lines (34) or (32). In Figure 4(b) it can be seen that just
after the bifurcation value of V2, at which LC(b) is tangent to the line WI I of
(34), a portion of D(oo), say Ho (bounded by the segment h of wl l and LC)
that before the bifurcation was in region Zo, enters into Z2. The points belong­
ing to Ho have two distinct preimages, located at opposite sides with respect to
the line LC_I, with the exception of the points of the curve LC(b) inside D(oo)
whose preimages, according to the definition of LC, merge on Lc?:l. Since Ho
is part of D(oo) its preimages also belong to D(oo). The locus of the rank-I
preimages of Ho, bounded by the two preimages of h, is composed by two areas
joining along LC_ I and forms a hole (or lake) of D(oo) nested inside D(E*).
This is the largest hole appearing in Figure 4(b), and is called the main hole.
It lies entirely inside region Z2, hence it has two preimages, which are smaller
holes bounded by preimages of rank 3 of the ql-axis. Even these are both in­
side Z2. So each of them has two further preimages inside Z2, and so on. Now
the boundary F is given by the union of an external part, formed by the co­
ordinate axes and their rank-I preimages (34) and (32), and the boundaries of
the holes, which are sets of preimages of higher rank of the ql -axis. Thus the
global bifurcation just described transforms a simply connected basin into a mul­
tiply connected one, with a countable infinity of holes, called an arborescent
sequence ofholes, inside it (see Mira et al. [12] for a rigorous treatment of this
type of global bifurcation and Abraham et al. [1] for a simpler and charming
exposition).

As V2 is further increased LC continues to move upward and the holes become
larger. This fact causes a sort of predictability loss, since a greater uncertainty is
obtained with respect to the destiny of games starting from an initial strategy
falling in zone of the holes. If V2 is further increased a second global bifurcation
occurs when LC crosses the q2-axis at o~l. This happens when condition (40)
holds, that is, V2 = 3/(a - C2), as in Figure 5(a). After this bifurcation all the
holes reach the coordinate axis q2, and the infinite contact zones are the intervals
of divergence of the restriction (25), which are located around the critical point
(36) and all its preimages under (25) (compare Figure 5(a) with Figure Bl(b)).
After this bifurcation the basin D(E*) becomes simply connected again, but its
boundary F now has a fractal structure, since its shape, formed by infinitely many
peninsulas, have a self-similarity property.

The sequence of pictures shown in Figure 5 is obtained with VI = 0.24 (as
in Figure 4) and increasing values of V2. Along this sequence the point (VI, V2)
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Figure 5: Sequence of numerical simulations of the duopoly map, obtained with fixed
parameters Cj = 3, C2 = 5, a = 10, b = 0.5, VI = 0.24, and increasing values of V2.

reaches, in the plane of adjustment speeds, the line offlip bifurcations. When this
line is crossed the Nash equilibrium E* becomes a repelling saddle point, and
an attracting cycle of period 2, say C2, is created near it (as in Figure 5(b». The
flip bifurcation opens a cascade of period doublings, that creates a sequence of
attracting cycles ofperiod 2n followed by the creation ofchaotic attractors, which
may be cyclic chaotic areas, like the 2-cyclic one shown in Figure 5(c), or a unique
chaotic area like that ofFigure 5(d).

If V2 is further increased, new holes, like that denoted by K in Figure 5(c),
appear. These are formed by the rank-I preimages of portions of D((0) which
cross Lc(a) passing from 22 to 2 4, like those evidenced in Figures 5(c,d). Even
in this case, the holes are created after contact between LC and:F, but, differently
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from the hole H_ I , the hole K does not generate an arborescent sequence ofholes
since it has no preimages, belonging entirely to the region Zoo

In Figure 5(d) the chaotic area collides with the boundary of V (00). This
contact bifurcation is known asfinal bifurcation (Mira et al. [13] and Abraham et al.
[1D, and causes the destruction of the attractor at finite distance. After this contact
bifurcation the generic initial strategy generates an unbounded trajectory, that is,
the adjustment process is not able to approach the Nash equilibrium, independently
of the initial strategy of the duopoly game.

