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Basin boundaries and focal points in a map coming
from Bairstow’s method
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This paper is devoted to the study of the global dynamical properties of a two-dimensional
noninvertible map, with a denominator which can vanish, obtained by applying Bairstow’s method
to a cubic polynomial. It is shown that the complicated structure of the basins of attraction of the
fixed points is due to the existence of singularities such as sets of nondefinition, focal points, and
prefocal curves, which are specific to maps with a vanishing denominator, and have been recently
introduced in the literature. Some global bifurcations that change the qualitative structure of the
basin boundaries, are explained in terms of contacts among these singularities. The techniques used
in this paper put in evidence some new dynamic behaviors and bifurcations, which are peculiar of
maps with denominator; hence they can be applied to the analysis of other classes of maps coming
from iterative algorithms~based on Newton’s method, or others!. © 1999 American Institute of
Physics.@S1054-1500~99!02202-8#
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We consider a class of two-dimensional noninvertible
maps, characterized by the existence of a vanishing de
nominator, so that the iterative process is not defined in a
zero-measure subset of the plane. This class of maps
obtained by the application of the Bairstow’s method„an
iterative numerical algorithm to find roots of polynomi-
als… to a cubic equation. The study of the two-dimensional
maps reveals that the choice of the initial point of the
iterative process is crucial for the convergence, since very
complex basins of attraction are obtained. We explain the
structure of the basin boundaries and the global bifurca-
tions which cause their qualitative changes by using con
cepts and techniques which have been recently propose
for the study of the global properties of maps with a van-
ishing denominator.

I. INTRODUCTION

The Bairstow’s method is an iterative numerical alg
rithm to find roots of polynomials with real coefficients, pr
posed by Bairstow in 1914.1 This numerical method, which
involves only real arithmetic, is based on the factorization
the polynomials into products of quadratic functions, who
coefficients are the roots of algebraic equations. Applicat
of the iterative Newton’s method to find such roots gives r
to a two-dimensional rational map, whose fixed points cor-
responds to the desired coefficients of the quadratic fact
These fixed points are locally attracting, i.e., the iteration

a!Corresponding author.
3671054-1500/99/9(2)/367/14/$15.00
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the two-dimensional map converge to a fixed point provid
that the initial condition is sufficiently close to it, but ther
are no general results on their global basins of attract
Thus the main problem is to obtain the boundaries of
basins of the fixed points, and to study their qualitati
changes~i.e., their bifurcations! as the coefficients of the
polynomial vary.

The geometric features and dynamic behavior of a tw
dimensional map coming from Bairstow’s method a
strongly influenced by the following two general propertie
~i! it is a noninvertible map;~ii ! it is a fractional rational map
with vanishing denominator. From~ii ! it follows that there is
a subset of the plane where the map is not defined,
calledsingular setin Billings and Curry,2 and such a subse
may include points in which also a numerator vanishes,
that the map takes the form 0/0, which are candidate to
focal points, following the terminology introduced by Bisch
Gardini, and Mira.3–6 Some dynamical effects of these si
gularities, specific to maps with a vanishing denominat
have been recently investigated~see Bischi, Gardini, and
Mira3 and references therein! and such results can be us
fully applied in order to study the structure of the bas
boundaries, as well as their bifurcations, for the maps co
ing from Bairstow’s method.

As a prototype of this class of maps we shall consid
the one obtained by applying Bairstow’s method to the o
parameter family of cubic polynomialsPa(x)5x3

1(a21)x2a. The factorization Pa(x)5(x21ux1v)(x
2u) occurs if and only ifu and v are fixed points of the
© 1999 American Institute of Physics
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two-dimensional mapTa :(u,v)→(u8,v8) given by ~see,
e.g., Billings and Curry2!:

Ta :H u85
u31u~v2a11!1a

2u21v

v85
v~u21a21!12au

2u21v
.

We have chosen this family for two reasons: It is the si
plest map coming from the application of Bairstow’s meth
and its dynamical properties have already been investig
by many authors~see the works of Boyd,7 Blish and Curry,8

Billings, and Curry,2 Billings, Curry, and Phipps,9 Fiedler,10

Blish,11 Curry, Garnet, and Sullivan12!. However, the global
structure of the basins of attraction of the fixed points of
mapTa is still an open problem, and their study is of intere
both from the point of view of the application of the nume
cal method, since a proper choice of the initial condition
often the most challenging part of the numerical method,
from the point of view of the new and rich dynamical pro
erties of the two-dimensional maps obtained. Particu
structures and bifurcations of the basin of the fixed points
Ta have been already evidenced in Billings and Curry,2 and
Billings, Curry, and Phipps,9 where the existence of invarian
lines, which may include infinitely many repelling cycles,
shown, and the importance of the presence of the singula
is stressed. However, the basin structures are not only re
to such sets. The main purpose of the present work is
show how theglobal structure of the basins, as well as the
main bifurcations, are related to the focal points of the m
and to the corresponding prefocal sets~a definition of these
terms is given in the next section!.

The plan of the work is as follows. In Sec. II we briefl
deduce the two-dimensional map by the application of
Bairstow’s method to a cubic polynomial and then we g
some basic properties, taken from the existing literature
the Bairstow’s method. Then we give a short review of so
recent definitions and results concerning the maps wit
vanishing denominator, in particular the definitions and
geometrical properties of the concepts of focal point and p
focal curve are given in Subsection II B, and in Subsect
II C these definitions are applied to stress some propertie
the inverse maps. In Sec. III the structure of the basins of
fixed points is examined in detail in different ranges of t
parametera. The main bifurcations are explained in terms
contacts of the focal points, prefocal curves, and the sing
set, and many numerical explorations are used to illust
the role of these new kinds of singularities that characte
the global dynamical properties of maps with a vanish
denominator.

II. SOME GENERAL PROPERTIES OF THE TWO-
DIMENSIONAL MAP

A. Definitions and basic properties

Bairstow’s method is a well-known iterative techniqu
to determine a real quadratic factor of a polynomialP(x)
with real coefficients. DividingP(x) by a quadratic factor
-
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(x21ux1v) we get P(x)5(x21ux1v)Q(x)1F(u,v)x
1G(u,v). We then seek for a factor ofP(x) by using New-
ton’s method to solve the algebraic system

H F~u,v !50
G~u,v !50,

which gives rise to the two-dimensional map (u8,v8)
5Ba(u,v) where

Ba :Fu8
v8G5Fuv G2F Fu~u,v ! Fv~u,v !

Gu~u,v ! Gv~u,v !
G21F F~u,v !

G~u,v !G .
After reordering, the mapBa reads as

Ba :H u85H~u,v !5
N1~u,v !

D~u,v !

v85K~u,v !5
N2~u,v !

D~u,v !
,

where both the components of the mapBa , H(u,v), and
K(u,v) are fractional rational functions with a denominat
that vanishes in the points of a one-dimensional subset of
plane, given by a set of algebraic curves that will be cal
singular set, and denoted byds :

ds5$~u,v !PR2:D~u,v !50%.

