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ABSTRACT

A simple ecosystem with limiting nutrient cycling is modeled by chemostar equations
with an integral term describing the continuous fime lag involved in the process of
nutrient regeneration from organic sediments. The same moda| has already been proposed
in a previous paper, where conditions for boundedness of the solutions and stability of the
equilibria were given. This paper is concerned with the relationships between resilience,
that is, the speed with which the system retiirns o 8 swhle equilibrium following a
perturbation, and the time lag in the nutrient recycling process, Simple algorithms are
given for the numerical calculation of the characeeristic Feturn time toward the sable .
equilibrium following a small Pperturbation. These methads also allow ws 1o distinguish
the case of monotone convergence from that of oscillatory convergence toward equilih-
rium. The numerical resylts obtained show that the presence of the time lag causes bath
qualitative and quantiwtive modifications in the dependence of equilibrium resilience on
some relevant ecological parameters, such as the input nuirient concentration and the
recycling extent. Analytical results for Vquasi-closed" ecosystemy are given that show
that such stable systems are characterized by a very low resilience,

. INTRODUCTION

Models of ecosystems with nutrient cycling have been studied by many
authors, both for closed systems [3, 14, 15) and for open systems [5, 6, 13, i
18]. Many of these results concern the effect of nutrient recyeling on the |
existence and stability of equilibria [14; 15; 20, Ch. 3] and on relative
stability measured in terms of resilience, that is, the rate at which 4 sVstem |
Feturns 1o a stable equilibrium after a perturbation (5, 6, 13, 17].

A feature common 1o these papers is that nutrient recycling is assumed to |
be instantaneous, that is, the time required by the whole process of bacterial
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decomposition of dead biomass and waste organic products, together with
the time necessary to recirculate the regenerated nutrients, js neglecied.,
Nakajima and DeAngelis [13] emphasize that **this ASSUMption is unrealjs-
tic,"" and Nisbet and Gurney [14] stress that even if this ASSUMption seems
1o be reasonable i tropical and subtropical regions, time delays in the
decomposition Process cannot be neglected in boreg) systems. May [11] alsg
Suggests that residence times angd storage times should pe considered when
nutrient cycling effects on ECOSYSiems are investigated.

In this Paper, chemostar equations are used 1o model the growth of an
dutotroph species in the Presence of 3 limiting nutrient that ig partially
recycled. Chemostat equations arg widely used to model plankton commuynj-
ties in lakes (see, e.g., %1, [22), 1191, [18]), but & substantial difference
between a laboratory and “lake' situation js that nutrients and sediments
have much longer residence times in lakes [16, 18], tha is, a smaller
washout constan [19]. In such g situation detriga] biomass accumulates apd
nutrient Fegeneration must he considered.

Some authors have introduced the detrita) biomass as g dynamical
variable [5, 21]. The equations describing detritus mineralization should
account for many factors such as biomags sinking, burial ip deep sediments,
chemical reactions, bacterial activity, and, as pointed out in [21], oxygen
concentration, with the Possibility of swih:hing from aerobic to anaerobjc
conditions. An alternative to this i o introduce g distributed time lag into
the nutrient recycling term. In other words, all the processes involved in
nutrient recycling are regarded as a whole by a distributed time lag with a
delay kernel that gives the influence of the biomass of the past on the
Present nutrient concentration., This delay has beep introduced in the
chemostat Bquations as an integral term.

Eiven there are Summarized in Sectjon 2, together with a description of the
model equations and parameters. [p Section 3 the resilience of the positive
equilibrium is studjed both for the mode] with instantaneous tecyeling and
for the one containing distribuged delay with a Particular class of kernels. 4
simple algorithm for the numerica) calculation of the characteristic return
time is given, the dependence of the relurn time on the most relevant
parameters g investigated, angd the important role of the time lag in
recycling is evidencegd The numerica] results in Section 3 show that some
parameters have g stabilizing effect (i.c., reduce the relrn time) when
increased in some ranges angd 3 destabilizing effect jn other ranges. Thus,
critical values of these parameters can be found jn which resilience s
maximum. These critical values are strongly influenced by the time lag and
are characterized by a change from an oscillatory convergence toward the
equilibrium to g monotone convergence after a smal) perturbation., The
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results given show that, in general, an increnzu_: of the recycling arlffl.an;.r1I :
inhibits oscillations; increasing values of T bring about a change fron .
situation of relatively fast oscillatory convergence 1o a islﬁw monotone
return to equilibrium. In Section 4 some approximate analytical ex.presslmns
of the characteristic return time are given in the case o.f a v&.[}l fnng,
residence time and a very tight recycling, The#:. relsults ||1|.1u:.'1lte that for Ial,
sufficiently long time lag the return to equnhhrnlarn _fnﬂuw:ng a errf

perturbation is characterized by the absence of oscillations and by a low

resilience.,

2. THE MODEL

The ecosystem with delayed nutrient recycling is modeled by the follow-
ing chemostat-type integrodifferential equations:

