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ABSTRACT

In this paper we provide an overview of some dynamic oligopoly models proposed in the literature 
to describe the exploitation of a common pool renewable natural resource (e.g. the fisheries) when 
agents can switch between different harvesting strategies. We suggest a switching mechanism which 
is an alternative version of the discrete-time replicator dynamics based on expected profits and 
myopic imitation of the better performing behaviors, often denoted as exponential replicator. We 
finally provide a general framework for modeling situations where authorities allow for different 
alternative strategies to exploit a natural resource and agents can choose among such possibilities 
by updating their decisions at discrete times on the basis of profitability considerations.
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1. INTRODUCTION

Evolutionary game theory studies the behavior of large populations of agents who 
repeatedly engage in pairwise strategic interactions. At each moment in time, a single 
individual in a population can choose among a set of alternative behaviors, and his/
her payoff depends also on the choices of the other players. The basic idea is that the 
fraction of the population adopting the best performing behavior in the current situa-
tion will increase in the next period. In other words, the distribution of behaviors in a 
population evolves over time, and the fraction of individuals playing the more suc-
cessful strategies increases in size. In a biological context, this can be interpreted by 
saying that more skilled individuals in acquiring food, space or other limiting factors, 
live longer, are stronger and consequently reproduce more, thus giving rise to new-
born individuals that inherit the same kind of behavior. In a social context, this can be 
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interpreted by saying that the kind of behavior that obtains the largest payoff will be 
imitated by agents gaining less, so that the more successful behavior will prevail. The 
study of models incorporating these kinds of dynamics can provide useful informa-
tion about which behaviors will become extinct and which ones will survive over 
time, whether the system will approach an equilibrium situation where only one strat-
egy prevails or several of them will coexist in a steady-state or an oscillatory time 
pattern will emerge.

It is now well known that environmental problems, such as the Climate Change or 
the exploitation of a natural resource, just to mention a few, require an interdisciplin-
ary approach for their solution, as it occurs in the study of all complex systems. From 
this point of view, the history of evolutionary games is quite emblematic. The classi-
cal theory of games, mainly created in social, political and economic contexts as a 
mathematical representation of human rational choices in the presence of strategic 
interactions with other rational players, has been adapted to represent the evolution 
of biological populations. Indeed, in the Seventies some biologists (see e.g. Maynard 
Smith, 1982, and references therein) realized that the theory of games, already quite 
popular after the publication of the seminal book Theory of games and economic 
behavior by von Neumann and Morgenstern (1944), could also be used to represent 
the evolution of animals’ behaviors inside ecological communities. However, the 
first book about evolutionary games and biology titled “Evolution and the Theory of 
Games” was published by the mathematical biologist John Maynard Smith in 1982, 
exactly 40 years ago. He adjusted the methods of traditional game theory to the con-
text of biological natural selection, and he introduced some adaptive rules that gov-
ern the time evolution of strategies’ distributions over a given population of players 
in the form of differential or difference equations. In this way, the usual concepts of 
the qualitative theory of dynamic systems could be retained. Moreover, after the 
book by Dawkins (1976) The selfish gene and the paper by Taylor and Jonker (1978) 
Evolutionarily stable strategies and game dynamics, the most common dynamic 
foundation of evolutionary dynamics is now known as “replicator dynamics”. The 
basic idea behind this concept is that the number of individuals using a given strategy 
rises if their expected payoff is greater than the average payoff of the whole popula-
tion, whereas their number decreases if the payoff of their strategy is below the aver-
age. In a biological interpretation, a population consists of animals genetically 
programmed to use some strategy that is inherited by their offsprings. Initially, the 
population may consist of animals using different strategies (e.g. more or less aggres-
sive, using different methods to get food etc.) and the payoff to an individual adopt-
ing a given strategy is called fitness. Animals with higher fitness with respect to the 
average fitness of the population live longer and are stronger, hence leave more off-
springs that inherit the same behavior. So, in the next generation the composition of 
the population will change.

In the economic interpretation, the population partition among different behaviors 
(or strategies) changes because (the same) people play the game many times, observe 
the payoffs gained by other players and consciously switch strategies by imitating the 
most successful behaviors. So, economists and social scientists realized the value of 
the evolutionary approach to game theory in modeling social systems, both as a 
method of providing foundations for the equilibrium concepts of traditional game 
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theory, and as a selecting tool of an equilibrium in games that admit more than one. 
Indeed, the two approaches (the biological one and the social sciences one) lead to 
the same dynamic model denoted as replicator dynamics as it can be interpreted not 
only as a model of natural selection through reproduction (or replication) in biologi-
cal populations, but also as a model of imitation of successful strategies in social and 
economic contexts. The main difference is that successful strategies in biology are 
measured in term of fitness, generally a positive value, whereas in economics profit 
is used as a proxy of success, a value that may even be negative in some time periods. 
As we shall see, this may become a problem if the classical replicator dynamics is 
used. For this reason (and not only this) we prefer to use a different version of the 
replicator dynamics often denoted as exponential replicator, proposed by Cabrales 
and Sobel (1992) (see also Hofbauer and Sigmund, 2003; Hofbauer and Weibull, 
1996; Kopel et al., 2014; as well as Bischi et al., 2015; Bischi and Merlone, 2017; 
Bischi et al., 2018, for applications in economic and social modeling).

In this paper we revisit three dynamic oligopoly models belonging to the literature 
of natural resource exploitation, in particular the fisheries, when some practices for a 
sustainable management are present. In these models, the regulator allows for a set of 
different exploitation rules leaving to the exploiters the possibility to choose among 
them according to profit maximization arguments. This naturally leads to model a 
dynamic switching mechanism which repeatedly selects which strategy is preferred 
among the allowed ones. In the following examples, in order to model the switching 
mechanism, we implement the discrete-time exponential replicator, because, as stated 
above, it allows one to describe situations where payoffs are represented by profits, 
that can become negative if costs overcome revenues during some time periods.

The exponential replicator dynamic equation is described in Section 2 and the 
following three sections deal with three different applications without any study of 
their dynamic properties. This is done to suggest how and why the exponential repli-
cator can be introduced. In Section 6 we develop a general framework where two 
strategies in an oligopoly context are compared by using the exponential replicator as 
a device to select the more profitable one. We also suggest possible directions for 
future analysis and improvements that can be added to the models proposed. Finally, 
Section 7 concludes the work.