Let us briefly recall an important property associated w
such kind of maps, which was proven by Boyd7 ~see also
Blish and Curry8!:

Property 1. Let j be a real root of P(x). Then the line
(Lj) in the (u,v) plane of equationv1ju1j250 is invari-
ant for Ba . The restriction of Ba to the line(Lj) is a one-
dimensional map associated with the Newton-function
plied to the reduced polynomial Pj(x)5P(x)/(x2j).

We remark that, following the existing literature on th
subject, the terminvariant is used here as synonymous
trapping, i.e.,Ba(Lj)#(Lj), differently from the definition
adopted in several texts on dynamics, where invariant me
exactly mapped into itself,Ba(Lj)[(Lj).

In this paper we shall focus our attention on a particu
map, coming from Bairstow’s method applied to the cub
polynomial Pa(x)5x31(a21)x2a. The factorization
Pa(x)5(x21ux1v)(x2u) occurs if and only ifu andv are
solutions of the algebraic system

HF~u,v !5u22v1a2150
G~u,v !5uv2a50,

and thus if and only ifu and v are fixed points of the fol-
lowing two-dimensional mapTa(u,v)5(H(u,v),K(u,v))
given by

Ta :H u85
u31u~v2a11!1a

2u21v

v85
v~u21a21!12au

2u21v
.

~1!

The domain of definition of the functionTa is given by
R2\ds , whereds is the singular set, formed by the points
the parabola

ds5$~u,v !PR2:v522u2%. ~2!
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So the iteration ofTa is well-defined provided that the initia
condition belongs to the setE given by

E5R2\L, ~3!

whereL is the union of the preimages of any rank of t
singular setds

L5 ø
k50

`

Ta
2k~ds!.

In fact, only the points belonging to the setE generate non-
interrupted trajectories

t~u0 ,v0!5$~un ,vn!5Ta
n~u0 ,v0!,n>0% ~4!

by the iteration of the mapTa :E→E. We notice that, being
the singular setds a curve ofR2, the setL of points excluded
from the phase space of the recurrence has zero Lebe
measure inR2.

Several properties of the mapTa have been already stud
ied in the literature. For example, in Blish and Curry8 it is
shown that:

Property 2. Let R5(u* ,v* ) be a fixed point of Ta .
Then the line u5u* is mapped by Ta into the fixed point R.

Really, a more correct formulation of Property 2 shou
say thatTa(u* ,v)5(u* ,v* ) for any (u* ,v) in which the
map is defined, since the lineu5u* always intersects the se
of non definition ofTa , given by parabola~2!.

In Blish and Curry8 it is also shown that fora,1/4 the
mapTa has three distinct fixed points~associated with three
quadratic factors forPa(x)!, given by

R15~u1* ,v1* !5~1,a!, R25~u2* ,u3* !,
~5!

R35~u3* ,u2* !,

where

u2* 5
211A124a

2
, u3* 5

212A124a

2
~6!

are the real roots of the quadratic equationu21u1a50.
From Property 1 we deduce that fora,1/4 three invari-

ant lines exist, sayLi , i 51,2,3. Each invariant lineLi con-
nects two fixed points, beingRi the excluded one. LineL1 of
equation

u1v1150 ~7!

is invariant also in the rangea.1/4, when only the fixed
point R1 exists. The equations of the other two invaria
lines Li , i 51,2, existing fora,1/4, are

u5a1l i~v21!, i 52,3 ~8!

wherel25(a2u2* )/(12u3* ) andl35(a2u3* )/(12u2* ).
The Bairstow’s method is clearly a ‘‘local method

since convergence to a given fixed point is only ensured
initial conditions which are sufficiently close to it~and in
such a case the convergence is quadratic, because the
points are superstable!. But a global study of the asymptoti
behavior of the trajectories in Eq.~4!, as the initial condition
(u0 ,v0) varies in the plane, is still an open problem, stud
by many authors in the recent literature~see Boyd,7 Blish
and Curry,8 Billings and Curry,2 Billings, Curry, and
ue

t

r
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Phipps9!. Both from a theoretical and a practical point
view, it is important to obtain an estimate of the stabili
extent of the fixed points, i.e., a delimitation of their basi
of attraction, and to ascertain if sets of points exist that g
erate trajectories that do not converge to any fixed po
This requires an analysis of the global dynamical proper
of the two-dimensional map, i.e., an analysis which is n
limited to the study of its linear approximation. Furthermo
the global bifurcations determined by variations of the co
ficients of the polynomial, which are the real parameters
the map, should also be investigated. In the following
study the boundaries of the basins of the fixed points of
mapTa and how they change as the parametera varies.

We denote byB(A) the basin of attraction of a given
invariant setA, defined as the set of points whosev-limit set
belongs toA

B~A!5$~u,v !PEuv~u,v !#A%

@we recall that thev-limit set v(u,v) of a point (u,v) is the
limit set of its trajectoryt(u,v)#. Considering mapTa under
study, let us denote byB(Ri) the basin of attraction of the
fixed point Ri , i 51,2,3. Two ranges of parametera, with
different behavior of the map, have already been notic
a,1/4 anda.1/4.

• In the casea,1/4, when three fixed pointsRi , i
51,2,3, exist, it is possible that any point (u,v)PE
belongs to one of the basinsB(Ri). However, as al-
ready argued in Blish and Curry,8 there are regions o
‘‘uncertainty’’ with respect to the asymptotic behav
ior, i.e., regions in which, given an initial conditio
(u0 ,v0), it is difficult to decide toward which of the
three fixed points the iterations will converge. In fac
as we shall prove in the present paper, there exist s
eral regions in which the asymptotic behavior of t
trajectories is extremely sensitive with respect
changes, even very small, of the initial condition.
goal of the present work is to explain the structure
such regions, and how it is modified by changing t
value of the parametera.

• In the casea.1/4 only the fixed pointR1 exists and,
as already argued in Blish and Curry8 and Billings and
Curry,2 in order to get the basinB(R1) we have to
exclude fromE at least the invariant lineL1 as well as
all the points whose trajectory converges toward t
line, i.e., the stable set~or basin! B(L1) of L1 . The set
B(L1) may also be a ‘‘big’’ one, in a measure theo
retic sense. Indeed, as conjectured by Billings, Cur
and Phipps9 ~and we shall further motivate this conjec
ture! for 1

4,a,1 the basinB(L1) has positive Le-
besgue measure, while it turns into a set of zero L
besgue measure fora.1. Moreover, also in the cas
a.1/4 there is uncertainty with respect to th
asymptotic behavior in a wide region of the plan
where it is very difficult to predict whether a trajector
will converge to the fixed pointR1 or if it goes toL1

~convergence toL1 means that the Bairstow metho
fails!.
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As stated in the Introduction, in order to understand
qualitative structure of the basins of attraction, we sh
make use of the fact that the mapTa is noninvertible and tha
it has a vanishing denominator. We recall that a noninv
ible mapT:(x,y)→(x8,y8) is characterized by the fact tha
the rank-1 preimagesT21(x8,y8) of a given point (x8,y8),
may be more than one. This implies that the plane can
subdivided into regionsZk , k>0, whose points havek dis-
tinct rank-1 preimages. The global properties of noninve
ible maps of the plane have been mainly studied by
method of critical curves~see Gumowski and Mira,13 Mira
et al.,14 Abrahamet al.15! defined as the locus of points ha
ing two or more merging preimages, and usually loca
along the boundaries that separate different regionsZk . The
role of the critical curves is analogous to that of the lo
maximum and minimum values in one-dimensional non
vertible maps.