It is worth noting that, in general, there are no relations between the bifurca­
tions which change the qualitative properties ofthe basins and those which change
the qualitative properties of the attractor at finite distance. In other words, we may
have a simple attractor, like a fixed point or a cycle, with a very complex basin
structure, or a complex attractor with a simple basin. Both these sequences of
bifurcations, obtained by increasing the speeds of adjustment Vi, cause a loss of
predictability. After the local bifurcations the myopic duopoly game no longer con­
verges to the global optimal strategy, represented by the Nash equilibrium E*, and
even ifthe game starts from an initial strategy very close to E* the duopoly system
goes toward a different attractor, which may be periodic or aperiodic. These bifur­
cations cause, in general, a loss ofpredictability about the asymptotic behavior of
the duopoly system: for example, in the sequence shown in Figure 5 the situation
of convergence to the unique Nash equilibrium, as in the static Coumot game, is
replaced by asymptotic convergence to a periodic cycle, with predictable output
levels, and then by a cyclic behavior with output levels that are not well predictable
since the fall inside cyclic chaotic areas and, finally, a situation oferratic behavior,
inside a large area of the strategy space, with no apparent periodicity. Instead, the
global bifurcations of the basin boundaries cause an increasing uncertainty with
respect to the destiny of a duopoly game starting from a given initial strategy,
since a small change in the initial condition of the duopoly, or a small exogenous
shock during the adjustment process, may cause a great modification to the long­
run behavior of the system. Similar bifurcation sequences can also be obtained by
increasing the parameter VI by a fixed value of V2. In this case, a contact between
LC and wi l , rank-l preimage of the q2-axis, gives the first bifurcation that trans­
forms the basin V(A) from a simply connected into a multiply connected set, with
holes near the ql-axis. Situations with values of VI and V2 both near the critical
values Vi = 3j(a - Ci), i = 1,2, can give complex basin boundaries near both the
coordinate axes, with two arborescent sequences of holes, generated by contacts
of LC with the lines (32) and (34). In any case, the computation of the preimages
ofthe coordinate axes allows us to obtain, according to (30), the exact delimitation
of the basin boundary also in these complex situations. For example, in Figure 6
the preimages of the ql-axis, up to rank-6, are represented for the same set of
parameters as that used in Figure 2(b). It can be noticed that some preimages of
rank 5 and 6 bound holes that enter the region Z4, thus giving a faster exponential
growth of the number of higher-order preimages. This is the cause for the greater
complexity of the basin boundary which is clearly visible in Figure 2(b).
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Figure 6: Preimages of the ql-axis, up to rank 6, obtained with the same set of parameters
as those used in Figure 2b.

5 Conclusions

In this paper we have proposed a dynamic Cournot duopoly model where the
competing firms do not have a complete knowledge ofthe demand function. Owing
to this lack of information they behave as local (or myopic) profit maximizers,
following an adjustment process based on local estimates of marginal profit. If
the marginal costs of both producers are not too high, a noncooperative Nash
equilibrium exists, and ifthe behavior ofthe firms is characterized by relatively low
speeds ofadjustment such an equilibrium solution is locally asymptotically stable,
that is, the local adjustment process converges to the unique Nash equilibrium
provided that the duopoly game starts from an initial production strategy inside a
well-defined bounded region around the Nash equilibrium.

For higher values of speeds of adjustment the Nash equilibrium becomes un­
stable and, through period doubling bifurcations, more complex bounded attractors
are created around it, which may be periodic cycles or chaotic sets. When the
dynamics of the duopoly system become so complicated, the assumption that pro­
ducers are unable to gain a complete understanding of the structure of the market,
and consequently behave myopically, would be even more justified. This adjust­
ment process can also generate unbounded trajectories. Ofcourse, the occurrence
ofdivergent sequences ofproduction strategies is a very unrealistic evolution ofthe
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duopoly game, that simply means that the bounded rationality adjustment mecha­
nism, based on the profit gradients, is completely inadequate to reach optimal, or
quasi-optimal, production strategies.