5= D(8§° - S}—'}-mlU{S}N+Tbﬂ1f_ImF{I— 7)N(7) dr,

N=N[-(D+D,)+ mU(8)] (1)

where S(¢) is the concentration of a limiting :lglriem at time 1, N{( r}_n; thﬁr
biomass of an autotroph species at time ¢, §° is Ihe input concentration uh
the limiting nutrient, D is the washout rate, m, is the maximum gruw: :
rate of the species, 4, represents the loss rates frmn the Ilnrmg :\pu.leal.:lta
(mortality and respiration), ¥ is the constant ratio of numv?inl lnm.s.htht
biomass (its inverse iy usually called the yield clnnstamj., and bel0, 1] is "
fraction of nutrient that is recycled from detritus, 'I‘hn parameter can
considered a measure of the extent of nutrient rml:}rclmg within an T[pen
system becavse its value js mainly lowered h;,r detritus wu;huut as we da.fa
burial in deep sediments and the furmatiup of m::nlub!u:f: nutrient f{:mpoun s;
b=0if no recycling occurs, and b =1 if the recycling is complete, as in
experiments with self-sustained closed ECosysiems, . , |
The function LU 8): [0, +oe)—[0, 1) l'epres:enml the nlutrmnt _uptake T%w.
and we assume that it is a continuously differentiable increasing function

such thar
U0)=0  and lim U(§)=1. (2)
§—om
In particular, these hypotheses are satisfied by the familiar Michaelis-
Menten function

U(S)=5/(A4+35), (3)
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;vihere A is the halt‘—samra_tjon constant. All the following resylts are given
or a genlcrai uf:ntake function satisfying hypotheses (2), but the numerical
Computations wil] he Performed with function (3),

!r k n I { :I 5 non i
& Moy nega v 1 Inctio ! ed on i} + oo s
]JIE dE]ﬂ erne| J ) g C n d: mn d [ a } &l

/‘ﬂ Flu)du=1. (4)

This function describes the rate at which
contribute to the available nutrient at
recycling process js defined as

lich the biomass losses of the past
tme f. The average time lag of the

:r.-:/' UF () du. (5)
i
System ( I} with initia] conditions
5(0) =5, > 0; N(7)=o(7). —®<rg0, (6)

wh D - i

by Z:‘c @ m,ﬂ]-*lih_ 15 3 bounded and {at least piecewise) continuous
nction, pﬂascsst. 4 unique positive solution continuously dependent o

?ﬂmm?lcm and initial dagg (see, epg, [4]). Furthermore, we give the

Lzﬂ::rwmg theorem, which is a Prerequisite for any reasonable mode| j,

cology,

THEQOREM }

All solutions S(¢), N(1) of (1) with (6) are bounded for ¢ = .

This theorem can be proved following the Procedure given by Beretta et al.

[1]. System (1) has two nonnegative fi : _ o
{Sr* N#.}: with g ¢ fixed pomts, F. = (5 rﬂ.} and E] =

i D+ D "
3=U‘(— : __ D(s°-g
T[D+D,(!—fl}]
£, is positive provided that
(D+D,}{m, and  §°% g (8)
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In the following we deal only with local (linear) stability of the positive
equilibrium £,. Once linearized around £\, the characteristic equation of
the variational system s

b3 +IfD+’:.rm|k}fh+ ymk(D+ D)) —ymbD k ¥(N) =0, (9)

where

ki=U"(S,)N, (10)

and (N is the Laplace transform of the delay kernel (see, e. £., [10]D.
In the following we consider a special class of kernels, the gamma
distributions of integer order m

r:*“"'

F{u]=gmpﬂuj:?—-u"expl[hau}. (11)

These functions are widely used in the ecological literature (see, e.g., [10]
and references therein) and have the nice property that the characteristic
equation (8) becomes an algebraic equation because the Laplace transform

of e it

20=(75%)"" (12)

The local stability of E, was studied in [1], where the following theorem is
given,

THEOREM 2

The positive equilibrium E o of system (1) with delay kernels (1 1y af
arbitrary order p = 0 s alwa Vs locally asymptotically stable.

Because this stability result is important for the discussion on relative
stability in the following sections, a sketch of the proof given in [1] is
reported in the Appendix.

Theorem 2 states that the positive steady state is stable independently of
the magnitude of the mean delay, which, from (5) with {(11), is given by

T=(p+1)/a. (13)

However, the relative stability of the equilibrium is strongly influenced by
the time lag in recycling, as we shall see in the next section, where the cases
of delay kernels (11) with P=0and p=1 are considered. Following [4] 1
use the term *“weak’* kernel 1o denote one with p = 0 {the maximum of this
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kernel oceurs at the present lime, and past densities have EXponentially
decrea_t.'ing influence) angd “strong’* kernel to denote one with P =1 (the
Maximum ocecurs at the Previous time, f — Ty,