2. STANDARD AND EXPONENTIAL REPLICATOR DYNAMICS

The size of a large population of ex-ante identical individuals at time t is denoted by 
N(t) and the finite set of available strategies to individuals of the population is 
denoted by . Let Ni(t) be the number of agents that play strategy si 

at time t, and let   be the corresponding fraction. As any agent is 

assumed to choose one and only one strategy at each time period, then  
and consequently . Hence, the state of the population can be repre-
sented by the vector  where k – 1 is the dimension (degrees 
of freedom) of the system.
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An evolutionary process provides a selecting mechanism that favours some popula-
tion fractions with respect to others. This mechanism is modelled in terms of differential 
or difference equations, according to the continuous or discrete time scale considered, 
so that the usual methods for the study of dynamical systems, with the related concepts 
of stability, bifurcations and different kinds of attractors, can be applied. The evolution-
ary process also addresses the issue of mutations i.e. how an invariant set is robust 
against perturbations of the state . This is indirectly taken into account through 
dynamic stability arguments. Indeed, if a small displacement of the initial condition 
from an equilibrium is recovered, so that the same equilibrium prevails again in the long 
run despite the initial perturbation (or mutation), then this can be expressed by saying 
that the mutants agree on the convention expressed by the original equilibrium.

A well known dynamic evolutionary selection process is given by the so called 
“replicator dynamics”. It is based on the assumption that individuals of a large popu-
lation under scrutiny are randomly pairwise matched to play a two-person game with 
given payoffs. The probability of being matched with an agent playing a given strat-
egy si is proportional to the fraction xi. This implies that in all the computations, 
especially of the payoffs, the fractions xi(t) can be interpreted as probabilities, like in 
a game with mixed strategies.

In the following we shall focus on a discrete time scale based on the idea that 
human decisions, in social and economic contexts, generally occur at discrete times, 
due to adjustment costs and system inertia.

The derivation of the discrete time replicator dynamic equation is straightfor-
ward. Let r be the intrinsic growth rate of the population, independent of the game 
played inside the population. Moreover, assume that the growth rate of the portion of 
population playing strategy si is proportional to the average (or expected) payoff ¼i 
obtained by a representative player i of that population class when randomly pairwise 
matched with other individuals of the same population, so that:

Summing up over classes i = 1,…, k we have

as  and  is the average payoff in the whole 
population. Dividing each side of the first equation by the corresponding side of the 
second one, we get

(1)

provided that  for each i = 1,…, k  and for each t. Equation (1) 
describes the discrete-time replicator dynamics, which essentially states that the frac-
tion xi of the population playing strategy si grows whenever it obtains a payoff 
greater than the average payoff. However, the assumption of positive payoffs may be 
quite critical in applications, as negative payoffs may occur (consider, for example, 
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the case of payoffs given by profits, as it is often assumed in economic applications 
where r + ¼i may be negative for some periods even if it is positive in the long run). 
This gives values of xi(t) outside the interval [0,1], which are meaningless, and even 
if such unfeasible values are obtained just in one time period then all the successive 
states are meaningless as well. So, an alternative to (1) is obtained by considering a 
monotone transformation of payoffs given by u(¼i) = exp(¯ ¼i), with ¯  ≥ 0, and 
consequently .

The equation that describes the growth of the portion of the population playing 
strategy si then becomes

Summing up over classes i = 1,…, k, we have

and, again, dividing each side of the first equation by the corresponding side of the 
second one, we get

(2)

which guarantees that xi(t)  [0,1] for each t without further conditions. This (expo-
nential) replicator equation, based on the monotone selection dynamics proposed in 
Cabrales and Sobel (1992), is a simple and useful way to avoid the problem of nega-
tive payoffs, see e.g. Hofbauer and Weibull (1996) and Hofbauer and Sigmund 
(2003). The parameter ¯  ≥ 0 is referred to as the intensity of choice, which measures 
how fast the players are at selecting profit-increasing behavioral rules. The extreme 
case ¯  = 0 gives a model with fixed fractions, being x(t  + 1) = x(t) = x(0). The 
other extreme case ¯  =  corresponds to a situation where all firms immediately 
switch to the behavioral rule showing a (even negligible) better performance, i.e. 
xi(t)  1 if ¼i > ¼i for each . This evolving adjustment mechanism has been 
recently used in Bischi and Merlone (2017) and in Bischi et al. (2018) to model evo-
lutionary binary games, as well as in Bischi et al. (2015) and Bischi et al. (2018) to 
study the time evolution of different boundedly rational behaviors in oligopoly mod-
els with the possibility of switching from one to another. Of course, even if many 
evolutionary models are based on the replicator dynamics, this is not the only evolu-
tionary selection mechanism, as many others have been proposed in the literature, 
see e.g. Bischi et al. (2003); Brock and Hommes (1997); Droste et al. (2002); Hom-
mes (2013), for different switching mechanisms and their applications.

3. COOPERATORS AND DEFECTORS IN FISHERIES

In this section we first illustrate the dynamic model proposed in Bischi et al. (2004) 
which describes an open access fishery exploited by a population of interacting 
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agents that sell the harvested resource in the same market, and then we replace the 
standard replicator dynamics (1) with the exponential one given by (2).

The situation addressed in the model concerns the classical problem in the 
exploitation of common property renewable resources known as “the tragedy of the 
commons” (Hardin, 1968, see also Clark, 1990). The essence of this “tragedy” 
resides in the nature of the resource: as a good that is not excludible and rivalrous in 
its consumption, any savings coming from an individual conservative management 
of the resource do not end up in the hands of the saver, giving rise to a use of the 
resource of the type first-come, first served.

This problem can be modelled as a prisoner’s dilemma (see e.g. Mesterton-Gib-
bons, 1993): if harvesting agents play non-cooperatively by maximizing their own 
individual payoff they all choose their dominant strategy and, in the short-run (disre-
garding competitors’ profits), a severe depletion of the resource is obtained with low 
profits for all in the long run. On the other hand, if fishers cooperate to maximize the 
aggregate profit, then a sustainable exploitation of the resource is more likely to be 
obtained, which implies higher profits for all in the long run. However a cooperative 
behavior is not robust to unilateral defections, i.e. the decision of an agent to harvest 
intensively while the other players harvest moderately may lead to higher profits for 
the defector, and consequently to profit loss for the cooperators.

