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Abstract

In this work we investigate the dynamics of a one-dimensional piecewise smooth map, which represents the model of a chaos
generator circuit. In a particular (symmetric) case analytic results can be given showing that the chaotic region is wide and robust. In
the general model only the border collision bifurcation can be analytically determined. However, the dynamics behave in a similar
way, leading effectively to robust chaos.
© 2012 Published by Elsevier B.V. on behalf of IMACS.
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1.  Introduction

Many easily implementable circuits have been proposed in the past for the generation of chaotic waveforms meant
to be used in different applications. This includes the classic Chua’s circuit and its variants [3,4], the Sprott circuits
[10], etc. Much study has been directed to the dynamics and bifurcations in such systems.

In view of the possible application of chaos-based communication systems, a new need has arisen for chaos generators
that can be completely implemented in VLSI chips. One major hurdle of implementing the usual chaos generators is the
inductor, which cannot easily be integrated in microchips. In view of this problem, a new inductorless chaos generator
was proposed in [7], and was implemented using a CMOS process. For such a chaotic system which is meant for
practical application, it becomes necessary to perform a complete bifurcation analysis, so that its behavior in different
parameter regimes can be predicted. This is the purpose of the present paper.

The piecewise smooth one-dimensional map proposed in [7] reduces, in a particular symmetric case, to the piecewise
linear one dimensional map which is topologically conjugated with the so-called skew tent map (the continuous
piecewise linear one dimensional map in canonical form). Here we use the term ’symmetric” to mean a symmetry
in the system configuration where the two resistors in the circuit are of equal value, and not a symmetry in the map
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Fig. 1. The inductorless chaos generator.

representing the system. This allows us to completely describe, analytically, the existing dynamics, using the results
of the skew tent map. We recall that the preliminary bifurcation analysis of the skew tent map was done in [5,12],
and was followed up by more detailed investigations in [2,6,9,11]. In the present paper we use the theory developed
in these works, to obtain the parameter domains of different dynamical behaviors of the inductorless chaos generator
in the symmetric case. Moreover, also for the generic case the border collision bifurcations leading to the appearance
of a pair of k-cycles, k  ≥  3, are analytically detected. Then we shall see, by numerical evidence, that the sequence of
bifurcations occurring in the general model are of the same kind, and lead to robust chaos.

2.  The  circuit  and  the  mathematical  model

We consider the dynamics of a chaos generator shown in Fig. 1 which was designed for easy implementation on
a VLSI chip for use in a chaos-based communication system. When the switch S1 is on, the capacitor C  charges up
from the battery. When its voltage reaches a reference voltage VR, S1 switches off and S2 switches on. The capacitor
discharges through the resistor R2. The switch S1 is again turned on by the positive edge of the free-running clock
“clk” with period T .

The stroboscopic map of this circuit, as observed at every positive edge of the clock, was derived in [7] as

z′ =  f  (z),  f  (z) =

⎧⎪⎨⎪⎩
fL(z) =  1 −  (1 −  z)e−T1 z  ≤  zb

fR(z) =  βe−T2

(
1 −  z

1 −  β

)T2/T1

z  ≥  zb

(1)

where z  is the normalized value of the capacitor voltage at the clock instant vc/V1, T1 =  T  /CR1, T2 =  T /CR2,
β = Vr/V1 and

zb =  1 −  (1 −  β)eT1 . (2)

It was shown, by experiments and via numerical simulations, that robust chaos occurs as a function of all the three
parameters T1 > 0, T2 > 0 and β  ∈ (0, 1).

In this work we investigate the map in (1). All the possible bifurcations occurring in the symmetric case (for
T1 = T2 = T > 0),1 are analytically detected in Section 3.1. This leads to a rigorous proof of the numerical results
obtained in [7]. In the generic case (for T1 /=  T2) the existence regions of the so-called maximal cycles are also
determined.

We recall that such stable cycles are the most dangerous in the applied context, as destroying the robustness of chaos
(which still persists in a set of zero measure, and is structurally unstable). One boundary of the region associated with

1 We recall that the “symmetric case” is not associated with any symmetry property in the resulting map.
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a stable cycle is given by a border collision bifurcation (BCB for short)2 curve. The transition to instability occurs via
a degenerate flip bifurcation curve in the symmetric case. The bifurcations seem to be of the same kind also in the
generic case, as outside these stability regions, we have observed chaotic dynamics. Thus, although supported only by
numerical simulations, we have seen that the properties of the piecewise linear model persist in the piecewise smooth
one, and we have only robust chaos.