Instead, the global properties of two-dimensional ma
with denominator, recently considered in Bischi, Gardi
and Mira,3 can also be characterized by the presence of o
kinds of singularities, like the sets of vanishing denomina
~or singular sets!, the focal points, and the related prefoc
sets. Indeed, as we shall see below, both the regionsZk and
the properties of the basins of the mapTa are explained by
these latter kinds of singularities, specific to maps with
nominator.

B. Focal points and prefocal curves

Many global dynamical properties of two-dimension
maps can be explained by the analysis of new kinds of
gularities, such as the sets where a denominator of the
~or some of its inverses! vanishes, the points where the ma
~or some of its inverses! takes the form 0/0 in at least on
component, and the prefocal curves, whose definition is h
recalled from Bischi, Gardini, and Mira:3

Definition 1. Consider a two-dimensional map T.
point Q belonging to the set of non definitionds , is a focal
point if at least one component of the map T takes the f
0/0 in Q and there exist smooth simple arcsg(t), with
g(0)5Q, such thatlimt→0 T(g(t)) is finite. The set of all
such finite values, obtained by taking different arcsg(t)
through Q, is called prefocal setdQ .

In order to explain the role of afocal point and the
relatedprefocal setin the geometric and dynamic propertie
of the mapTa , we consider a smooth simple arcg transverse
to ds and look how it is transformed by the application of t
mapTa , i.e., what is the shape of its imageT(g). In doing
this we assume that the arcg is deprived of the point in
which it intersectsds . Let (u0 ,v0)5(u0 ,22u0

2)Pds be this
point and assume that in a neighborhood of (u0 ,v0)g is rep-
resented by the parametric equations

g~t!: H u~t!5u01j1t1j2t21¯

v~t!5v01h1t1h2t21¯

tÞ0. ~9!

The portion ofg in such a neighborhood can be seen
the union of two disjoint pieces, sayg5g2øg1 , whereg2
and g1 denote the portions ofg located on opposite side
with respect to the singular curveds , and are obtained from
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Eq. ~9! with t,0 andt.0, respectively. The closureg~t! is
such that g2(0)5g1(0)5(u0 ,v0). As (u0 ,v0)Pds we
have a vanishing denominator,D(u0 ,v0)50, and let us first
assume that the two numerators are different from ze
N1(u0 ,v0)Þ0 andN2(u0 ,v0)Þ0, then

lim
t→0

Ta~g~t!!5~`,`!,

where` means either1` or 2`. This means that the imag
Ta(g) is made up of two disjoint unbounded arcs asympto
to a line r (u0 ,v0) whose slope is given by the ratio

m~u0 ,v0!5
N2~u0 ,v0!

N1~u0 ,v0!
.

Different arcs through the same point are mapped into
ferent arcs asymptotic to the same line@see Fig. 1~a!#.

A different situation occurs if the point (u0 ,v0)Pds is
such that not only the denominator but also the numera
of the mapTa vanish in it, i.e.,

D~u0 ,v0!5N1~u0 ,v0!5N2~u0 ,v0!50, ~10!

because in this case the limits may be finite and the imag
an arcg may be a bounded arcTa(g).

It is easy to see that Eq.~10! always occurs in the poin

FIG. 1. Qualitative sketches that illustrate the geometric behavior of mapTa

and its inverses.
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Q15~1,22! ~11!

and, fora<1/4, also in points

Q25~u2* ,22u2*
2!, Q35~u3* ,22u3*

2!. ~12!

Then, let us consider the pointQ1Pds , and take the limits
which may be finite in both the components of the map, a
depend on the arcg:

lim
t→0

Ta~g~t!!5~ lim
t→0

H~g~t!!, lim
t→0

K~g~t!!!5~ug ,vg!,

~13!

where, by denotingN̄1,u5]N1 /]u(Q1) and analogously for
the other partial derivatives,

ug5
N1,uj11N1,vh1

Duj11Dvh1

, vg5
N2,uj11N2,vh1

Duj11Dvh1

. ~14!

The whole prefocal setdQ1
is given by the set of points

(ug ,vg) obtained on varying the slope of the arcg through
the pointQ1 . In this way we obtain a one-to-one correspo
dence between slopem5h1 /j1 of arcḡ in Q1 and point
(um ,vm) in which T(g) crossesdQ1

. The values of the limits
in Eq. ~13! are finite if the denominator in Eq.~14! is differ-
ent from zero, i.e., if the slopem5h1 /j1 of arcḡ in Q1 is
different from the slope of curveds in the same point, given
by 2D̄u /D̄v . The parametric equation of the prefocal s
dQ1

is given, as a function of the parameterm ~slope of the
arc! by the equations:

um5
N1,u1N1,vm

Du1Dvm
5

22a1m

41m
,

vm5
N2,u1N2,vm

Du1Dvm
5

2412a1ma

41m
,

and by eliminating the parameterm we get the equation o
the prefocal linedQ1

, given by:

dQ1
:v52u221a. ~15!

Some arcsg through the focal pointQ1 and their images
Ta(g) are qualitatively shown in Fig. 1~b!. However, the
reasons of the terms focal and prefocal becomes cle
when the geometric behavior of the inverse~s! of Ta is con-
sidered. In fact, it is plain that given a point (u,2u221a)
PdQ1

, with uÞ1, and an arch crossingdQ1
through it, at

least one of the inverses ofTa must have a rank-1 preimag
which is an arc throughQ1 , with slope inQ1 given by

m~u!5
24u122a

u21
. ~16!

In particular, if we consider the rank-1 preimage of an arh
crossingdQ1

in two points of abscissasup1
and up2

, as
shown in Fig. 1~c!, then at least one of the inverses ofTa

must have a rank-1 preimage which forms aloop throughQ1

where the two branches have slopesm(up1
) and m(up2

) in
Q1 .
d

-

t

er

For a,1/4, besidesQ1 the mapTa has two more focal
points, given in Eq.~12!. Repeating the procedure followe
above with the pointsQi5(ui* ,22ui*

2), i 52,3, we get the
parametric equations of the prefocal setsdQi

as a function of
the parameterm ~slope of the arc throughQi!:

um5
ui* ~m21!1122a

4ui* 1m
,

vm5
ui* ~4a242m!22a2m

4ui* 1m
,

and by eliminating the parameterm we get the equations o
the prefocal linesdQi

, i 52,3, given by:

dQi
:v52ui* u1~ui* 12a21!, i 52,3. ~17!