The model developed in Bischi et al. (2004) uses a Cournot oligopoly setting to 
describe the exploitation of the natural resource, as in Levhari and Mirman (1982) or 
Szidarovszky and Okuguchi (1998), Szidarovszky and Okuguchi (2000). In these 
papers, it is assumed that the strategic interactions among players occur both via the 
selling price, determined by the total harvested quantity for a given demand function, 
and via a cost externality, since resource stock reductions, as consequence of players’ 
harvest, lead to higher unitary fishing costs (see also Bischi and Kopel, 2002). In 
Szidarovszky and Okuguchi (1998), every player decides his/her harvesting activity 
by solving his/her profit maximization problem (non-cooperative approach). By con-
trast, in Szidarovszky and Okuguchi (2000) it is assumed that fishermen form a 
grand-coalition (i.e. a cooperative venture) and each player determines his/her har-
vesting activity such that the joint profit of all players is maximized. In both cases, 
the solution of the optimization problem leads to harvesting functions that depend on 
the fish stock, whose dynamics is governed by a biological growth function with an 
extra mortality term due to the harvesting activity.

In Szidarovszky and Okuguchi (1998), the time setting is assumed to be dis-
crete. Even if populations’ growth functions in dynamic ecological models have 
been traditionally formulated in continuous-time, discrete-time population dynam-
ics have received increasing attention not only for the complex and intriguing time 
evolutions that they can produce even in the simplest nonlinear systems, but also 
for relevant usefulness in ecological modelling. Indeed, several authors stress that 
discrete-time population models should be used whenever reproduction happens at 
given breeding seasons, as several animal species successfully mate only during 
certain times of the year, thus giving non-overlapping generations (see e.g. Geritz 
and Kisdi, 2004; May, 1975). As a consequence, an increasing number of dis-
crete-time population models have been proposed in the literature (see e.g. Cush-
ing et al., 2004; Getz and Haight, 1989). A comparison between continuous-time 
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and discrete-time dynamics in imperfectly competitive international commercial 
fisheries is given in Eriaee and Okuguchi (2006).

In terms of the biological model, the fish stock at time period t, denoted by X(t), 
is assumed to be regulated by the logistic growth function

(3)

where g > 0 represents the natural growth rate of the population, m > 0 is an 
extra-mortality term due to overcrowding (lack of food or space) and H is the total 
harvest to which the fishery is subjected.

Following the usual setup of evolutionary games, the population of n fishermen is 
subdivided into a fraction 0 ≤ s ≤ 1 of cooperators, that form a cooperative venture 
where each one decides the harvesting quota  by maximizing the profit of the coa-
lition. Members of the complementary fraction (1 – s) are called competitors (or 
“defectors”) and each of them decides his/her harvesting  by maximizing his/her 
own profit. The total harvest is so given by

and the selling price p is determined by the total harvested quantity H according to 
the given linear demand function

(4)

Player’s i cost function for harvesting a quantity xi when the fish stock level is X 
is given by (see e.g. Clark, 1990; Szidarovszky and Okuguchi, 1998)

(5)

with °i ≥ 0 which satisfies the common assumptions that costs are decreasing in the 
fish stock and increasing in harvest1.

Following Sethi and Somanathan (1996), an extra-cost is added to the profit func-
tions due to the presence of social norms that are intended to punish fishers that 
behave as defectors, i.e. self-interested profit maximizers without any care of social 
optimum. Like in Sethi and Somanathan (1996), cooperators are entrusted to sanc-
tion defectors by applying some sort of punishment. This may be done directly by 
expressing social disapproval or by physically damaging the person and/or her equip-
ment as observed in less developed societies; punishment can be also accomplished 
indirectly by alerting authorities so that they can impose sanctions according to the 
laws in force. Such punishment is costly for the defectors, with the cost being given 
by ns», where » is the amount of the sanction and ns represents the probability that a 

1 This type of cost function is derived from a “production function” of the Cobb-Douglas-type 
with fishing effort and biomass as the two inputs.
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defector is notified by a cooperator. However, in general, this kind of punishment is 
also costly for the cooperators, the cost being proportional to the number of defec-
tors. Let n(1 – s)Ã be this extra cost for cooperators (of course » > Ã, and we shall 
often consider Ã = 0 in the following). All in all, the profit of the i-th cooperator is

(6)

where °c refers to the fishing technology adopted by all cooperators and n(1 – s)Ã 
represents the cost that a single cooperator has to face in order to punish all the defec-
tors. The profit of the i-th defector is

(7)

where °d refers to the (business-as-usual) fishing technology adopted by the defec-
tors2 and ns» represents the punishment that a single defector bears for causing the 
negative externality in the community.

Each cooperator determines  by solving the optimization problem given by

(8)

where ¼V, which is a concave function in the variables , denotes the total profit of 
the cooperative venture.
Assuming an interior optimum, the first order conditions give a system of linear 
equations in the unknowns 

(9)

Each defector determines  by solving the optimization problem represented by

(10)

Assuming, again, an interior optimum, the first order conditions give a system of 
linear equations in the unknowns 

(11)

Note that the optimization problems (8) and (10) are intended as static optimizations, 
solved at a given time at which the available biomass is assumed to be constant. Equa-

2 At this stage we do no make any specific assumption on the relationship between °c and °d.
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tions (9) and (11) constitute a linear system of n equations with n unknowns. However, 
it is straightforward to see that any cooperator faces the same optimization problem, and 
analogously for defectors. In fact, if we denote by  the total harvest of 
cooperators and by    the total harvest of defectors, from (9) we get

and from (11) we get

Thus, denoting the optimal harvesting decision of each cooperator by xc and the 
optimal harvesting decision of each defector by xd, these quantities can be calculated 
by solving the two linear equations

from which the two linear reaction functions are obtained as

(12)

These reaction functions allow one to compute, respectively, the optimal harvest-
ing decision of a “representative cooperator”, given the harvesting decision of a repre-
sentative defector, and the optimal harvesting decision of a “representative defector”, 
given the harvesting decision of a representative cooperator. These two reaction func-
tions always intersect in a unique point , whose coordinates are given by

(13)

and

(14)

For any s  [0,1] both  and  are increasing functions of X and they vanish at 

X = 0, where their slopes are  and , 
respectively.
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Moreover, both  and  tend to saturate as , at the values

respectively. The gap between  and  is always positive and, for large values of the 
fish stock, it increases with increasing prices and with the number ns of cooperators, 
being

The total harvest at the Nash equilibrium by the two groups, given by

(15)

is an increasing and concave function with respect to X, such that ,

and for  it saturates at the value

Notice also that  for each X > 0, so that prices are always positive. 
Moreover, if s decreases, i.e. the number of defectors increases, then 
increases. In other words, as expected, in the presence of abundant resources the total 
harvest is greater if the number of defectors increases. In the limiting case s = 0 (all 

defectors) we have  , and in the opposite limiting case 

s = 1 (all cooperators, equivalent to the case of a sole owner) we get  
a/2b, the monopolist optimal harvesting.