3.  Bifurcation  analysis

3.1.  Symmetric  case

To investigate the map in (1) let us first consider the particular case R1 = R2, which gives

T1 =  T2 =  T  (3)

(and we recall T  > 0) reducing the parameter space to two dimensions. Consequently, the system reduces to a
piecewise-linear map, topologically conjugated with the skew-tent map, whose dynamics are already well known
(see [2,5,6,9,11,12]). In fact, with the parameters T  and β the map in (1) becomes

z′ =  f  (z) =

⎧⎪⎨⎪⎩
fL(z) =  1 −  (1 −  z)e−T z  ≤  zb

fR(z) =  βe−T

(
1 −  z

1 −  β

)
z ≥  zb

,  zb =  1 −  (1 −  β)eT (4)

and via the change of coordinate

X =  z −  zb

we have

X′ =  T (X),  T  (X) =
{

TL(X) =  aX  +  B  X  ≤  0

TR(X) =  bX  +  B  X  ≥  0
(5)

where

a  =  e−T ,  b =  − βe−T

1 −  β
, B  =  β  −  zb =  (1 −  β)(eT −  1) (6)

Clearly β  is a scale parameter.3 Rescaling x  = X/B  we get:

x′ =  F (x),  F (x) =
{

FL(x) =  ax  +  1 x ≤  0

FR(x) =  bx  +  1 x ≥  0
(7)

which is in the form of a skew-tent map, whose properties for a  > 0 and b  < 0 are of interest for us (in fact, from (6),
T > 0 and β  ∈  (0, 1), we have a  ∈  (0, 1) and b < 0) .

In terms of the variable z, the critical point z  = zb is the point of maximum and the absorbing interval4 I  is given by

I  = [
βe−T ,  β

]
.  (8)

There exists a unique fixed point (as T  > 0 and a  = e−T ∈  (0, 1)):

z∗ = βe−T

1 −  β +  βe−T
(9)

2 This term was introduced by Nusse and Yorke in [8] (see also [9]), and now is widely used in piecewise smooth systems.
3 A scale transformation is a linear transformation that enlarges (increases) or shrinks (diminishes) objects by a scale factor that is the same in all

directions. Its parameter is called scale parameter. This means that it plays no role in the dynamics, and the value β ∈ (0, 1) just modifies the size (or
scale) of the state variable.

4 We recall that interval I is absorbing because in a finite number of iterations the trajectory of any (in our case) initial condition outside I is
mapped in I, from which it cannot escape.
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Proposition  1.  The  map  in  (4) has  a unique  fixed  point  z∗, globally  attracting  for  βe−T/(1 −  β) < 1 and  repelling  for
βe−T/(1 −  β) > 1.  At  βe−T = 1 −  β  a  degenerate  flip  bifurcation  occurs.

At the value of the degenerate flip bifurcation (DFB for short) of z∗, for βe−T/(1 −  β) = 1, the segment [zb, β + zb] is
filled with cycles of period 2, while for βe−T/(1 −  β) > 1 only one attracting 2-cycle exists having one periodic point
in z  < zb and one in z  > zb. The periodic points of the 2-cycle are given by

x2
R = 1 +  a

1 −  ab
, x2

L = 1 +  b

1 −  ab
(10)

that is:

z2
R = (1 −  β)(1 −  e−T ) +  βe−2T

1 −  β  +  βe−2T
, z2

L = βe−2T

1 −  β  +  βe−2T
(11)

Proposition  2.  For  βe−T/(1 −  β) > 1 the  map  in  (4) has  a unique  2-cycle,  with  periodic  points  given  in  (11), attracting
for βe−2T/(1 −  β) < 1.  At  βe−2T = 1 −  β  a  degenerate  flip  bifurcation  occurs.

The proof follows immediately from the eigenvalue, given by λ  =  ab  =  f ′(z2
L)f ′(z2

R), and the 2-cycle is stable as
long as ab  > −1, that is, as long as

βe−2T

1 −  β
< 1.  (12)

At βe−2T = 1 −  β, when λ  = −1, the 2-cycle also undergoes a DFB (due to the local linearity of the conjugate map (7)).
However, now it is not easy to predict what will be the result of this bifurcation, when the 2-cycle becomes unstable.
We shall return to this below, making use of the properties of the skew-tent map (7). Taking advantage of this, we
know that when the fixed point z∗ is unstable the map f  can have an attracting cycle qk of any period k  ≥  2 (but only
with specific symbol sequences, as clarified below) as well as cyclical chaotic intervals Qk of any period k  ≥  1. Let
us first describe the routes associated with the cycles of period k ≥  3, after which we shall describe the effects of the
degenerate flip bifurcation of the 2-cycle.