It is plain that the geometric properties of the images of a
through each focal pointQi , as well as the preimages of arc
through each prefocal linedQi

, are the same as those com
mented above forQ1 anddQ1

.
Note that the second component of the mapTa ,K(u,v),

also takes the form 0/0 in the originO5(0,0). However,
according to definition 1, this point ofds is not a focal point,
except for the casea50, when it merges with focal poin
Q2 . In fact, for aÞ0 the first component of the map give
H(u,v)5a/0, which is either1` or 2`. Thus no finite
value can be obtained for limt→0 Ta(g(t)), wheng(0)50.
This means that the originOPds behaves as a generic poin
not focal, of the singular setds .

We can so state the following proposition:
Proposition 1. Let Ta be the map in Eq. (1). For a

.1/4 the map Ta has one focal point Q1 , given by Eq. (11),
with related prefocal linedQ1

of Eq. (15). For a,1/4 the

map Ta has three focal points Qi , i 51,2,3, given by Eqs.
(11) and (12), with related prefocal linesdQi

, i 51,2,3, of

Eqs. (15) and (17).

C. Inverses of Ta and related properties

As remarked above, in order to understand the glo
dynamical properties of mapTa it is important to see how
many inverses mapTa has and in which regions of the phas
plane the inverses are defined. Let (u8,v8) be a given point
of the plane. Then, by solving the system of equations in
~1! with respect tou and v, we can get either two distinc
real solutions, called rank-1 preimages of the point (u8,v8),
or no real solutions, depending on the point (u8,v8). Let us
call Z2 and Z0 the regions of the plane whose points hav
respectively, two distinct rank-1 preimages and no preima
at all. These regions are given by

Z2 : $~u,v !: F~u,v !5u22v1a21.0%

Z0 : $~u,v !: F~u,v !5u22v1a21,0%. ~18!

For a point (u8,v8)PZ2 we denote the inverses of mapTa

by Ta,r
21 andTa,l

21, being the two preimages located one on t
right and one on the left of the point (u8,v8) ~symmetric
with respect to that point!:
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Ta,r
21:H u5u81AF~u8,v8!

v5v81
~u8v82a!

AF~u8,v8!
,

Ta,l
21:H u5u82AF~u8,v8!

v5v82
~u8v82a!

AF~u8,v8!
.

~19!

In the following we shall denote byTa
21 both the inverses o

Ta , i.e., Ta
21(u,v)5Ta,l

21øTa,r
21.

We observe that in order to write the inverses as in
~19!, we have simplified the expressions coming from Eq.~1!
by eliminating the factor (u81AF(u8,v8)) to get Ta,r

21 and
by eliminating the factor (u82AF(u8,v8)) to getTa,l

21. This
is without loss of generality, as it is immediate to see t
such factors only vanish on the line of equationv85a21
which belongs toZ2 except for the point (0,a21), and the
two rank one preimages of a point of such line are corre
detected by Eq.~19! @one belongs to the lineu50 and the
other belongs to the hyperbolav52(2a)/u12(a21)#.

It is worth noticing that the regionsZ0 and Z2 are, re-
spectively, inside and outside the parabola of equation

v5u21a21, ~20!

but the boundary]Z25]Z0 between the two regions~we
shall call it]Z2 henceforth!, given by Eq.~20!, is not a locus
of critical points where the two inverses are defined a
merge. As explained in Bischi, Gardini, and Mira,3 this oc-
currence is related to the fact that such a boundary is
singular set of at least one of the inverses of the map. In f
in our case, from the definition Eq.~19! of the inverses, it is
immediate to see that both the inverses are not defined in
set]Z2 , since the denominator vanishes. In other words,]Z2

is the singular set ofTa
21. For this reason it will also be

denoted byds8 .
As also the inverses have a vanishing denominator

may ask for focal points and prefocal curves of the invers
But we have now to do much less work to determine su
sets. In fact, from Property 2 we know that the vertical li
through a fixed point is mapped into the fixed point itse
Ta(ui* ,v)5Ri , and thusTa is not invertible in such vertica
lines, where it is many-to-one~the Jacobian ofTa vanishes
on the linesu5ui* !. As shown in Bischi, Gardini, and Mira,3

from these properties we can immediately state that the f
points of the inverse mapTa

21 are the fixed points ofTa with
associated prefocal sets the vertical lines. Reassuming
the inverse mapTa

21 there are three focal points fora
,1/4: Qi85Ri , with related prefocal linesdQ

i8
of equation

u5ui* , for i 51,2,3, whereasTa
21 has only the focal point

Q18 , with related prefocal linedQ
18

of equationu5u1* , for

a.1/4.
This means that if we consider a small bounded arh

which crosses]Z2 in a point (u8,v8) which is not a fixed
point, and look for the rank-1 preimages of this arc, then
points inZ0 have no preimages, while the points inZ2 have
two distinct preimages. These preimages,Ta,r

21(h) and
Ta,l

21(h), are unbounded arcs asymptotic to the straight l
u5u8, which depends on the point in whichh crosses the
singular setds8(5]Z2) of the inverses.

We can consider such a situation similar to the one
curring for one-dimensional maps having a horizontal
.
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ymptote which separates portions of the range having dif
ent number of preimages. As a horizontal asymptote o
one-dimensional map corresponds to a vertical asymptote
at least one inverse; also in our two-dimensional mapTa we
can consider the parabola]Z2[ds8 as a two-dimensiona
analogue of a horizontal asymptote. On the basis of sim
arguments we suggest the following interpretation for
setsds andds8 : the points of the singular setds of the map
Ta behave as points of vertical asymptote except for the fo
points Qi , while for the map Ta the points of the singular se
ds8(5]Z2) of the inverses behave like points of horizon
asymptote, except for the points Ri .

Moreover, straightforward algebraic computations sh
that the prefocal linesdQi , i 51,2,3, are the tangents to]Z2

in the fixed pointsRi . We can so state the following propo
sition:

Proposition 2. Let Ta be the map in Eq. (1), i 51 for
a.1/4, i 51,2,3 for a,1/4. The fixed points belong to th
boundary of the region Z2 , RiP]Z2 . The focal points Qi
Pdsù(u5ui* ) have prefocal curvesdQi which are the tan-
gents to]Z2 in the fixed points Ri .

From this proposition and the properties of the invers
given above, it follows that if we consider a small neighbo
hood U of the fixed pointRi , then the points belonging to
UùZ0 have no preimages, while the points inUùZ2 have
two distinct rank-1 preimages, given by an unbounded a
Ta

21(U) ~which must include the whole lineu5ui* ! whose
qualitative shape is shown in Fig. 2. The particular shape
Ta

21(U) is due to the fact that the focal pointQi belongs to
the lineu5ui* and that the prefocal curvedQi

is tangent to

the singular setds8(5]Z2) in the fixed pointRi . This means
that any neighborhoodU of Ri intersectsdQi

, as well asds8 ,
in two distinct points: the preimages of arcs crossingUùdQi

are arcs throughQi , henceTa
21(U) must shrink into the

focal point Qi , and the preimages of points near (u8,u82

1a21)PUùds8 are arbitrarily large, i.e., close to infinity
asymptotic to the lineu5u8.