The above results allow us to compute, at the Nash equilibrium, the profits of 
both a representative defector and of a representative cooperator, given by

(16)

respectively. Plugging the expressions of ,  and  into (16),  and  can be 
rewritten as:

(17)
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and

(18)

respectively. These expressions show that, at the Nash equilibrium, the profits of 
defectors (cooperators) are positive provided that the applied sanctions (the costs to 
apply sanctions) are not too heavy. For example, under the assumption Ã = 0 and 
» > 0, we have  always positive and  positive or negative depending on the size 
of the sanctions applied and on the number of cooperators.

For this reason, when an evolutionary mechanism in discrete time is introduced to 
describe how, at each time period, the dynamics of s(t) is updated, we propose the 
exponential replicator (2) with payoffs (t) and (t), whereas in Bischi et al. (2004) 
the standard replicator dynamics (1) is used after suitable assumptions to maintain 
profits always positive. In this new version of the model, such assumptions are no 
longer necessary, and the evolution of the bioeconomic system is then governed by the 
iteration of the two-dimensional map  given by

(19)

where

and  is given by (15), with  and  defined in (13) and (14) respectively, 
,  , given in (17) and (18) respectively.
Furthermore, when (1) is replaced by (2) a new parameter ¯ ≥ 0 is introduced. 

This parameter is important because it can be tuned to allow for different degrees of 
fishermen reactivity (or speed of adjustment) in their decisions to switch from one 
strategy to the other so giving rise to new dynamic patterns.

It is straightforward to see that s(t)  [0,1] implies s(t + 1)  (0,1) despite the 
sign of  and  (whereas in the classical formulation (1) used in Bischi et al. (2004) 
this is true only if profits are positive at each time t). As usual, if s(t) = 0 then 
s(t + 1) = 0 for each t ≥ 0, and if s(t) = 1 then s(t + 1) = 1 for each t ≥ 0, i.e. the 
two boundary lines s = 0 and s = 1 are trapping lines, on which the dynamics are 
governed by the one-dimensional unimodal maps, given by the restrictions of the 
two-dimensional map (19) to them. These two cases correspond to particular bench-
mark cases, i.e. when agents are only defectors and when agents are all cooperators 
respectively, see Szidarovszky and Okuguchi (1998), Szidarovszky and Okuguchi 
(2000) and Bischi et al. (2005) on this point. Some general properties of these one-di-
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mensional dynamical systems can be easily obtained. For example, the dynamics 
along the invariant edge s = 0, when all players are defectors, are governed by the 
one-dimensional restriction of (19) with s = 0 and

So the steady states are given by X = 0 and the solutions (if any) of the equation

(20)

On the other invariant edge s = 1, when all players cooperate, the dynamics are 
governed by the one-dimensional restriction of (19) with s = 1 and

So the fixed points are given by X = 0 and the solutions (if any) of the equation

(21)

The analysis is the same as in Szidarovszky and Okuguchi (2000) or in Bischi et 
al. (2005).

As usual, the starting point for the qualitative analysis of a nonlinear dynamical 
system is the localization of the steady states and the study of their local stability. The 
steady states of the two-dimensional dynamical system (19) are the fixed points of the 
map T, solutions of the system T(X, s) = (X, s). It is straightforward to see that two 
corner equilibria always exist, given by E0 = (0, 0) and E1 = (0, 1), both character-
ized by the extinction of the resource. Other boundary equilibria may exist along the 
invariant lines s = 0 and s = 1, given by the solutions, if any, of equations (20) and 
(21) respectively. If two equilibria with positive fish stock exist both on the invariant 
edge s = 0 and on the invariant edge s = 1, say X2 (0), X1 (0) and X2 (1), X1 (1) 
respectively, then the following relation must hold: X2 (1) < X2 (0) < X1 (0) < X1 (1). 
A necessary condition for the existence of two positive equilibria along s = 0 is that 
two positive equilibria exist along s = 1. However, it may happen that two positive 
equilibria exist along s = 1 and no positive equilibria exist along s = 0. The stability of 
these equilibria with respect to the one-dimensional dynamics trapped inside the invari-
ant edges can be easily deduced from the discussion on the one-dimensional dynamics.

Another interesting aspect to assess is the stability of the equilibria with respect to 
perturbations transverse to the invariant edges, i.e. what happens if a few defectors 
appear starting from a situation with all cooperators, or what happens if a few coopera-
tors appear starting from a situation with all defectors. The question to be answered is 
about whether such small mutations are eliminated by the evolutionary dynamics, so 
that the original benchmark case is restored (case of transverse stability) or these behav-
iors spread out thus causing an irreversible departure from the original benchmark case.
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An answer to these questions requires the study of the local stability of the bound-
ary equilibria, i.e. the localization, in the complex plane, of the eigenvalues of the 
Jacobian matrix of (19) computed at the boundary steady states. This is not difficult 
in principle, as eigenvalues are always real because the Jacobian matrix of (19) is a 
triangular matrix along the invariant edges. This implies that we can only have nodes 
or saddle equilibria on the boundaries. However, the expressions of the eigenvalues 
are quite involved, and the derived stability conditions are not ease to interpret.

Interior equilibria, i.e. steady states characterized by the coexistence of coopera-
tors and defectors, are obtained solving the nonlinear system

(22)

with 0 < s < 1. The set of points of the plane (X, s) that satisfy the first equation 
represent the locus of points that give one-period stationary resource stock, i.e. 
X(t + 1) = X(t). This set of points may be formed by two branches, say X1(s) and 
X2(s), with  X2(s) < X1(s) for each s. Moreover, X2(s) is a decreasing function and 
X1(s) is increasing, so the branch X1(s) has positive slope and the branch X2(s) has 
negative slope in the plane (X, s). The intersection of the branch X1(s) (X2(s)) with 
the invariant edge s = 1 gives the X coordinate of the boundary equilibrium X1(1) 
(X2(1)), and the same holds for the intersections (if any) with the other invariant 
edge s = 0. However, it may happen that the two branches intersect with s = 1 but 
have no intersections with s = 0, because they may merge together for s > 1.

We do not further develop the dynamic analysis of system (19) as we leave it for 
future work, according to the aim of this paper. We just remark that by replacing the 
standard replicator (1) with the exponential replicator (2) we are able to consider some 
new trajectories characterized by temporary negative profits (due to heavy punishments) 
and account for either some inertia (low ¯) or overshooting (high ¯) effects. Having a 
model able to represent a wide range of scenarios allows us to capture a greater number 
of real life situations and to design more appropriate policy interventions.