As shown in [6] (see also [2,9,11]), the cycles of the skew-tent map having period k  ≥  3 appear in pairs,5 one of
which may be stable or unstable (with the symbol sequence RLk−1, also called principal cycles or maximal cycles),
and one always unstable (with the symbol sequence R2Lk−2). Thus, the bifurcation curve, denoted as BCBk, which
corresponds to a “saddle-node” border collision bifurcation, gives rise to a cycle qk which may be attracting, and to a
companion repelling cycle, called q′

k.
In Fig. 2 the two-dimensional bifurcation diagram of the map (7) in the (a, b)-parameter plane is shown in the

interesting region (interesting not only for the skew-tent map, but also, as we have remarked above, for the applied
model in (4)). The right boundary of the stability region of the cycle, denoted Π(qk), is the curve DFBk corresponding
to the degenerate flip bifurcation of the attracting cycle qk which becomes repelling, leading to cyclical chaotic
intervals of double period, Q2k. All these cycles of period k ≥  3 undergo the same bifurcation sequence (increasing the
parameter a), that is, the degenerate flip bifurcation qk ⇒  Q2k is followed by the transitions of cyclical chaotic intervals
Q2k ⇒  Qk ⇒  Q1. The boundary between the region Q2k and the region Qk is the curve Hk corresponding to the first
homoclinic bifurcation of the cycle qk, while the right boundary of the region Qk is the curve H ′

k related to the first
homoclinic bifurcation of the cycle q′

k, leading to a one-piece chaotic interval Q1 = I. We recall that in the skew-tent
map the existence of chaotic behavior is persistent under variation of the parameters, so that we have robust chaos, as
defined in [1].

In the portion of the parameter plane shown in Fig. 2 only the stability region of the cycle q3 is observable, but in
the strip a  ∈  (0, 0.5) all the regions Π(qk) exist where k→  ∞  as b  tends to −∞, and this limit point is relevant also in
our application (as we shall see in Fig. 3, corresponding to β  = 0.5 and T = 0).

The bifurcation curves can be detected analytically using the coordinates of the points of the cycles.

5 We recall that in a continuous map, as it is our case, the appearance of cycles not related to a flip bifurcation always occurs in pair. That is, the
bifurcation is similar to a fold bifurcation (or tangent bifurcation) and leads to the existence of two distinct cycles.
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Fig. 2. Two-dimensional bifurcation diagram of the skew-tent map given in (7), in a portion of the (a, b) parameter plane. Robust chaos in one
unique interval occurs when the parameters are in the white region.

In order to find the periodic points of such cycles, we consider the periodic point which is the closest to zero on the
right side. So by solving the equation Fk−1

L ◦ FR(xk,s
1 ) =  x

k,s
1 we obtain the periodic point x

k,s
1 of the cycle qk, which

leads to the point

x
k,s
1 = 1 −  ak

(1 −  a)(1 −  bak−1)
,  (13)

Fig. 3. Two-dimensional bifurcation diagram for f(z) in the parameter plane (β, T), where T = T1 = T2 . The white region corresponds to robust
chaotic dynamics.
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while the periodic point x
k,u
1 of the cycle q′

k is obtained by solving the equation Fk−2
L ◦  F2

R(xk,u
1 ) =  x

k,u
1 , which leads

to the point

x
k,u
1 = bak−2(1 −  a) +  1 −  ak−1

(1 −  a)(1 −  b2ak−2)
.  (14)

The BCB occurs when the periodic point x
k,u
1 collides with the border, x

k,u
1 =  0, that is, for:

BCBk : b =  − 1 −  ak−1

(1 −  a)ak−2 (15)

leading, in terms of the parameters of our model in (4), to:

BCBk : β  = 1 −  e−T (k−1)

1 −  e−Tk
. (16)

A sequence of periodicity regions, bounded by the curves given in (16) for k  = 3, .  . ., 7, are shown in Fig. 3.
Thus, when the BCB curve denoted BCBk is crossed, a pair of cycles appears: q′

k (a periodic point of which is given
in (14)), and qk (a periodic point of which is given in (13)). The cycle qk is attracting for b < bk, where bk is defined
below, while both cycles are repelling if b  > bk. The eigenvalue of the stable cycle qk is given by λ  = bak−1 so that it
loses stability via degenerate flip bifurcation when b = −1/ak−1, that is when:

DFBk :
βe−T

1 −  β
= 1

e−T (k−1) (17)