D. Invariant sets of Ta

As stated above, fora.1/4 the lineL1 of Eq. ~7! is an
invariant submanifold for the mapTa , and for a,1/4 the
three linesLi , i 51,2,3, whose equations are given in Eq
~7! and~8!, are invariant submanifolds of the phase space
the mapTa . This means that if (u,v)PLi , then (u8,v8)
PLi and the one-dimensional dynamics embedded into
line Li is governed by the restriction ofTa to the invariant
line, which can be written as a one-dimensional mapu8
5Fi(u). Each one-dimensional mapFi coincides with the
Newton function of the reduced polynomialPi(u)5u2

2siu1pi , i.e., Fi(u)5u2Pi(u)/Pi8(u), where the coeffi-
cients of Pi(u) are given by (s1 ,p1)5(21,a), (s2 ,p2)
5(2u2* ,u3* ) and (s3 ,p3)5(2u3* ,u2* ). Thus we get:

F1~u!5
u22a

2u11
, F2~u!5

u22u3*

2u1u2*
,

F3~u!5
u22u2*

2u1u3*
.
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It is very simple to see that fora,1/4 all three one-
dimensional mapsFi are topologically conjugated with th
mapg(x)5(x211)/2x, while for a.1/4 the mapF1 is to-
pologically conjugated with the mapf (x)5(x221)/2x. This
is a simple consequence of the following proposition.

Proposition 3. Let F(u)5(u22p)/(2u2s) be the
Newton-function associated with the polynomial P(u)5u2

2su1p. When P(u) has real roots then the map F(u) is
topologically conjugated with the map g(x)5(x211)/2x via
the homeomorphism u5hg(x)5(As224p/2)x1s/2. When
P(u) has complex roots then the map F(u) is topologically
conjugated with the map f(x)5(x221)/2x via the homeo-
morphism u5hf(x)5(A4p2s2/2)x1s/2.

In our case, the three polynomials associated with
restrictionsFi have real roots fora,1/4 and complex roots
for a.1/4. Thus fora,1/4 all the three mapsFi on the
invariant linesLi have the simple dynamic behavior of th
map g(x)5(x211)/2x, and their graphs have the sam
characteristics of the one shown in Fig. 3~a!. Ri is the fixed
point not belonging toLi , and thus we have denoted byRj

andRk the two fixed points belonging toLi which are sepa-
rated by a point of vertical asymptoteAi , clearly due to the
intersection ofLi with the singular setds . However, each
invariant lineLi intersects the singular setds in two points,
the vertical asymptoteAi and the focal pointQi . Thus the
dynamics of each one-dimensional mapFi is not completely
equivalent to the restrictionof the two-dimensional mapTa

FIG. 2. Qualitative sketch of the rank-1 preimagesTa
21(U)

5Ta,l
21(U)øTa,r

21(U) ~which is unbounded! of the neighborhoodU of the
fixed pointRi ~the gray-shaded circular region!.
e

to the invariant line, since the equivalence does not hold
the focal point and its preimages of any rank. In fact, t
reduced polynomial is obtained by dividing by the rootui*
~which has the sameu-coordinate of the focal pointsQi and
of the fixed pointsRi!, thus we are assuminguÞui* , as well
as u different from all the preimages ofui* in the case of
iterated application of the map.

For example, each restrictionFi has two superstable
fixed points, whose basins of attraction are separated by
point of non definitionAi ~i.e., the vertical asymptote!: we
denote byB(Rj )5] 2`,Ai@ the one-dimensional basin o
one fixed point, andB(Rk)5]Ai ,1`@ the one-dimensiona
basin of the other one. The setB(Rk) is not exactly the
intersection of the two-dimensional basinB(Rk), of the map
Ta , with the invariant lineLi , because we have to exclud
the focal pointQi and its preimagesTa

21(Qi): Those ob-
tained by the iterated application ofTa,r

21 constitute a diverg-

FIG. 3. One-dimensional restriction of mapTa to invariant linesLi . For
a,1/4 they have the same shape as the graph shown in~a!, whereRk andRj

are the fixed points belonging toLi , Ai is the vertical asymptote, andQi is
the focal point belonging toLi . Some preimages ofQi are also shown in
~a!. For a.1/4 the restriction to the only invariant lineL1 has the same
shape as the graph shown in~b!.
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ing sequence on the right, and those obtained byTa,l
21, con-

stitute a sequence which tends toward the vertical asymp
Ai ~i.e., the other singular point on the invariant lineLi!.
These preimages play an important role, which will be e
denced in the next section.

For a.1/4 only one invariant lineL1 exists, and the
polynomial P1(u) associated with the Newton-functio
F1(u) has complex roots, henceF1(u)5(u22a)/(2u11)
has no fixed points, and its dynamics are chaotic. In f
F1(u) is conjugate to the sawtooth map

g~z!5H 2z for 0<z<1/2

2z21 for 1/2,z<1
~21!

by the homeomorphism z5h(u)5 1
21(1/p)arctan@(2u

11)/(A4a21)#, and the dynamics of Eq.~21! are well
known, from both a topological and a measure theoret
point of view: it has chaotic dynamics in the interval@0, 1#
with an absolutely continuous invariant measure associ
to it. This implies thatthe preimages of Q1 of any rank are
dense in the whole line L1 .

We can so state the following proposition:
Proposition 4. Let Ta be the map in (1), i 51 for a

.1/4, i 51,2,3 for a,1/4.The invariant lines Li of the map,
whose equations are given in Eq. (7) or Eqs. (7) and (
respectively, do not include the fixed points Ri and include
the focal points Qi :

Ri¹Li , QiPLi .

The restriction of the two-dimensional map Ta to a line Li

has the same dynamic behavior of the following o
dimensional maps

u85F1~u!5
u22a

2u11
on L1

u85F2~u!5
u22u3*

2u1u2*
on L2

u85F3~u!5
u22u2*

2u1u3*
on L3 ,

except for the point Qi and its preimages of any rank.

III. THE BASINS OF MAP Ta

In this section we describe the qualitative shape of
basins of attractionB(Ri), i 51,2,3 and their bifurcations a
the parametera varies. It is clear that strong qualitativ
changes in the basins must occur ata51/4, when the fixed
pointsR2 andR3 ~existing fora,1/4! merge and then dis
appear fora.1/4. We also note that ata51/4 we haveR2

5R35Q25Q3 , that is, the merging and disappearance a
holds for two focal points of the map.