3. RESILIENCE OF THE POSITIVE EQUILIBRIUM

Let X be the root of the characteristic equation (9) with the largest resl
part. When the equilibrium is stable g the eigenvalues lie in the left-half
complex plane, so 3* is the root closest to the imaginary axis and dominates
the long-term behavior of the System for initial conditions near equilibrium.
This means that every solution of the variational system [and every solution
of the original system (1) with initial conditions sufficiently close to E]
tends Lo equilibrium ar Jeast as rapidly as exp[ - IRe(X*) [1¢, (see, e.g.,
[8]). Following 5] we call ¥ the dominant eigenvalue ang define the
characteristic return time for the stable equilibrium as

T.:= —1/Re(¥). (14)

Then the equilibrium resilience can be defined as the inverse of the return
time [5, 17]. Of Course, this definition of resilience applies only 1o
perturbations in a smaj) region around the stable equilibrium where the
nonlinear terms can be neglected,

We first discuss the case of instantaneous recycling: model (1) with
F(u}z&{uj. Even if this assumption is unrealistic, the straightforward
results obtained in this case can be ysed for comparison. T he characteristic
equation (9) becomes # simple second-degree algebraic equation:

—"3+{D+7m,kjh+7m,k[ﬂ+ D\(1-b)] =0. (15)

This is the characteristic equation of a linear free oscillator with restoring
foree

p=vymk[D+ D,{l—b}]=m,DU’{SE_}|:S"~—S?] (16)

and damping force pProportional to

H=D+'rmtk=DII+E§Ei‘;jtg—fi—;f—‘}—J. (17)

Let A(p):= (B)—dp. It can be easily proved (see Appendix) that for
small values of the washout constant b (ie., in a *‘lake™ situation),
AD) < 0and A¢ 1) = 0. On the basjs of this result, ang Irom the well-known
elementary theory of linear oscillators, we have the following theorem
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THEOREM 3
If D is sufficiently small, a critical vafue b.e(0,1) exists such tha-

() If O<b<b_, then the system is **underdamped- fhar is, {r
approaches the steady-state E, through ascillations of d&'rcm‘lmg m_nph_
fude, and the characreristie return ftime is o decreasing function af b,

T =2/q9(b).
(i) If b.<b<1, then the system is “overdamped’: thar is, its

return to the equilibrium is nonoscilfatory, and the characteristic refurn
time s an increasing function of b:

;r:_.___. 2 ; T
n(b) = [n(8)* -4

Figure 1 shows the return time, computed according to Theorem 3, ax
the parameter b varies in the range [(0.5, 1] and the qher parameters have
the values listed in Table 1, Note that in almost the entire tange of b,_?}(b}
is a decreasing function, so an increase in the recycling extent brings a
higher resilience, o

Numerically computed trajectories of model (1) with 1nsramanecuslrecy-
cling are shown in Figures 2a and 2b with b< b_and b= b, respectively,

Tr

28

o . n n " .
N .8 T .B -9 b

Fii. 1. Remrn time T, as a function of the recycling extent B for model (1 .wld:
Fu) = &), that is, instantaneous recycling. The other param:m.'s have the valLH:..r. |15t1ed.
in Table 1, For b« b.=098, the eigenvalues are complex conjugate (@), whereas for
b= b a real eigenvalue is dominant {—1.
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TABLE |

Parameter Values Used in Numerical Caleulations
{Unless Differenly Specified)

D= 0,00

b=10.1 A = 0.005 5" =0.08
D=0 ¥=0.0 m, =023
- - . - .

Note, These parameter values have beep taken from [5). Asg pointed
out in that Paper, “'these paramegers are hypothetical and no units are
assigned However, these values form g plausible seq for gn aguatic
System. OF course, any numerical resplis obtained with this ser of
parameters can give only qualitative informations,

If model (1) with delay kernels (11) of finite order P is considered,

the characteristic equation (9) becomes an algebraic equation of degree
n=p+13:

Rla+ N4 (D+ Ym k) (a+ 27,
FYmA(D+D ) (a+ NP ¥mkbD, "' =0, (1g)

From Theorem 2 we know that all the roots of (18) lie in the left-half
complex plane. In order to compute the distance of the dominant eigenvalye

from the imaginary axis, we introduce in(18) a change of varighle (s in [2]
and [8]),

A=z—g, oel,, (19)
to obtain an equation in the form
Z"+a,,_,|fu}z”"+"'+aﬂ{ﬂj:ﬂ. (20)

This change of variable represents a shift of the imaginary axis to the left,
If o* is the greatest valye of o such that all the roots Z; of the transformed
equation (20) lie in the lefi-half Plane, then o* = |Rey X} | and the charac-
teristic return time for E isT,=1/0%

As all the roots hayve negative real parts when o =0 and the roots Z;
depend continuously on the parameter o, a root will Cross the imaginary
axis for increasing ¢ if and only if one of the two following cases oceurs:

(1) 2=0isa root of Equation {20) (in which case 5 real root crosses the
imaginary axis), or

(2) z=iuw, wel}, | is a roo of Equation (20} (in which Case a pair of
complex conjugate roors cross the imaginary axis),
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N (a) bed
.08 |
D §—
(b
N bz.pa
1I=! -'-——-—____________]
o - 1
' 0025 s
Fia, 2. Numerical solutions of maodel (1) with instantaneoys recycling for rwo

different values of parameter H: {a) b=0.73 = b ib) h=0298 = b The other parame-
ters have the same values as those used for Figure 1.