Thus the stability region of the cycle qk is given by (a, b) ∈  Π(qk) where

Π(qk) =
{

(a, b) : − 1

ak−1 ≤  b  ≤  − 1 −  ak−1

(1 −  a)ak−2

}
(18)

that is, in terms of our parameters:

Π(qk) :
1

e−T (k−1) ≥ βe−T

1 −  β
≥ 1 −  e−T (k−1)

(1 −  e−T )eT (k−2) (19)

and it is bounded by the two bifurcation curves BCBk and DFBk, which intersect at the point (ak, bk), where ak is the
root of the equation ak −  2a  + 1 =0 in the interval (0.5, 1) and bk =  −1/ak−1

k .
So we can state the following

Proposition  3.  The  map  in  (4) has  cycles  of  any  period  k  ≥  3 appearing  in  pairs  (qk and  q′
k) at  the  BCB  curves  given

in (16).  The  cycle  qk is  stable  in  the  region  Π(qk) given  in  (19), and  undergoes  a degenerate  flip  bifurcation  at  the
curve DFBk given  in  (17).

The stability region of the fixed point, of the 2-cycle and those of the cycles qk for k  ≥  3 are the only regions, in the
parameter plane of interest, associated with attracting cycles. In any other point the dynamics are chaotic, and with
robust chaos. Moreover, we can analytically determine the qualitative behavior of the chaotic intervals. That is, we can
perfectly predict how many bands constitute the chaotic attractor. In fact, we recall that the degenerate flip bifurcation
of qk for k ≥  3 leads to cyclical chaotic intervals of double period 2k, denoted by Q2k. The boundaries of the chaotic
interval are always given by the critical point x = 1 and its iterates. The attracting 2k-cyclical chaotic intervals Q2k exist
in the parameter region bounded by the curves BCBk, DFBk and by the curve denoted Hk related to the first homoclinic
bifurcation of the cycle qk, given by (see [11])

Hk : a2(k−1)b3 −  b  +  a =  0. (20)

The transition Q2k ⇒  Qk (from 2k-cyclical to k-cyclical chaotic intervals) takes place crossing the curve Hk, while the
transition Qk ⇒  Q1 (from k-cyclical chaotic intervals to a single chaotic interval) occurs crossing the curve denoted
H ′

k corresponding to the first homoclinic bifurcation of the cycle q′
k, given by

H ′
k : ak−1b2 +  b  −  a  =  0.  (21)
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It is clear that by making the substitutions a = e−T and b  = −  βe−T/(1 −  β) in (20) and (21) we obtain the equations of
the homoclinic bifurcations in the parameter plane (β, T) of interest for the map in (4), involving the chaotic intervals.
These curves of homoclinic bifurcations separate the regions located below the stability regions Π(qk) (given in (19))
shown in Fig. 3, associated with different number of components in the cyclical chaotic intervals, which correspond
to true robust chaos.

Now let us consider the 2-cycle. It is possible to see in Fig. 2 that the DFB of the 2-cycle q2 is particular. The 2-cycle
is in fact a particular one because it does not appear by border collision bifurcation (in pairs with a repelling one) as it
occurs for the other k-cycles. Instead, as we have seen above, the 2-cycle appears after the degenerate flip bifurcation
of the fixed point (occurring at b = −1). As we have already seen above, the degenerate flip bifurcation of the 2-cycle
of the skew-tent map (7) occurs when ab  = −1, thus giving the bifurcation curve shown in Fig. 2, which corresponds
to βe−2T = 1 −  β  in terms of our parameters (from (12)), as shown in Fig. 3. Differently from the cycles qk for k ≥  3
described above, the DFB of the 2-cycle q2 may lead to m-cyclical chaotic intervals of any even period m. That is, we
can have the transition q2 ⇒  Q′

2m , for any m  ≥  2, and m→  ∞  as b →  −1 and a  →  1. Two contiguous regions Q′
2i and

Q′
2i+1 are separated by the curve corresponding to the first homoclinic bifurcation of the 2i-cycle, whose equation, of

the skew-tent map (7), is given by

H2i : bδi+1aδi +  (−1)i(b  −  a) =  0, (22)

where δm, m  = 0, 1, . .  ., are the solutions of the difference equations δi+1 = 2δi + (1 + (−1)i)/2, i = 1, 2, . .  ., with δ0 = 1
(see [6] for further details).