A second bifurcation value can be predicted. Ata
522 we have again the merging of two fixed points w
two focal points, that is,R15R25Q15Q2 , and this causes a
drastic change in their basins, as we shall see below.

A third bifurcation value is given bya51, because as
the parametera crosses the valuea51 we have a qualitative
change in the shape of the singular setds and its preimages
te

-

t

al

ed

),

-

e

o

In fact, set L5øn>0Ta
2n(ds), excluded from the set o

points of the plane in which the recurrence is well defined
obtained by taking the preimages of any rank ofds . Thus
only the portiondsùZ2 of ds is important to obtain the se
L. From the equation ofds and that of]Z2 , it is easy to see
that fora,1ds intersects]Z2 in two points, and in this case
dsùZ2 is made up of two disjoint pieces, saydsùZ2

5ds,løds,r , whereas fora.1 we havedsùZ25B, i.e., the
singular setds is entirely included inZ2 . This implies a
change in the structure ofL, and thus ofE5R2\L, and
consequently a qualitative change also in the basinB(R1).

The basins’ boundaries are sets which are invariant
der inverse iteration of the map, that isTa

21(]B(Ri))
5]B(Ri). Generally a basin’s boundary is a set which i
cludes some repelling cycles and their stable sets. Howe
for a,1/4 we have not found any other cycle except for t
stable fixed pointsRi . But in two-dimensional maps with
vanishing denominator it may occur that the setL of the
preimages of any rank of the singular set also behaves
frontier between two or more basins of attraction. A on
dimensional analogue is the mapg(x) shown in Fig. 3~a!,
where the vertical asymptote separates the basins of the
fixed points. A two-dimensional example where a simi
property holds is given in the Bischi, Gardini, and Mira.3 The
mapTa given in Eq.~1! is another example of this remark
able property, specific to maps with denominator.

A. Basins structures for a<1/4

As remarked above, in order to describe in detail t
basins’ boundaries in this range of the parameter, we hav
consider the singular setds and its preimages. The two pa
rabolasds and]Z2 intersect in two points: The portion ofds

located insideZ0 has no preimages, whereas the portion
cated insideZ2 , saydsùZ25ds,løds,r , is made up of two
disjoint branches, each one having two rank-1 preimag
ThusTa

21(ds) is made up of four branches, as shown in F
4~a!. We remark that even if Fig. 4 has been obtained for
particular valuea50.15 of the parameter, the qualitativ
structure of the preimages shown in this figure may be c
sidered as emblematic of the whole rangea,1/4.

As ds,r is an unbounded curve that intersects the prefo
line dQ1

in a point with abscissau1 , then its rank-1 preimage

Ta,r
21(ds,r) is an unbounded arc crossing throughQ1 with

slopem(u1) given by Eq.~16!. Furthermore, sinceds,r in-
cludes Q1 , its preimages must include the correspondi
preimages of that focal point. Analogously, asds,r intersects
also the prefocal linesdQ2

anddQ3
the rank-1 preimage on

the left, Ta,l
21(ds,r), must be an unbounded arc crossi

through the two focal pointsQ2 andQ3 , with known slopes.
Following similar arguments, as the arcds,l intersects the
prefocal linesdQ1

and dQ2
its rank-1 preimageTa,r

21(ds,l)

must be an unbounded arc crossing throughQ1 andQ2 with
given slopes, and the rank-1 preimage on the left,Ta,l

21(ds,l),
must be an unbounded arc crossing through the focal p
Q3 and its preimageQ3,21 . These four branches are repr
sented in Fig. 4~a!. Many portions of the rank-1 preimages o
ds belong to the regionZ2 , so preimages of higher rank exis
and so on. Indeed, the process never ends, and infin
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many preimages exist. Note that whenever an arc is
bounded and intersects the set]Z2 then it also intersects al
the three prefocal lines~due to the fact that the prefocal line
are tangent to]Z2 in the fixed pointsRi!, thus its rank-1
preimage is made up of two branches,Ta

215Ta,l
21øTa,r

21,
which cross through the three focal pointsQi .

It is a numerical evidence that all these arcs, that con
tute the setL, also separate the three basins of attract
@compare Fig. 4~a! with Fig. 4~b!#. But more, each branch o
the preimages determined as described above is, from
side, a limit set of other preimages, i.e., a limit set of portio
of the three different basins. This numerical result can
explained by the properties of the focal points and prefo
lines. For example, consider in Fig. 4~a! the arcTa,l

21(ds,l). It
crosses the prefocal linedQ1

in two points ~only the upper
one is visible in the figure!. Thus its rank-1 preimage on th
right must be a ‘‘loop’’ issuing from the focal pointQ1 , as
qualitatively explained in Sec. II. The same property ho
for the infinite sequence of preimages having a ‘‘parabo

FIG. 4. a50.15,1/4. In ~a! the rank-1 preimages of$ds,l ,ds,r%5dsùZ2

are represented. In~b! three different gray tones are used to represent
three basins of attraction of the fixed points. The dark gray represents
points belonging toB(R1), the intermediate gray represents the points
longing toB(R2), and the light gray represents the points belong toB(R3).
The pointsQ1 , Q2 , andQ3 are the focal points.
n-
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ne
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shape’’ that are located on the left~i.e., in the half-planeu
,0!. This gives infinitely many ‘‘lobes’’ of different basins
issuing from the focal pointQ1 , as shown in the enlargemen
of Fig. 5. Note also that all the lobes issuing fromQ1 inter-
sect both]Z2 anddQ1

, so that the infinitely many preimage
‘‘on the right’’ must include a ‘‘fan’’ of unbounded arcs
issuing fromQ1 and crossing throughQ1,21 , issuing from
Q1,21 and crossing throughQ1,22 , and similar fans of strips
of different colors~i.e., whose points belong to different ba
sins! issue from all the infinitely many preimages ofQ1 .

Analogously, the preimageTa,r
21(ds,r) ~or, better, the fan

issuing fromQ1 ,Q1,21 , etc.! intersects the prefocal linedQ3

in two points, forming an arc, and its rank-1 preimage ha
‘‘loop’’ issuing from the focal pointQ3 , and so on for the
other curves, constituting a fan, intersecting the prefocal
dQ3

in ‘‘arcs,’’ giving rise to infinitely many lobes of the
three basins issuing from the focal pointQ3 , shown in Fig.
6~a!. A further enlargement is shown in Fig. 6~b!, which puts
in evidence the invariant lineL1 and some preimages of th
focal pointQ1 on it, which accumulate toward the pointA1 ,
the other intersection ofL1 with the singular setds , and
constituting the vertical asymptote for the one-dimensio
restriction F1(u) @see Fig. 3~b!#. It is clear that the two-
dimensional map is not defined in such points, which are
loci from which infinitely many arcs~and a kind of crescents
for the basins! are issuing.