4. DISCRETE-TIME FISHERY WITH MARINE PROTECTED AREAS

In this section we consider a discrete-time dynamic model to study the time evolution 
of a fish stock in an aquatic environment that is (virtually) divided into two neighboring 
zones characterized by different fishing strategies. Indeed, often the fishing legislation 
partitions a fishery into regions, and in each region a different harvesting policy is 
imposed. This is particularly true at international level. Nevertheless, the fish moves 
between regions, so that the stock of one region depends not only on the harvesting 
effort and biological growth of that region, but also on the stock and catch of the neigh-
boring areas. Fish mobility gives rise to an interdependence between the two areas such 
that, at each time period, it can increase the population of the zone where fish stock is 
scarcer, and thus the division of the water basin may act as a device to restore resources 
in the overexploited region. So, an authority in charge of a sustainable resources man-
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agement may subdivide a common pool resource into regions where different fishing 
rules are applied, including the case of regions where fishing is forbidden, see e.g. 
Dubey et al. ( 2003). An increasing interest for this kind of regulation is witnessed by 
the rich literature, conferences and congresses devoted to it (see e.g. Bohnsack, 1993; 
Clark, 1996; Holland, 2002; Sumaila, 1998; Sumaila and Charles, 2002).

The model proposed in Bischi et al. (2009) has been motivated by the project to 
create a Marine Protected Area (MPA) in an international sea zone in the Adriatic Sea 
called “Fossa di Pomo”, see e.g. Antonelli et al. (2006). In particular, this MPA is not 
intended as a reserve area (i.e. a no-fishing zone) but as a region with a carefully 
regulated fishing activity like, for example, one where a limited fishing effort is 
allowed. Clearly, this level, together with other profit considerations, affects fishers’ 
choice to work in that area or harvest somewhere else.

The model in Bischi et al. (2009) accounts for two fishing areas with different 
fishing policies and fishers allowed to choose where to harvest. In particular, it is 
assumed that an aquatic environment is divided into two adjacent patches, where in 
region 1 a constant fishing effort policy is allowed and in region 2 fishers engage into 
an oligopolistic competition. Furthermore, the fraction of fishers that, at each time 
period, decides to operate in one of the two regions updates endogenously via an 
adaptive switching mechanism based on a particular kind of imitation dynamics (see 
e.g. Bischi et al., 2003; Vega-Redondo, 1996). Instead, in this paper we propose to 
use the exponential replicator switching mechanism (2).

Let X(t) be the total quantity of fish biomass in a water basin at time period t, and 
let X1(t) and X2(t) be the quantity of biomass in the patch 1 and patch 2 respectively, 
with X(t) = X1(t) + X2(t). Assuming that fish can migrate between the different 
patches according to a linear diffusion mechanism, the biological evolution of the 
resource in each patch is modelled by the following two-dimensional dynamical system:

(23)

where the function G(X) represents the growth function, ¾ > 0 is a diffusion coeffi-
cient, and Hi(t) represents the quantity of fish harvested in time period t in region i. 
Figure 1 provides a graphical representation of the situation considered. 

Figure 1
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A subdivision of a fishing ground into patches, with similar fishing policies, is 
also considered in Bischi and Lamantia (2007). However, in that paper, two indepen-
dent growth functions govern the evolution of the fish stock, implying that the fish 
population of each region is assumed to interact only with the individuals of the same 
region. Instead, in this case the growth function in each patch involves interactions 
with both subpopulations, i.e. summing up the two equations (23) gives

where H(t) = H1(t) + H2(t) is the total harvested quantity.
In the following, the logistic growth function (3) is considered, i.e.

and it is assumed that the docked fish is sold in a single market no matter where it is 
harvested, so that the price is given by the linear inverse demand function

(24)

where a and b are positive parameters and H(t) is the total harvested quantity from 
both patches.

Denote by N the total number of fishers in the industry, by n1 the total number of 
fishers active in patch 1 and by n2 = N – n1 the number of fishers operating in patch 
2. Let r = n2/N be the fraction of fishers outside the MPA and (1 – r) be the fraction 
of agents fishing inside the MPA.

In patch 1, the Marine Protected Area, the n1 fishers are allowed to harvest with 
an imposed constant fishing effort. If E is the individual fishing effort imposed by a 
regulator, then the total harvest in that region is given by

where q is the “catchability” coefficient, linked to the adopted technology. The idea 
of a constant fishing effort is very common in the literature on mathematical bioeco-
nomic models of the fisheries (see e.g. Clark, 1990, and references therein) and con-
stitutes the most employed method for harvesting control.

The profit at time t of a representative fisher operating in zone 1 is given by

(25)

where ± is the unitary cost of effort, H1(t) = N[1 – r(t)]qEX1(t) and H2(t) = Nr(t)
x(t) represent the total harvest in patch 1 and 2 respectively, r(t) is the fraction of 
agents operating outside the MPA in period t, x(t) is their individual catch, whose 
determination is given below.

In patch 2, the n2 bounded rational fishers engage in a Cournot oligopolistic com-
petition. The cost function of a representative fisher in this zone, for harvesting a 
quantity x when the fish stock is x2, is given by

Gian Italo
Rettangolo
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where ° reflects the harvesting technology outside the MPA. The quantity of resource 
harvested by a single oligopolist, x(t), is determined in the following way. If the 
fishers in each patch were homogeneous, then we could write the time t profit of a 
representative fisher working in zone 2 as

(26)

However, solving the profit maximizing problem could be too costly or difficult. 
For this reason, it is assumed that oligopolists act in a “boundedly rational” way, in 
the sense that they update their harvesting plans in the direction of increasing profits, 
as specified by the so called profit-gradient dynamics (see Flam, 1993; Furth, 1986; 
Bischi and Naimzada, 2000). Thus, the quantity x(t + 1) of a representative oligop-
olist as a function of r(t), x(t), X1(t) and X2(t) can be written as

(27)

where k > 0 is the speed of adjustment to the direction of the profit gradient.
At any time period, agents are allowed to change the fishing zone in which they 

operate thus changing their harvesting strategy, but differently from [Bischi et al., 
2009], here we assume that the switching between the two different harvesting strat-
egies is modelled by the exponential replicator equation (2) because profits (26) and 
(25) may become negative. So the complete model is represented by the following 
map in  with dynamic variables X1, X2, x and r:

(28)

where  and H2(t) = Nr(t)
x(t) with the individual oligopolistic harvest given in (27). As usual, the sets r = 0 and 
r = 1 are dynamic invariant in the sense that if r(t) = 0 (1) then also r(t + 1) = 0 
(1). This corresponds to the obvious statement that when a strategy is not performed 
at a given time it can not be imitated.