The first case oceurs if and only if ay(o)=0, the second if and only if
D, ,(0)=0, where D, _, is the Hurwitz determinant of order 1 — 1. (The
last statement is a consequence of a result of Orlando, which can be found
in [7, Ch. 15] or [10, p. 71].) We first apply this argument 1o _1he case of
delay kernel (11) with p=10, the “*weak" delay cnsa:l. In this case the
characteristic equation (18) becomes a third-degree equation,

N+CN+CA+Cy=0 (21)

with
Co=ymka[ D+ D (1~ b)| = Dm,alU'(S8,)(5° - 8,), (22a)
(22b)
(22c)

Ci=a(D+ymk)+ymk(D+D,),
Co=D+4ymk + «,
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and the coefficients of the transformed equation (20) become

n,_][:a}—---u‘+£'ztrz—(7‘,cr+ﬂu, {23a)
a(0)=302-2C,0 + ¢, (23b)
(o) = C, —3o. (23¢)

Let
85(0) = a(0)as(0) - ay(o). (24)

The next two theorems are consequences of the argument outlined above,
{ Their proofs are in the Appendix. )

THEOREM 4

.L:E??' o be the smallest regi positive solution of the equation ag) =
0, i=o0,.. . L2, and a3 the smallest regl Positive  solution of
A (a) =0, with the understanding thay 0= 4o if the corresponding
equation has no solutions. Then a* = ming o, i=0,....3),

Note that a lower bound for the characteristjc return time can be obtained
from each of the O computed according 1o this theorem. For example,
G =(D+ym k+ )3 implies that T, lies above the hyperbola T, =
AT/ +(D+ ¥ KT heeause I.=1/a%= l/a,. In reality only twc; of
the four equations appearing in Theorem 4 need be studied to find o*
according 1o the following theorem. 1

THEOREM 5

Let o, be the smallest real positive solution of the equation a, (o) =)
and a; the smallest regl Positive solution of Ao} =0, with I.ﬁ.r:g tnder-
standing that ;= + oo (f the corresponding equarion has no solutions,
Then o* = min(a,, 7). and when o* = o g req/ eigenvalue is dominant
(thus giving g monotone or “overdamped convergence) whereas when

* _ i : L
o =g, :IIJG'H‘ af complex conjugate eigenvalues gre dominant (oscilla-
fory or underdamped™® con vergence).

From rpis theorem a simple algorithm can be derived for the numerjcal
calculation of T, with g given set of model parameters. Starting from
o =0, the first real root of the equation a,(o) = 0 and the firs real root of
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Ay(e) =0 in the interval (D, ;) are numerically computed, and the smaller
of the two is taken for the computation of T

Using this algorithm, the influence of the mean time delay T on the
resilience of the positive equilibrium £, has been investigated. In Figure 3
the computed values of T, are represented versus b, with be(0, 1), for four
different values of the mean delay T. These graphs can be compared with
that of Figure 1, which corresponds to the case T=0. It can be observed
that for T=2, T =10, and T = 20, as well for T'=0, increasing values of
b in the region of oscillatory convergence, starting in =0, cause a slight
increase in resilience, until a critical value b is reached where the
resilience is maximum. At this point a real eigenvalue becomes dominant,
and a further increase in b leads to a sharp loss in resilience, With greater
delays the region of oscillatory convergence, characterized by decreasing
T.(b), is narrowed, and it completely disappears for 7' = 90. These numeri-
cal results indicate thar, owing to a considerable time lag in the nutrient
recycling process, which may be a typical situation of boreal ecosystems
[14], the resilience is lowered by an increase in the recycling extent and the
system returns toward the stable equilibrium without oscillations. Con-
versely, when the recycling process is fast, such as in ecosyslems of tropical

Tr |Tez fu) LS g
380
a "
Tr | Teto ihy Ted0 &
3850
o
o Fl 4 s ® p o * * * *oe

Fui. 3. Return time T w5 a function of the recyeling extent & for model (1) with
gamma delay kernels (117 with p = 0. The four graphs are obtained with different valucs
of the mean time lag T= |/ (a) T = 2,0 T =10 ) T= 20; (d) T = 9. The other
parameter values are listed in Table 1. The curve with solid circles indicates thar
a* =gy, that is, a pair of complex conjugate cigenvalues are dominant {oscillatory
convergence); the solid curve indicates that o = oy, that i, a real eigenvalue js
dominant {momstone comvergence),
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and subtropic il
e 3 ar{;pn.;]}f regions !]4]. the convergence toward the equilibriym f 1
ow £ a sma pe:.-rurbanan 15 oscillatory and ap increase in th "y e
tent leads 1o g higher resilience TR
In Fi i i
Figure 4 rwo numerical solutions of system (1) with the “weak® de
elay

kernel are shown wi
! n with a parameqer et in
s the r: *
4a) and where g% — % (Figure 4b) o

of the positive equi

o It can be noted that the stability domajn
e HIlbriom: appears 1o he large, and oy 1
[ ;: are useful for larger perturbations as wel]