From Fig. 4 it can be seen the different role played
the focal pointQ2 with respect to the other two focal points
This is due to the fact thatQ2PZ0 , so that it has no preim-
ages. It follows that whenever some arc crosses through
prefocal linedQ2

its preimage gives rise to an arc through t
focal pointQ2 and here the sequence of preimages stops

As we shall see, the property thatQ2PZ0 holds for
22,a,1/4, while for a,22 we haveQ2PZ2 and Q1

PZ0 , i.e., the role of these two focal points is swapped
a522. In fact, as the parametera is decreased, at the valu
a50 we haveQ25(0,0)PZ0 , which is also a value with a
particular symmetric structure in the basins@as the basins

e
he
-

FIG. 5. a50.15,1/4. Enlargement of a portion of Fig. 4~b!.



r-

ion
-

the

om-
2.

r
l
f

d

t
eim-
s

,
on-

376 Chaos, Vol. 9, No. 2, 1999 Gardini, Bischi, and Fournier-Prunaret
B(R1) andB(R3) become symmetric with respect to the ve
tical axis u50, as shown in Fig. 7#, and then, fora,0,
the focal pointQ2 moves on the right side towardQ1 ~see
Fig. 8!.

FIG. 6. a50.15,1/4. Enlargements of two portions of Fig. 4~b!.

FIG. 7. a50. Basins of attraction of the fixed points.
At a522 we haveR15R25Q15Q2 . Then, for a
,22 a ‘‘change of role’’ between the coupleR1 ,Q1 and
R2 ,Q2 occurs, as now it isQ1 the focal point inZ0 ~with no
preimages! while Q2PZ2 has infinitely many preimages. In
Fig. 9~a! the structure of the basins just before the bifurcat
is shown, while in Fig. 9~b!, obtained just after the bifurca
tion, it is evident that a generic point (u0 ,v0) which belongs
to the basinB(R1) for a.22 will belong to the basinB(R2)
for a,22.

The situation appearing in Fig. 10, obtained witha
525, can be considered a generic representation of
qualitative structure of the basins for any value ofa below
a522. The structure of the basins is the same as that c
mented above, with the only change of the index 1 with

B. Basin structure for a>1/4

As remarked in Sec. II, as the parametera approaches
the value 1/4 the fixed pointsR2 andR3 approach each othe
@see Fig. 11~a!#, and ata51/4 they merge with the two foca
points Q2 and Q3 . In this case there is not a ‘‘change o
role,’’ because the fixed points disappear fora.1/4, and
only the fixed pointR1 survives. Also the focal pointsQ2

and Q3 disappear ata51/4, and fora.1/4 only the focal
point Q1 exists with the related prefocal linedQ1

~which is
tangent to]Z2 in R1!.

In this situation the only invariant line isL1 which in-
cludes the focal pointQ1 and does not contain any fixe
point in it @the restriction ofTa to L1 is the mapF1 , whose
graph has the qualitative shape represented in Fig. 3~b!#. The
boundaries of the basinB(R1) are now changed with respec
to those described in the previous subsection, as the pr
ages of the singular setds are different. In fact, as long a
a,1, ds intersects ]Z2 in two points, and dsùZ2

5ds,løds,r . ThusTa
21(ds) is still made up of four branches

but having a different structure with respect to the case c
sidered in the previous subsection. The branchds,r intersects
only the prefocal linedQ1

in a point (u1 ,v1), and includes

Q1 @see Fig. 11~b!#. Then its rank-1 preimageTa,r
21(ds,r) is an

FIG. 8. a520.7. Basins of attraction of the fixed points.
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arc crossing throughQ1 with slopem(u1) and includes the
preimage Ta,r

21(Q1) of the focal point. Its left preimage
Ta,l

21(ds,r) is an unbounded arc crossing the invariant lineL1

in the other rank-1 preimage ofQ1 ,Ta,l
21(Q1). Similar prop-

erties hold for the rank-1 preimages of the other arc,ds,l , of
the singular setds . In fact, ds,l intersects the prefocal line
dQ1

in a point (u2 ,v2) and the invariant lineL1 in the point
corresponding to the vertical asymptote for the restrict
F1(u). Then its rank-1 preimageTa,r

21(ds,l) is an arc crossing
throughQ1 with slopem(u2) and intersecting the invarian
line L1 in the right preimageTa,r

21(A1), while the left preim-
ageTa,l

21(ds,l) is an unbounded arc crossing the invariant li
L1 in the left preimageTa,l

21(A1) @see Fig. 11~b!#.
Also in this case infinitely many preimages exist, b

cause all the preimages of increasing rank have some p
belonging to the regionZ2 . It is evident that, with respect to
the situation described in the previous subsection, now
preimages of the singular set, located on the invariant
L1 , are very different. In fact, the restriction of the mapTa

to the invariant lineL1 , given by the one-dimensional ma
F1(u), is chaotic on the whole line with absolutely contin

FIG. 9. Basins of attraction of the fixed points.~a! a521.9, just before the
bifurcation occurring ata522. ~b! a522.1, just after the bifurcation oc-
curring at aa522.
n
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ous invariant measure on it, and this implies that the pre
ages of any point, and in particular the preimages of
vertical asymptote and of the focal pointQ1 , are dense on
that line. However, while on the restrictionF1 only the ver-
tical asymptote plays a role~as that point and all its dens
preimages of any rank are to be excluded from the domai
definition!, for the two-dimensional mapTa also the focal
point Q1 play an important role. In fact, the focal pointQ1 is
crossed by a ‘‘fan’’ of curves belonging toL, and the same
occurs to all its preimages of any rank, which are dense
the line. Such curves are on the boundary of the domain
definition of the mapTa and also on the boundary of th
basinB(R1). That the basinB(R1) must crossL1 on the
focal pointQ1 in a particular way is already known. Consid
ering a neighborhoodU of R1 the geometric behavior of its
rank-1 preimage is schematically shown in Fig. 2, and
same qualitative picture must hold also in all the preima
of Q1 which are dense onL1 . Thus the basin shown in Fig
11~b!, where it is evident that also in this situation the setL
of all the preimages ofds form the basin boundary, is only
rough approximation of the true basinB(R1), which must
include infinitely many ‘‘fan’’ issuing from the preimages o
Q1 . This structure becomes more evident asa is increased.
An example is shown in Fig. 12~a!, and a few preimages o
ds ~up to those of rank 4! are shown in Fig. 12~b!.

Thus it is easy to conclude that the invariant lineL1

cannot be an attracting set fora.1/4, although infinitely
many cycles exists on it and all are transversally attracti
That is, the invariant lineL1 may only be an attractor in
Milnor sense~see Milnor,16 Alexander et al.,17 Buescu18!.
This bifurcation was already considered in Billings a
Curry,2 where it was called ‘‘eruption,’’ due to the fact tha
on the invariant lineL1 we have the sudden appearance
infinitely many cycles, of any period~except for the period
1! which are repelling for the mapTa . In fact such periodic
points are all expanding for the restriction onL1 and trans-
versally attracting at least asa is slightly above 1/4, and
loose transverse stability asa is increased as shown in Bill
ings and Curry.2

In Billings, Curry, and Phipps,9 it is shown that for

FIG. 10. a525. Basins of attraction of the fixed points.
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1/4,a,1 the invariant line L1 is probably a Milnor attrac-
tor, with the peculiarity that the ‘‘tongues’’ issuing from i
made up of points whose trajectory escape from a neighb
hood of the line, are not issuing from a repelling cycle b
from the focal point and its preimages, which are dens
distributed along L1 .