A steady state of the dynamical system (28) is a point  satis-
fying the following nonlinear system of equations

Gian Italo
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(29)

where the logistic growth (3) has been assumed and ¼1, ¼2 are given in (25) and (26) 
respectively.

When no biomass is present in each patch, i.e. X1 = X2 = 0, from (29, 2) we get 
x = 0 and (29, 4) reduces to r(1 – r)(c – ±E) = 0. In this case, the equilibria are given 
by  and . When c = ±E, any level   guaran-
tees an equilibrium of the type . All these cases represent extinction 
equilibria and it is easy to prove that all these boundary equilibria , ,  are 
unstable for any parameters’ values.

Let us now consider the case r = 0, i.e. all agents work inside the MPA. Obvi-
ously equation (29, 4) is satisfied and from (29, 3) we get that the harvesting equilib-

rium level of each representative agent is given by . Hence, 
the system (29) reduces now to

Starting from the second equation, for , we obtain X1 = g(X2) =   

 that, substituted back into the first equation, gives the 
equilibrium level in the variable X2 as a zero of the single variable function

It is immediate to notice that f (0) = 0 and that ; moreover, f   

has a vertical asymptote at , so that  By continuity of 

f in the  interval   , at least one  exists such that , hence we 
can define an equilibrium point . Note that the condition 

, equiva lent to , implies the existence of another 

equilibrium point such that .

The analysis of the case r = 1, i.e. with all agents working outside the MPA, leads 
to a similar exercise. Again equation (29, 4) is satisfied and the harvesting equilib-
rium level of each representative agent is . The existence of 

equilibria can be studied similarly to the previous case. Under the likely assumption 
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that 1 + g > 2¾, it is possible to prove analytically that no equilibrium exists with 
 and that at least one equilibrium  always exists 

with . Moreover, it is easy to verify that condition  
ensures the uniqueness of the equilibrium  under the case r = 1.

We finally turn to the problem of the existence of interior equilibria with 
 and with X1, X2 > 0. As before, we can find those equilibria in terms of 

a two-dimensional system of equations. In fact, from (29, 1), we can write r(X1, X2) =  

. By adding together (29, 1) and (29, 2) 

and substituting back the expressions for r and 1 – r, an expression for x(X1, X2) = 

 is obtained. By employing these 

two expressions for r(X1, X2) and x(X1, X2) in (29, 3) and (29, 4), the following 
system of equations in X1 and X2 is derived to characterize the interior equilibria 
with  and X1, X2

3:

Note that any solution  only defines a feasible equilibrium point when   
   and x  > 0. This system can be solved numerically, but 
this is beyond the scope of this paper.

As in the previous section, a deeper study of (29) will produce some new results 
due to the possibility of accounting for temporary negative profits and fishers’ inertia 
in switching to the best performing strategy.

5. A HYBRID MODEL OF FISHERY WITH TWO-SPECIES 
AND DISCRETE-TIME STRATEGY SWITCHING

In this section we revisit the fishery model proposed in Bischi et al. (2013) but with 
more general cost functions (that include fixed costs) and replacing the standard rep-
licator dynamics with the exponential one. The original model was motivated by the 
introduction of a fishing policy imposed by the Italian authorities in the Adriatic Sea, 
see e.g. the book Antonelli et al. (2005), that allowed a single fisher to harvest only 
one fish species at the time, with the possibility to change to another one at (discrete) 
time periods. As harvesting costs are inversely proportional to the available fish bio-
mass, at each switching time, more fishers are attracted towards the more abundant 
species, thus giving the possibility to the scarcer resource to restore in biomass.

3 The second equation of the system defines the locus of points where profits inside and outside 
the MPA are equal.
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In Bischi et al. (2013) two non-interacting species are exploited by a population 
of N identical fishers. At time t, n1(t) fishers harvest only fish population 1, whose 
biomass density is X1(t), and n2(t) players harvest only fish population 2, whose 
biomass density is X2(t), with n1(t) + n2(t) = N. Let r(t) = r1(t) = n1(t)/N be the 
fraction of fishers that at time t are allowed to harvest species 1 and r2(t) = 1 – r(t) 
the complementary fraction interested in species 2.

The time setting adopted in the model assumes that the natural growth and the 
harvesting of the two species occurs in continuous time, whereas the switching hap-
pens at discrete times. In particular, agents update their harvesting strategy period by 
period, according to an evolutionary mechanism based on a profit-driven replicator 
dynamics. Denoting by Gi (Xi) the specific growth function of species i and by Hi 
its harvesting rate, the model can be formulated as:

(30)

where Xi denotes the derivatives of biomass with respect to time, [x] is the largest 
integer not greater than x (i.e. the floor of x), and

(31)

is the average profit observed by each agent at the end of every switching time of 
length s.

Note that, in the third equation in (30), at each switching time, each fisher is 
assumed to know the average profits of both groups during the previous period and 
be able to compare them over the last fishing period. The average profit of each strat-
egy is taken as a fitness measure of that strategy, according to the paradigms of evo-
lutionary game theory (see Hofbauer and Sigmund, 1998; Weibull, 1995): if 

 then r(t) increases, i.e. a fraction of fishers harvesting species 2 
switch to harvest species 1, otherwise r(t) decreases.

Following Szidarovszky and Okuguchi (1998), the harvesting rates H1(t) and 
H2(t) are computed according to the profit maximization problem of a Cournot oli-
gopoly game. Assuming that the current total harvest is wholly supplied to the mar-
ket, prices are determined according to the following horizontal differentiated linear 
inverse demand functions (see Singh and Vives, 1984, for details)

(32)
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where ai is the reservation price for species i, bi represents the slope of the demand 
for fish i and  is the symmetric degree of substitutability between the two 
fish varieties. In particular, if ¾ = 0 then the two varieties are independent in demand. 
On the other hand, for ¾ = 1 they are perfect substitutes. As a standard practice in 
fishery oligopoly models, quadratic harvesting costs are assumed for both species, 
i.e. for harvesting hi units of species i an agent faces a cost given by

(33)

where °i > 0 represents a cost coefficient related to the fishing technology for catch-
ing species i and ci is a fixed cost also related to switching species. Given these 
specifications of the cost and demand functions, the profit of fisher q belonging to 
group i (i = 1, 2) when harvesting is hi,q) reads as

(34)

In order to decide the quantity of species i to be harvested, the representative 
fisher q in group i solves the problem . From the first order conditions and 
employing the symmetry property that players within each group are homogeneous 
(i.e. hi,q = hi,u , i = 1, 2;) we obtain the following Nash equilibrium (see Bischi et al., 
2013, for details)