! : )

A ;ﬁt:;i IS, };", ver.}u.q the input nutrien; concentration §°
_ ; values of the mean delay - 15 ¢

favors monotone conue ilibrium, Ho how
than the critical value, at which point there is the
10 overdampeyg convergence, T.(8%)
agreement with the resylg of De4
a function of the nutrient

ocal resilienge

15 shown with
Increasing T

is.a!most a constant function, This is in
. ngelis et al. [5], where T js computed ag
INput rate for a mode) with

nutrient, autotroph,

i]

002

Fic, 4, Numerical solur .
. ) solutons of model (1) wig del .
=10, : \  delay kernel (11} W - :
. m“rll:e nuxmcrlcal solutions are obigiped by a Rungt—Kuuaf :rfﬂ::ji-l njr-" 3:
chain triek (sc: Ila;dm} lﬁﬂlﬂ;;}n;ﬁmdn;w differential cquations obtained hy th:rljnia:
(a®= - = LR =L h, (o% = g in this 10 _
7= oy in this case). The other parameter '-':Ju.cs are I!J'Stcd in TE:}} W o=08>0,
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T {a) ) Ta2 . (e T’EI
40
o ) . ‘
T iby AL = e
F
o B0
o : -
1 8 1 *

Fic. 5. Return time T, as a function of the nutrient input concentration 5° for model
(1) with gamma delay kernels (11} with p=0. The four graphs are obtained with
different values of the mean time lag T=1/w: (d) T=2:(b) T=10; (¢} T = 20, ()
T'=90. The ather parameter values are listed in Table 1. The graphical symbols used in

! these curves have the same meaning as in Figure 3.

and detritus compartments using a method based on direct estimation of the
return time during the computer simulations of the Lrajectories.

In Figure 6 the characteristic return time T, is represented versus the
| mean time lag T with the other parameters fixed dt the values listed in
Table 1. In the first part of the graph, T,(T) is a decreasing function; thus
in this range increasing time delays have a stabilizing effect. This graph also
shows a nonmonotonic behavior of T.. and a critical value of T exists -
where T, is minimum; however, this does not correspond to the change
between the dominance of the complex eigenvalues and that of the real
cigenvalue, whereas this seemed to be the rule in previous cases, In other
words, the maximum resilience, as T varies, is not obtained at the point of
switching from underdamped 1o overdamped convergence. As T further
increases, the real eigenvalue becomes dominant, and this leads to a faster
loss of resilience,

The corresponding trajectories of the complex roots of the characteristic
equation (21) are shown in Figure 7. At first the pair of dominant complex
eigenvalues move away from the imaginary axis as T increases. Then,
before the real eigenvalue moving from the left becomes dominant, the pair
of complex eigenvalues begin to slowly approach the imaginary axis.

Theorem 5 can be easily extended to the case of kernels (11} of higher
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(a)
Tr F:O.I
T5
40 , .
h
T. | beo3 !
75
40 |
1 50 T

Fia. 6. Rewrn time T, us a function of the mean time lag in the recycling process T
for model {1} with gamma delay kernels (11) with £=10. The two graphs are obiaingd
with different values of recycling extent &: (a) b =0, Lih) & = 0.3, The other pramecter
vilues are listed in Table |, The graphical symbols used in these curves have the same
meaning as in Figures 3 and 3.

order. If p= 1, then the characteristic equation becomes

N+ON+CR+CA+C =0 (25)

with
Co=a’ym k[ D+ Dy(1- b)] = o’ Dm U'(8,)(5* — 5.). (26a)
C,-—wj{D+Tm,kj+2n1rm,k{£)+ﬂ,j, (26b)
C2=m3+2ar:i)+ym,k}+fym‘k{ﬂ+ D,), (26¢)
Cy=D+ymk +2a, (264d)
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.05 - - — (——*|
04
~ :
""E’ 0 e = - s poam I
=05 T e (
-5 -.085 -.04 -.03 -.02 -0 0

Re(.1)

Fig. 7. Trajectories on the complex plane of the roots of the characteristic equation
21y as T varies from | 1o 100. All the parameter values are the same as in Figure 6a.

The transformed equation, after the change of variable {19y, is

z“+a][ﬂ}z?'+a2|:a:|z1+a,{cr}z-l ay(o)=0 (27)

with
ay(o) = g* - 530+ Ca® - Co + C,, (28a)
a(0) = -40%+30,0° - 2C0 + C,, (28b)
a(0)=60"-3C,0 +C,, (28¢)
ay(o)=C,—4qg, (28d)

Let

53[‘7}7: alf*’}”z{”}ﬂaf_“j - “:{U}E_ “n{“]'”.a(*’}r

and let g, be the smallest real positive root of ay(g) = 0 and dy the smallest
real positive root of Ay(a) =0, [We can sct o=+, i=0,.. .4, if no
real solutions of the corresponding equation exist in the interval (0, a5), with
Oy ={D+ymk +2a)/4.] In analogy to the case with p=10, we have
o* = min(g,, 0,), and then T.=1/c* Furthermore, if 0*=g,, then
& real eigenvalue is dominant, whereas if 0*=0,, a pair of complex
conjugate eigenvalues gre dominant.