Moreover, as already proved by Boyd,7 the one-
dimensional mapF1 is purely chaotic and an ergodic invar
ant measure exists. According to Alexanderet al.,17 the pres-
ence of such set of tongues issuing from points dense onL1

and transverse to it, whose points go away fromL1 to reach
the fixed point, is an essential feature for the existence
riddled basins. Thus as argued by Billings, Curry, a
Phipps,9 the bifurcation occurring ata51/4 gives rise to a
Milnor attractor with a basinB(L1) which is riddled by the
basinB(R1).

We note that in Billings and Curry2 it was conjectured

FIG. 11. ~a! a50.249,1/4. Fixed pointsR1 and R2 , as well focal points
Q1 and Q2 , are very close, and they are going to merge ata51/4. ~b! a
50.251.1/4. Only fixed pointR1 exists, and only focal pointQ1 exists.
The dark gray region represents the basin of the fixed pointR1 , as in the
previous figures, whereas now the light-gray region represents the s
points which are attracted to the chaotic set embedded into the invarian
L1 .
r-
t
y

of
d

that such a kind of ‘‘eruption’’ is likely to occur wheneve
two fixed points~of a map coming from Bairstow’s method!
merge into a unique one. However, as is shown by this
ample ~map Ta!, it is not the case when two fixed point
merge and then exchange their position on the invariant l
as occurs when the parametera crosses the valuea522.
While when two fixed points merge on an invariant line a
then disappear, leaving a one-dimensional restriction whic
is the Newton-function associated with a reduced polynom
having only complex roots, then it is certainly true that
explosion of infinitely many repelling cycles occur, becau
the one-dimensional restriction suddenly becomes a cha
map.

C. Basin structure for a>1

The qualitative shape of the basinB(R1) after the rid-
dling bifurcation, as shown in Fig. 12~a!, is that of a ‘‘wide’’
basin having a fractal boundary whose closure, howeve
not the whole plane, because the stable setB(L1) is a set
with positive Lebesgue measure, as long as 1/4,a,1. How-

of
ne

FIG. 12. a50.5. ~a! Basins of attraction of fixed pointR1 and of the chaotic
set embedded inside the invariant lineL1 , represented by dark gray an
light gray points, respectively.~b! Preimages, up to rank-4, ofds .
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ever, as noticed in Billings and Curry,2 the cycles embedde
inside L1 become less and less attracting in the direct
transverse to the invariant lineL1 asa approaches the valu
a51. In a measure theoretic sense, the stable setB(L1) be-
comes smaller and smaller, as also revealed by the na
transverse Lyapunov exponent~here explicitly known, and
given in Billings, Curry, and Phipps9!. In fact this is negative
for a,1, but it increases, and crosses the value 0 ata51,
becoming positive fora.1. This bifurcation was already
noticed by Boyd.7 Thus a51 marks the transition from a
Milnor attractorL1 with a basinB(L1) of positive Lebesgue
measure, into a chaotic saddle with a stable setB(L1) of zero
Lebesgue measure. This corresponds to ablow-out bifurca-
tion of the Milnor attractor~see Ashwinet al.,20 Ott et al.21!.

As noticed at the beginning of Sec. II, we could pred
the occurrence of some qualitative change in the ba
B(R1) andB(L1) from the fact that the setL has a drastic
qualitative change asa crosses 1. In factdsù]Z250” for a
.1, which means thatds is entirely included in the regionZ2

~see Fig. 13!. Thus its rank-1 preimage is made up of tw
pieces:Ta

21(ds)5Ta,r
21(ds)øTa,l

21(ds). Noticing that nowds

intersects the prefocal linedQ1
in two points (u1 ,v1) and

(u2 ,v2), and the arc ofds connecting these points is entire
included in the regionZ2 , we have that the rank-1 preimag
Ta,r

21(ds) is an arc with a loop issuing from the focal pointQ1

@with slopesm(u1) andm(u2)#, crossingL1 in Ta,r
21(A1) and

Ta,r
21(Q1) @compare the qualitative Fig. 1~c! with the preim-

ages of ds shown in Fig. 13#. While the left preimage
Ta,l

21(ds) is a single ‘‘folded’’ arc, crossingL1 in the left
preimages of the vertical asymptote ofF1 and in the left
preimages of the focal point.

The preimageTa,r
21(ds) is again completely included in

Z2 , while Ta,l
21(ds) has a portion inZ0 , without preimages.

However, two unbounded branches are still inZ2 , and we
continue the process of computing the preimages of any r
of ds . These preimages of any rank constitute the setL, and
constitute the boundary of the basinB(R1).

FIG. 13. a51.05.1. The basinB(L1) has now zero Lebesgue measur
The two rank-1 preimages ofds , which is now entirely included insideZ2 ,
are also represented.
n
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The important feature in this regime is that althoughR1

is not globally attracting, the basinB(R1) is such that its
closure covers the whole (u,v) plane, as the points exclude
from B(R1) constitute a set of zero Lebesgue measure.

In fact the invariant lineL1 and all its preimages are t
be excluded, and also, as proved in Billings and Curry,2 re-
pelling cycles outside the invariant lineL1 , which make
their appearance via transverse bifurcation of the cycles
L1 . These, on their turn, may undergo further bifurcatio
leading to more and more cycles outsideL1 . However, all of
these belong to a set of zero measure as well as the stab
B(L1), the natural transverse Lyapunov exponent being n
positive.

IV. CONCLUSIONS

Many numerical iterative methods to find the roots
equations, being based on the Newton’s method, require
iteration of maps with denominator. Among these, one of
most known and used in practice is the Bairstow’s metho

In this paper we have considered a two-dimensional n
invertible map arising from the application of Bairstow
method to a cubic polynomial, and we have shown how
complex structures of the basin boundaries, as well as
global bifurcations that change the qualitative properties
the basins, can be explained in terms of new kinds of sin
larities specific to maps with denominator, recently intr
duced in the literature, such as singular sets, focal points
prefocal curves.

Although our analysis is limited to mapTa , it is likely
that similar properties hold also in other maps deduced in
same way~see Grau,22 Fiala and Krebsz,23 besides the refer-
ences given in the Introduction!, because they are based o
two properties:~i! the map is noninvertible; and~ii ! the map
has a vanishing denominator. These properties are a com
feature also in maps coming from more general division
gorithms~see also Blish and Curry,8 Henrici,24 Traub25!, and
the same techniques and mathematical tools used in
present paper can be used to study the global dynamic
havior also in other families of maps.
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