The bifurcation curve H1 corresponds to the homoclinic bifurcation of the fixed point x∗
R =  1/(1 −  b) occurring

when F3(0) = 1/(1 −  b), that is:

H1 : ab2 +  b  −  a  =  0.  (23)

In our parameters, a →  1 and b  →  −1 correspond to T  →  0 and β  →  0.5, that is the lower left corner in Fig. 3. This
means that in the white region close to that point, in Fig. 3, we have cyclical chaotic intervals in 2m pieces for the
map in (4), separated by the homoclinic bifurcation curves given in (22) and (23) after the substitutions a  = e−T and
b = −  βe−T/(1 −  β).

3.2.  Generic  case

Now let us consider the map in (1), with T1 /=  T2, which is piecewise smooth (instead of piecewise linear). Although
it is not possible to detect the fixed point and the other periodic orbits analytically, we only have the same kind of
bifurcations which occur in the piecewise linear map. The fixed point undergoes a flip bifurcation and then it leads to
chaotic intervals. A sequence of saddle-node bifurcations occur, associated with a pair of k-cycles, for k  ≥  3, and the
stable cycle undergoes a flip bifurcation, which is then followed by chaotic sets. In the 3D parameter space we can
detect the analytic equation of the surfaces in which the saddle-node bifurcations of k-cycles occur. To detect this we
know that the saddle-node bifurcations are also border collision bifurcations for the point z  = zb so that at the bifurcation
of a (n  + 1)-cycle we must have fn

L ◦  fR(zb) =  z  and also

fn−1
L ◦  fR ◦ fL(zb) =  zb. (24)

This equation can be written in explicit form, in fact, we have

fn−1
L ◦  fR ◦ fL(zb) =  fn−1

L ◦  fR(β)

and using

f
j
L(z) =  Ajz +  (1 −  Aj),  A  =  e−T1

we get

fn−1
L ◦  fR(β) =  An−1fR(β) +  (1 −  An−1),  A =  e−T1
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Fig. 4. Two-dimensional sections in the three-dimensional parameter space (T1, β, T2) for f(z) in the range [0, 2.5] × [0, 1] × [0, 2.5]. In (a) at
T1 = 0.2. In (b) at T2 = 1. The white region corresponds to chaotic dynamics.

so that the condition in (24) becomes

β  = 1 −  e−nT 1

1 −  e−T2e−nT 1
. (25)

Clearly for T1 = T2 = T, we obtain the same BCB curves already obtained in (16) (noticing that k  = n  + 1). We have thus
proved the following proposition:

Proposition  4.  The  map  in  (1) has  cycles  of  any  period  k  ≥  3 appearing  in  pairs  (qk and  q′
k) at  the  BCB  curves  given

in (25).

A few periodicity regions are shown in Fig. 4, in two sections of the three-dimensional parameter space, where some
BCB curves given (in (25)) for k  ≥ 3 are also shown. The white regions correspond to the existence of robust chaos.

In the generic case, when T1 /=  T2, the right segment of the map is nonlinear. Hence the flip bifurcation will not be
truly degenerate. However, the curvature in this case is very small so that the character of the bifurcation will be almost
like a degenerate bifurcation. As an example, we show in Fig. 5 two one-dimensional bifurcation diagrams, reporting
the state variable z  as a function of the parameter β. Fig. 5(a) shows the bifurcation diagram for the symmetric case
(T1 = T2 = T), while Fig. 5(b) shows an example in the generic case (T1 /=  T2). This shows that the analytical results
obtained for the simpler piecewise linear map give reasonably accurate description of the behavior of the actual system.

Fig. 5. One-dimensional bifurcation diagram for f(z) showing z as a function of β. In (a) in the symmetric case for T1 = T2 = 0.7. In (b) in the generic
case for T1 = 0.7 and T2 = 0.8.
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4.  Conclusions

In this work we have considered a system proposed as chaos generator in [7]. For such a chaotic system, used
for practical application, a complete bifurcation analysis becomes quite important, in order to predict its behavior in
different parameter regimes. This objective has been reached in the particular case T1 = T2 = T, considered in Section
3.1. Under this assumption the piecewise smooth one-dimensional map reduces to a piecewise linear one, which is
topologically conjugated with the skew tent map. Making use of the theory already developed for the skew-tent map,
we have obtained the parameter domains of different dynamical behaviors for the inductorless chaos generator in the
symmetric case, showing all the regions in the parameter plane which are associated with attracting cycles or to robust
chaos in cyclic chaotic intervals.

In the generic case, the border collision bifurcations leading to the appearance of a pair of k-cycles, k  ≥  3, have been
analytically detected in Section 3.2. By numerical evidence, we conjecture that the sequence of bifurcations occurring
in the general model are of the same kind, and lead to robust chaos.
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