The results of some numerical computations of T, with p=1 “strong ™
delay) are shown in the Figures 8-10. The dependence of 7, on the
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Tr T=10 a)
350 ¢
o . .
Tr | Teoo (b)
350 ¢
4] \ . N .
0 2 .4 8 .8

b

Fig. 8. Return time T, as a function of the recycling extent & for model (1) with
gamma delay kernels (11) with p=1. The two graphs are obtained with different values
of the mean time lag 7' = 2ia: (a) T=10; (b) T =90, All ather conditions are the same
as in Figure 3, to which this figure should be compared. The curve with solid ci.rc']es
indicates that ¢* = @, that is, a pair of complex conjugate cigenvalues are dominant
(ozcillatory convergence); the solid curve indicates that o™ = a7, that is, a real eigenvalue
is dominant {monotone COMVErgence).

parameters b and §° is not qualitatively changed in comparison to the case
of “*weak’" delay. However, we can see that for a given value of T=2/n
the region in the parameter space characterized by oscillatory convergence
is slightly enlarged. The fact that increasing order p of the kernels (11)
favors the oscillatory behavior of the system had been already stressed in [1]
on the basis of some computer simulations. This tendency is particularly
evidenced by the plots of T.(T} in Figure 10 compared to those in Figure 6.
It can also be noticed that the minimum value of the return time in each
graph of Figure 10 is less than that in the corresponding graph of Figure 6;
that is, the “‘strong"* kernel gives a higher relative stability characterized by
oscillatory convergence.

Both in Figure 6 and in Figure 10 a higher value of the parameter b
inhibits the oscillatory behavior and gives a linearly increasing return time
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Fic. 9. Return time T, as a function of the nutrient input concentration S* for model
(1} with gamma delay kernels (1) with gp=1. The two graphs are obtained with
different values of the mean time lag T=2/a: (a) T'= I by T=90. All other
conditions are the same a5 in Figure 5, v which this figure should be compared.

for great delays. This conjecture will be discussed analytically in the next
section,

4. HYPOTHESIS OF HIGH DEGREE OF RECYCLING AND THE
LIMIT OF CLOSED ECOSYSTEMS

The inverse of the washout constant, | /0, has the physical dimension of
time and represents the résidence time, that is, the average time that
nutrients and waste products Spend in the system [19]. A long residence
time, that is, a small value of D, 5 a hecessary condition for nutrient
recycling. Thus the parameter b, which in model (1) is a measure of
the recycling extent, is to some extent related to D because 3 small valoe of
D generally implies a large value of b, This is not always true, because the
recycling extent may also be lowered by other factors, such as burial in

deep sediments or chemical reactions that cause the formation of insoluble
compounds,
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Fic. 10. Rewm time T as a function of the mean time lag T for model (1) with
gamma delay kernels (11 with £=1. The two graphs are obtained with different values
of the recycling extent b: (a) b= (), L) b= 0.3, All other conditions are the same as in
Figure 6, 1o which this figure should be compared.

In this section we assume tha the nutrient recycling is hindered only by
sediments washout. To simulate a long residence time we write

D:=eD, (29)
and, on the basis of the Previous assumption,
bi=1-¢bh,, (30)

where ¢ <1 and D, by, are positive constants.

Small ¢ implies that the residence time is much longer than the nutrient
recycling time, so nutrient molecules are recycled many times before they
leave the system. The limit ¢ = 0 means that the system is closed, becanse
in this case (29) implies D = 0. With this hypothesis the system can exist in
a feasible steady state if and only if the recyeling is complete, that is, b= 1.

|
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In this case the rotal amount of nutrient in the system,

N?.=3{:J+TN{;]|+TD,/mf-'{xj[fI N{u}dqux, (31)
el f—x

IS constant [the last term in (31) can be interpreted as the amount of nutrient
that is temporarily stored in the sediments],

From (7), with (29) and (30), we deduce that the hiomass at equilibrium
does not depend on ¢

Dy(8° -8
N, = — ol __J_F (32)
YD+ D, by)
and the nutrient equilibrium concentration is well approximated, for e 1,
by
D,

S.=U J(EJ‘ D,<m,, (33)
We first consider the case of a “*weak™ delay kernel. From (29) and (30)
the coefficients (22) of the characteristic equation can he considered as
functions of ¢. In particular, C; is of order ¢ and can be written as

Cy:=¢C, (34)
with
Cy= Dym,al'(s,)(5" - s,). (3)
This allows us to find an analytical approximation of the roots for ¢ <« |
following the procedure given in [6] and [13]. The roots of the characteris-
lic equation depend continuously on ¢, and for ¢ =0 a real root MOy=0
exists becausa CL0y =0,
For small ¢ we can write

R{IE} = ¢ + Offg). {36)