The main result ofthis paper is the exactdetermination ofthe basinofattraction
ofthe attracting sets, wether it be the Nash equilibrium or a more complex attractor
around it. This basin of attraction can have a simple shape, but it can also assume,
after some global bifurcations, a very complex structure, which causes a sort of
indeterminacy about the destiny of the dynamic game starting from a given initial
strategy. Ingeneral, an increase in the firms' reactivity to profit signals, measured by
the speeds ofadjustment, can have two different effects on the dynamical properties
ofthe duopoly model. The first one, already studied in the literature, is given by the
destabilization ofthe Nash equilibrium, as discussed above. The second effect, that
as far as we know has not yet been studied in the literature, is given by qualitative
changes in the structure of the basins of attraction, which can only be revealed by
an analysis of the global properties of the nonlinear dynamical system. An exact
delimitation of the basin of an attractor of a nonlinear dynamical system is very
important in applied models since it gives quantitative information on the possible
effects ofexogenous shocks offinite amplitude on the evolutionofthe system. Thus
the determination of the global bifurcations, that cause qualitative modifications
of the structure of the basins, is important to characterize the robustness of an
attractor with respect to external disturbances. In this paper such bifurcations have
been studied indetail using critical curves, a relatively new and powerful tool for the
study of the global behavior of noninvertible two-dimensional discrete dynamical
systems. In the model studied in this paper the main qualitative changes of the
global structure ofthe basins, that for nonlinear maps are generally studied only by
numerical methods, can be obtained analytically, through the exact determination
ofthe curves bounding the basin and the knowledge ofthe critical curves. For this
reason the model studied in this paper may also be considered as a pedagogical
example for the study of a nonlinear discrete dynamical system of the plane.

Even ifin this paper the analysis is limited to the duopoly case with a particular
choice ofdemand and cost functions, we believe that the main conclusions on the
attractors and on the structure of their basins of attraction are indicative of what
may happen in more general models, and can be seen as a starting point for the
study of similar phenomena in oligopoly models with more than two firms and
with more general demand and cost functions.

Appendices

A. Critical Curves

In this appendix we give some basic definitions and properties, and a minimal
vocabulary, about the theory ofnoninvertible maps ofthe plane and the method of
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critical curves. We also give the analytical expression of the basic critical curve
LC_I of the map (12).

A two-dimensional map can be written in the general form

X' = T(x) = (gl(X), g2(X)), (35)

where x =(XI, X2) E ]R2 is the phase variable, gl and g2 are real valued continu­
ous functions and x' = (x;, x;) is called a rank-I image of x under T. The point
Xt = yt(x), tEN, is called the image (or forward iterate) ofrank-t of the point
x, and the sequence {xt } of all these images is the trajectory generated by the
initial condition x (or Xo, since TO is identified with the identity map). The fact
that the map T is single valued does not imply the existence and uniqueness of
its inverse T- I • Indeed, for a given x' the rank-I preimage (or backward iterate)
x = T-I(X/) may not exist or it may be multivalued. In such cases T is said to
be a noninvertible map. The duopoly model (12) belongs to this class, because if
in (12) the point (ql' q2) is computed in terms of a given (q;, q2) a fourth-degree
algebraic system is obtained, that can have four, two, or no solutions. As the point
(q;, q2) varies in the plane ]R2 the number of solutions, i.e., the number of its
real rank-I preimages, can change. Generally, pairs of real preimages appear or
disappear as the point (q;, q2) crosses the boundary separating regions character­
ized by a different number ofpreimages. Such boundaries are characterized by the
presence of two coincident (merging) preimages. This leads to the definition of
the critical curves, one of the distinguishing features of noninvertible maps. The
critical curve of rank-I, denoted by LC, is defined as the locus of points having
two, or more, coincident rank-I preimages, located on a set called LC_I. LC is
the two-dimensional generalization of the notion ofcritical value (local minimum
or maximum value) of a one-dimensional map, and LC_I is the generalization of
the notion of the critical point (local extremum point). Arcs of LC separate the
regions of the plane characterized by a different number of real preimages.

When in (35) gl and g2 are continuously differentiable functions, LC_I is
generally given by the locus ofpoints where the Jacobian determinantofT vanishes
(i.e., the points where T is not locally invertible):

and LC is the rank-l image of LC_I under T, i.e., LC = T(LC_ I).
For the map (12) studied in this paper, from the expression of J given in (17),

the condition det J = 0 becomes

where

i=I,2, j#i,
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and

fJ = (1 + v)(a - c))bv))(1 + v2(a - C2)bv2)
4b2v) V2 .