(35)

where   and  are the fractions of fishers that har-
vest species 1 and 2, respectively. Hence, the harvesting terms in (30) become 

 and  respectively. Moreover, by inserting (35) into 
(34), we get the optimal individual profits as

(36)

In Bischi et al. (2013), it is assumed that the two populations of (shell)fish follow 
a logistic natural growth rate of the form

(37)

where ½i and ki are, respectively, the intrinsic rate of growth and the carrying capac-
ity of species i. The dynamic model is then investigated by using both analytical and 
numerical methods, also focusing on some benchmark cases. For example, in the 
limiting case , i.e. with fishers changing their fishing strategy continuously, 
one gets , and the last equation in (30) can be replaced by the simpler 
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replicator equation in continuous time (see e.g. Maynard Smith (1982), Hofbauer and 
Sigmund (1998), Weibull (1995))

(38)

which states that  if . In this case, the model assumes the sim-
pler form of a nonlinear 3-dimensional system of ordinary differential equations. In 
order to obtain analytical results, the case of constant prices is considered (i.e. b1 = b2 
= 0). The dynamical model (30) reduces to the simplified form:

(39)

Note that in the invariant subspaces defined by r = 0 and r = 1, the first two 
differential equations in (39) are uncoupled. This simplified form of the model con-
stitutes a useful benchmark for a deeper understanding of the hybrid model (30). In 
fact, an equilibrium point for the system (39) is also a fixed point for the hybrid sys-
tem (30), although the converse is not necessarily true. This follows from the fact 
that the first and the second dynamic equations in the two specifications are identical, 
and the replicator dynamics in discrete and in continuous time share the same equi-
librium conditions: r(t) = r(t – s) for r = 0, r = 1 or . Indeed, if 
instantaneous profits are identical in equilibrium, then the average profits of the two 
strategies over the non-switching time interval of length s are also identical. None-
theless, we can have an equilibrium point such that the average profits of the two 
strategies over the interval s are equal, even though instantaneous profits are not 
equal over the interval. In the case of the hybrid model (30), r(t) becomes a piece-
wise-constant function, like an endogenously driven bang-bang variable, whose dis-
continuous jumps occur at discrete times and lead to sudden switches among different 
dynamic scenarios, which is a typical behavior of hybrid systems. Numerical simula-
tions performed in Bischi et al. (2013) allow us to investigate the role played by s 
(the switching time) as well as the effects of non-constant prices, i.e. demand func-
tions (32) with slope , i = 1, 2, on the dynamics of the more realistic hybrid 
model (30). Such analysis gives evidence of possible advantages of profit-driven 
self-regulated harvesting strategy choices over other practices, both from the point of 
view of the biomass levels (i.e. biological sustainability) and wealth (economic prof-
itability). Indeed, for certain sets of parameters, numerical simulations show that this 
kind of myopic and adaptive self-regulation may ensure a virtuous trade-off between 
profit maximization and resource conservation, driven by cost externalities and mar-
ket pressures.

It is then interesting to understand whether the introduction of a different switch-
ing mechanism confirms the original results, or how, eventually, those results are 
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modified and what is the fundamental contribution of allowing for negative profits 
and different kinds of players inertia in the overall system dynamics.

6. A GENERAL MODEL OF EVOLUTIONARY COMPARISON  
BETWEEN TWO HARVESTING RULES

In this section we first propose, following Bischi et al. (2018), a general framework 
to address dynamic models where players can follow different behavioral rules and 
periodically revisit their choice on the basis of relative performances, so that the 
long-run spread of any rule in the agents’ population can be seen as a proxy for the 
long-run profitability of the two behaviors. The particular switching mechanism con-
sidered here is the exponential replicator dynamics (2). We then suggest some funda-
mental questions that can drive the analysis of these models and some new ideas that 
can extend the current work. We finally implement this general setup to the context 
of natural resources exploitation, where a limited number of harvesting strategies is 
allowed and exploiters can freely choose among them according to profit maximiza-
tion arguments.

Let us consider an oligopoly market where N ex-ante identical agents can choose 
their production quantity by following different behavioral rules. For the sake of the 
argument, let us deal with only two different behavioral rules and denote by hi(t) the 
production quantity at time t by a generic firm adopting rule i = 1, 2. At time t, the 
behavioral rule 1 is distributed in the population with frequency r(t)  [0,1] and, 
obviously, behavioral rule 2 with the complementary frequency 1 – r(t). A behav-
ioral rule (or strategy) can be defined as a map that specifies next period production 
level hi (t + 1) as a function of the current quantities hj (t), i, j = 1, 2 and agents’ 
partition in the population r(t)

(40)

We then assume that profits ¼i(t) (or more generally the payoffs or utility functions) 
are observable by all firms, i.e. each agent knows his/her own payoff as well as the ones 
of the other actors, and that, at each time period, each agent can switch to the more 
profitable behavioral rule according to the exponential replicator (2). By coupling the 
behavioral rules in (40) with the evolutionary dynamics in (2), a three-dimensional map 
T is defined in the phase space , where :

(41)

One important point to consider in the analysis of models like (41) is the role of 
the invariant planes r = 0 and r = 1, where all the agents choose the same strategy 
H2 or H1 respectively (see Figure 2). On these invariant planes, the dynamics are 
governed by the two-dimensional restrictions of T, that assume the form of triangu-
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lar maps, i.e. unidirectionally coupled dynamical systems or systems with a 
skew-product structure (see Bischi et al., 2015, 2018; Cerboni-Baiardi et al., 2015). 
From an economic point of view, this fact has the obvious interpretation that absent 
behaviors remain absent. However, a second interesting aspect to address in the 
analysis of these models is the introduction of a mutation in agents’ behavior: this 
may spread over the population or may be reabsorbed. This phenomenon can be 
ascertained through the study of the transverse stability of the attractors on the 
invariant planes. In general, an attractor on one of these two-dimensional restric-
tions of the phase space may be transversely stable, so that it attracts trajectories 
starting outside the restriction, i.e. from r(0)  (0,1); in this case, the attractor on 
the restriction is also an attractor of the three-dimensional map T. Thus, many 
properties of the attractors that characterize the long-run evolution in the case of 
homogeneous behavior (i.e. all agents using the same strategy) can often be sepa-
rately studied in the two-dimensional restriction. However, in the case of cyclic 
and chaotic dynamics on the invariant planes, even more complex situations can be 
obtained with respect to their transverse stability properties. Indeed, these chaotic 
two-dimensional invariant sets inside a three-dimensional phase space can be 
transversely stable on average, thus giving rise to weaker attractors in Milnor sense 
and, consequently, to on-off intermittency phenomena or riddled basins. The inter-
ested reader is referred to Milnor (1985), Alexander et al. (1992), Bischi and Gar-
dini (2000), Bischi et al. (2015).