Substituting (36) into the characteristic equation and taking only terms of

first order in ¢, we obtain B=-C,/ C\(0). Thus a good approximation of
hois

Ty ir{'D_u+ Dby __Dy+ Dby,
Me) = - = p e - - T DT € (37)

For a given ¢ >0, 3 js the dominant eigenvalue for great delay valpes,
Thus for sufficiently high 7 or small ¢ the characteristic return time js wel]
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approximated by

_1 1+ DT .
"IN T qBy+ Dy -

This result is in agreement with the conclusjons of DeAngelis in [6] as both
a decrease in the washout constang {i.e., a small €) and an incregse in T
lead 10 a higher trans;t time of nutrients in the system,

For a given T if ¢=0, thar is, in the limjt of closed Ecosystems,
T, = +oe. This means that even if the equilibrium of g “quasi-closed™
system is stable its resilience is extremely low. This may be an answer 1g
the question rajsed in [15], where the authors try to reconcile the observed
vulnerability of materially closed experimental ecosystems with the numer.
ous demonstrations of stability in mathematical models of closed systems
with material cycling, Our results, like those given in 6], state that if maodel
(1} is *‘quasi-cloged’’ it has a positive stable equilibrium byt very low
resilience. This means that the system wil] Stay out of the steady state for a
long time after 4 perturbation, which implies a high vulnerabiliry.

For small values of T, the real eigenvalue (37) must be compared with
the real part of the solutions of the second-degree equation

¥+ C,(0)h+ C,(0) =0, (39)

which is obtained by keeping the terms of zeroth order in in the
characteristic equation,

The following theorem states that the reasoning given above can he
applied if delay kernels (11) of arbitrary order P =0 are considered and the

dpproximated expressjon of the real eigenvalue X Eiven in (37) holds for
each p,

THEOQOREM 5

The proof is in the Appendix.
5. DISCUSSION

The present Paper aims at Ivestigating the effects of the time delay
involved in nutrient recycling on resilience, that 15, the rate at which a
System returns to a stable steady  state following a perturbation. This
analysis has been carried out using the simple and general chemostat mode|

!
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(1) where an integral term has been inserted 1o represent the delayed
recycling of the limiting nutrient. It has been proved that the positive
equilibrium is sgable, independently of delay magnide, for a particular
class of delay kernels. This the equilibrium resilience has been quantified as
proportional to the absolute value of the real part of the dominant eigen-
value in the linear variational system,

A method has been given for the numerical calculation of the real part of
the dominant eigenvalue without having to find the complex roots of the
characteristic equation. This method also allows us to distinguish the case of
4 real dominant eigenvalue (monotone or “overdamped® COnvergence to
equilibrium) from that of a pair of complex conjugate eigenvalues (oscilla-
tory or “*underdamped*’ convergence),

From the numerical results obtained, the dependence of resilience on the
recycling extent appears to be nonmonotonic, and a critical value of the
parameter b exists at which the resilience is maximum and the type of
convergence changes from oscillatory o nonoscillatory for increasing b
The critical value of b decreases with increasing time lags; that is,
increasing delays in recycling favor a destabilizing influence of b.

A counterintuitive result may be that an increase in the time lag
inhibits the oscillatory behavior of the system, whereas it is a common
belief that the presence of time lags causes oscillations [12). Oyr resulis
show that increasing time delays lead from a relatively fast oscillatory
convergence to a slow monotone convergence, thal is, the time lag in
recycling acts as a damping force. However, when the system is character-
ized by oscillatory behavior (i.e., for small T), an increase in the time
delay can have a stabilizing effect (this is another counterintuitive result),

The influence of the input nutrient concentration on resilience has also
been studied, and for a small delay our results are in agreement with those
given in [5). In fact, for low values of S° an increase in this parameter
leads to a higher relative stability, whereas resilience seams to be practically
independent of §* for higher values of this parameter. Jn this case, too, the
influence of the delay is evident as increasing the value of T leads 1o a
decrease in resilience and an extension of the domain where resilience is
insensitive to $° variations.

The analytical approximation of the dominant eigenvalue in the case of g
““quasi-closed”” ecosystem with strong recycling given in Section 4 shows
that the stable equilibrium of such Systems is characterized by low resilience
and the characteristic return time i« proportional to the delay in recycling.
These tesults are consistent with the statement of DeAngelis in |6) that
resilience is inversely related to the mean transit time, the mean time a unjt
of nutrient spends in the system from input to output,

The results obtained are confirmed by numerical simuldtions of the
trajectories in the phase space of model (1). From these computer simula-
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tions the stability domain of the positive equilibriom appears to be very
large, whereas the results given in the present paper apply only to small
perturbations around the stable equilibrium, becagse they are obtained from
the linear approximation of mode| (1). This is a shortcoming of the present
work, and some effort should he devoted to the problem of retyrn time for
larger perturbations that bring the SYstem into regions of the phase space
where the nonlinear lerms cannot be neglected, This question is rarely
discussed in the literature and s worthy of attention jn ecological problems,