This is an hyperbola in the plane (ql' q2) with symmetry center in the point

«2C¥2 - c¥))/3, (2c¥) - c¥2)/3) and asymptotes ofangular coefficients (-2 ± J3).
Thus LC_) is fonned by two branches, denoted by Lc~l and Lc~l in Sec­
tion 4. This implies also that LC is the union of two branches, denoted by
Lc(a) = T(LC~l) and LC(b) = T(LC~l). Each branch of the critical curve
LC separates the phase plane of T into regions whose points possess the same
number of distinct rank-l preimages. In the case of the map (12) LC(b) separates
the region Zo, whose points have no preimages, from the region Z2, whose points
have two distinct rank-I preimages, and Lc(a) separates the region Z2 from Z4,
whose points have four distinct preimages. In order to study the action of the mul­
tivalued inverse relation T-) it is useful to consider a region Zk of the phase plane
as the superposition of k sheets, each associated with a different inverse. Such a
representation is known as/oliation of the plane (see Mira et al. [13]). Different
sheets are connected by folds joining two sheets, and the projections of such folds
on the phase plane are arcs of LC. The foliation associated with the map (12) is
qualitatively represented in Figure 7. It can be noticed that the cusp point of LC
is characterized by three merging preimages at the junction of two folds.

B. Dynamics on the Invariant Axes

(36)j = 1,2,

In the following we recall some of the properties of the dynamic behavior of
the map (25). Such properties are well known since such a map is conjugate to the
standard logistic map x' = lix(1 - x) through the transfonnation (27).

The map (25) is a unimodal map with the unique critical point C_I (see
Figure 8(a) of coordinate

L) l+vj(a-cj)
qj = 4bv· '

]

(conjugate to the critical point x = ! of (26)) and two fixed points 0 and Ej of
coordinates

o Ej _ a - Cj (37)
qj = 0, qj - ---:u;-' j = 1,2,

(conjugate to the fixed points x =°and x = (1-1/Ii), respectively) corresponding
to the boundary fixed points of the duopoly map T. The fixed point 0 is always
repelling for (25), whereas Ej is attracting for°< Vj (a - Cj) < 2. When

vj(a-cj)=2 (38)

a flip bifurcation occurs which starts the well-known Feigenbaum (or Myrberg)
cascade of period doubling bifurcations leading to the chaotic behavior of (25).
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Figure 7: Qualitative graphical representation of the foliation associated with the fourth
degree noninvertible map (12). The projections ofthe folds joining two superimposed sheets
are the branches ofthe critical curve LC. The arrows show the relation between the foliation
and the k distinct rank-one preimages of a point belonging to a region Zk.

Of course, the bifurcation occurring at (38) corresponds to the flip bifurcation of
the map T described above, which transforms the saddle point Ej of T into a
repelling node. As vj is further increased, or Cj decreased, cycles of (25) of any
order are created: every attracting cycle of (25) corresponds to a saddle cycle of
T, located on the line qi = 0, with the attracting branch along the invariant axis,
and every repelling cycle of (25) corresponds to a repelling node cycle for T. For
any given value of vj(a - Cj) E (2,3) we can have only one attractor, that may be
a cycle or a cyclic-invariant chaotic interval (as for the standard logistic (26) with
JL E (3,4» whose basin ofattraction is bounded by the unstable fixed point 0 and
its preimage 0 ~ l' of coordinate

0_1 1+ Vj(a - Cj) (39)
qj = 2bvj

(conjugate to the point x = I of the standard logistic). Any trajectory of (25)

starting from an initial point taken out of the interval [0, l;-l] is divergent toward

-00. At

Vj(a - Cj) = 3 (40)

the whole interval [0, q~-I] is an invariant chaotic interval. For vj(a - Cj) > 3,

a'l in Figure 8(b), the generic trajectory of(25) is divergent (see, e.g., Devaney, [4,
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Figure 8: Graph of the map (25), conjugate to the logistic map (26). In (a) vj(a - Cj) < 3.
In this case qj < q~-I; hence all points inside I = [0. q~-I] remain inside I under iteration
of (25). In (b) vj(a - Cj) > 3. In this case qj > q~-l and an interval 10 exists around qj
whose points have images out of I, so that their trajectories are divergent. The preimages
of 10 are two smaller intervals, denoted in figure by I~l and I~l' whose points escape
interval I after two iterations; these two intervals have four intervals as preimages, etc. The
union of all the preimages, of any rank, of 10 , is an open and dense set on I whose points
generate unbounded and negative trajectories. Its complement in I has zero measure and is
homeomorphic to a Cantor set.

p. 34]). This final bifurcation occurring when (40) holds, is characterized by the
collision (or merging) of the critical value c, whose coordinate

[ 1 +v·(a _c·)]2
qC = J J

J 8bvj

is given by the image of the critical point C-h with the basin boundary at q;-l, In
fact, q;-l = qf = 4/2bvj when (40) holds.
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