The study of the transverse stability of these “pure strategy” attractors provides 
useful information about the fate of small mutations. In other words, this kind of anal-
ysis helps us to understand whether the introduction of a different heuristic by just one 
firm (or a few firms) in an oligopoly market spreads within the population or it dies 
out spontaneously, see e.g. Cerboni-Baiardi et al. (2015) and Bischi et al. (2015).

Figure 2

An important extension of the model (41) can be obtained by introducing some 
form of memory, i.e. agents consider a discounted average of past payoffs in the 
switching decision instead of comparing only the last observed values. In other 
words, the fitness associated with a behavioral rule may be measured according to 
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the accumulated payoffs instead of just current ones (see e.g. Bischi et al., 2020, for 
details). Following this argument, one can assume that in the evolutionary model the 
fitness measure Ui(t) of behavioral rule i at each time step also involves a portion of 
the profits accumulated in the past, that is

(42)

where !  [0, 1] represents a memory parameter that takes into account a convex 
combination of the current expected profit and the accumulated ones. This specifica-
tion is denoted as “normalized memory” in Hommes et al. (2012). From the recursive 
formula (42), reasoning by backward induction, it is easy to get the expression of the 
accumulated profit

(43)

as a measure of fitness expressed in terms of a discounted weighted sum with expo-
nentially fading weights. As before, the parameter !  [0, 1] gives an indication of 
the memory, with Ui(t) = ¼i (t) for ! = 0, whereas a uniform arithmetic mean of all 
the past payoffs is obtained in the other limiting case ! = 1.

If we use Ui(t) as the fitness associated with behavioral rule i in the exponential 
replicator, the third equation in model (41) becomes

(44)

together with the linear iterative utility dynamics (42). We refer to Bischi et al. (2020) 
for a deeper analysis of this evolutionary model with memory.

As we have seen throughout the paper, this general framework can be imple-
mented to approach the literature on the exploitation of common pool renewable 
natural resources, like the fishery, where different harvesting strategies are simul-
taneously applied by different fishers on the same renewable resource. Understand-
ing how different fishing strategies spread among fishers is a fundamental step to 
understand the long-run evolution of fish stocks and perform some form of welfare 
analysis.

A first change in (41) would then be to add the time evolution of the natural 
resource. Starting from the very general expression

in the specific application of (41) to bioeconomic models, several growth functions 
can be used according to what type of fish stock is in consideration. In the models 
described in the previous sections we always worked with the logistic function (37), 
but different kinds of growth functions can be considered, according to the biological 
properties of the fish population and the marine environment at hand. A commonly 
used growth function is
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known as Ricker function from Ricker (1954), or

known as Beverton-Holt function (see e.g. Getz and Haight, 1989).
As a consequence of the specific application, the next period harvesting hi (t + 1) 

becomes a function of the current quantities, fishers’ partition r(t) as well as resource 
stock:

hence the overall system is described by a four-dimensional map T is defined in the 
phase space (X, h1,  h2,  r)

where the first equation describes the time evolution of the natural resource subjected 
to total harvest H = h1 + h2; the second and third equations update the harvest 
according to the different behavioral rules adopted; and the last equation describes 
the time evolution of the agents’ population composition given by (2).

This general map can be further adjusted by modifying its individual elements. 
One example could be the profits entering into equation (2): those could be modelled 
to account for different forms of punishment related to a common norm; or they can 
be adjusted to include the presence of green consumers willing to pay a premium 
price for a fish certified harvested adopting a more sustainable technique. Finally, 
further kinds of behavioral rules can be examined by considering alternative forms of 
command and control measures or market based incentives.

7. CONCLUSIONS

In this paper we have considered oligopolistic markets for the exploitation of a com-
mon pool natural resource (in particular the fisheries) where the population of 
exploiters can employ different strategies for deciding their next-period harvest. This 
is a common situation when authorities adopt a more “libertarian paternalism” 
approach (Thaler and Sunstein, 2003) leaving the possibility to freely choose among 
a limited number of alternative harvesting strategies according to profit maximiza-
tion considerations to the exploiters.

Furthermore, we have included a dynamic evolutionary component, by assuming 
that harvesting strategy choices can be repeated at discrete time periods, and, at these 
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times, players are allowed to change their mind in terms of their action, i.e. switching 
their strategy. In this paper such a dynamic mechanism has been mathematically rep-
resented by the profit-driven exponential replicator dynamics.

Instead of proposing a new particular model and developing a deep mathematical 
analysis and economic interpretation of its results, we reviewed three dynamic fish-
ery models proposed in the literature and modified them with the discrete time expo-
nential replicator. The analysis of these new models is intentionally short, as this task 
is left for future studies. Here we only highlighted what novelty aspects this alterna-
tive switching mechanism can bring and possible directions of analysis.

Finally, the last section offers a general template that can be adapted to develop 
several different models according to the kind of oligopolistic competition and/or 
natural growth functions and/or the presence or not of memory. Examples of these 
possibilities, not taken from natural resource modeling, can be found in the literature, 
see e.g. Cerboni-Baiardi et al. (2015), Bischi et al. (2015, 2018, 2020), Lamantia and 
Radi (2015), Naimzada and Sbragia (2006), Radi (2017). In this section, we indi-
cated two important points of interest in the analysis of the dynamics. Those are 
related to the presence of two invariant planes representing homogeneous behaviors 
(all agents adopting the same strategy) on which complex dynamics may occur asso-
ciated with possible occurrence of riddling and synchronization phenomena when 
stability with respect to perturbations transverse to the invariant planes is considered, 
see e.g. Alexander et al. (1992), Bischi and Cerboni-Baiardi (2017). In our case trans-
verse perturbations means possible mutations with respect to the universally adopted 
strategies represented by dynamics on the invariant planes.

As a final note, we stress that the models proposed in this paper require an inter-
disciplinary approach to be studied, as they involve competencies from economics, 
ecology, social sciences and, of course, mathematics. This is the recommended 
approach to study complex systems. Moreover, even the mathematical methods 
implemented here arise themselves from an interdisciplinary trade off between the 
mathematical, economic and biological literature: the mathematical theory of games, 
initially developed in the framework of economic problems to describe rational stra-
tegic interactions, has then been applied to the context of biological evolution theory 
(in term of selective reproduction) and then such evolutionary game theory has been 
used to represent social and economic situations where the imitation of the most suc-
cessful strategies occurs. This is an important lesson to learn and a guide for future 
research developments.
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