APPENDIX

PROOF OF THEOREM 2

To prove that the roots of the ( p + 3)th-degree characteristic equartion
(18} are in the left-half complex plane for each £ 20, we use the method of
mathematical indyction For p=0 the roots have negative real parts for
each parameter value, because in this case the characteristic equation is the
third-degree equation (21) whose coefficients (22) are all positive and such

GG -Co=a(D+ Y KN D+ ym, k + o)
+m k(D + D,j{ﬂ+-ymjj:j+-ym,kcshﬂ, =0. (A1)
Thus, from the Routh - Hurwirz criterion, every root of (21) has g strictly
negative real part. We now suppose that this is true for Equation (18) with a
given p >0 too. This means that no root can be on the imaginary axis; tha
15, Equation (18) with » = je, wel
— o' (a+iw)?! D+ ym k)io(a+ jw) ™t
Fym(D+ D k(e + iw)? ! - YD katt! <0, (A2)
Is never satisfied.

Following [10, Ch. 91, we introduce 3 new variable 8 such that tang =
wio, << T /2. Thus (A2) becomes

ef[‘”*'}a[ —w'+ym (D+ D)k +i(D+ 'rm.ﬂwf
=ym bD k(cosp)”*" (A3)

and, by taking the Square modulus of both sides of {A3) we obtain the
equation

R{w) = (cos )" with
R(w)= (P4 D)= [+ (D4 ympy 2
T]mszﬂfkj

which cannot be satisficd for wel, .

c (A4)
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C . ]
Since R0y =[( D+ DO/ D =1, it must be that R{w) = {cos gy~
for each w=>0. The same inequality is true for £+1; that is, Riw)>
(cos ) welt,, because 0 =cosf < 1. So in this case 0o, no root can
cross the imaginary axis as some parameter varies, and the thesis follows.
PROCF OF THEOREM 13

Let us write

D:=eD, (AS)

with ¢ < 1. After substitution of (AS5) into (16) and (17), we have

mU(s)(s°~s)\"
E'.ﬁ_ﬂ,(l—r‘T) 4m U(S.)(8 T,}J,

ﬂ{b}=EDn[tDn(l+
(A6)

where the definition of k., Equation (10}, has been used.
We have

m U (S,)(5° - §
A(0) = eDy|eD, [ 1+ — =D+ D

d] —4m,U(S.)(5° - s;,_,}],
(A7)
which is negative for sufficiently small ¢, and

0_ " 2
[eDy + m‘Ug*J{5 =S —4mU'(8,)(8° - 8,)
€Ly

]

afl) = rnﬂI
(A8)
which is positive for sufficiently small ¢.

As A(b) is a continuous and increasing function of bel0, 1], a unigue
value b_e(0, 1) exists such that A(b) =10,

PROOF OF THEOREM 4

After the change of variable, Equation (19), the characteristic equation
(21} becomes

'+ ay(0) 2% + ay(0) 7 4 ay(o) =0, (A9)

with a(a), i=0,.. 2, given in (23). From the generalization of I.itin.mrd
and Chipart of the Routh-Hurwitz criterion (see, e.g., [71), the conditions

ale)=0, i=0,...,2, and A(a)=0 (A10)
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with &, given by (24), are necessary and sufficient for all the roots of (A9)
to have negative reg| parts. These conditions are satisfied for o = () bec&us::
in this case (AD) is identical 1o (21). When the parameter o increases {i.e,
the imaginary axis shifis to the left), the minimum positive ¢ at which at
least one of the inequalities (A10) is not satisfied represents the first value
of & at which at legst one root crosses the Imaginary axis. This value of o
is a* the distance of the dominant cigenvalue from the imaginary axis.
This completes the proof,

PROOF oF THEOREM 5

This is a straightforward consequence of a result of Orlando (see, e.g.,
[10, p. 71) or [7]) together with the continuous dependence of the roots on
Parameter a. However, in our case it can be proved very easily. If
ae)=0, then z=0 js 4 root of (A9), and vice versa Furthermore,

?=*iw, weR,, are roots of (A9} if and only if the real and the imaginary
parts of (A9) vanish, that is,

“@e)w’ +ay(o)=0  and m[a,{o}—m2J=!}. (Al1)

Substituting for w? in the second equation gives — A,(a)/a,(a)? = 0.
FPROOF oF THEOREM ¢

The characteristjc equation (18) with parameters D and b given hy (29)
and (30} can he Wwritten as

M+ Cp ()i 24 ... +C(e)A+Cyle) =0, (A12)

with
Cole) = eam "Dym, U7(8,)(S° - 5.):=¢C, (A13)

and
C(e) = (eD, +oym k)oar+! Tymk(eDy+ D)) p+ De?. (Al4)

Let _i(_ £} be the root such that A() = 0. Following the same reasoning as in
Section 4, a good approximation of Me) for e 1 iy

Me)=-—Co_,_ _a”'Dymu(s,)(s* - s.) __Dy+D,b,
C,(0) T ko &+{p+I}D,] £ 1+ OF ©
(A15)

where the definitian [Eq. (100] of ¥ and a=(p+1)/T have been ysed
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