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BIFURCATIONS AND CHAOS GENERATION FROM 1D OR 2D CIRCUITS

INCLUDING SWITCHES

Danièle Fournier-Prunaret1, Pascal Chargé2 and Laura Gardini3

Abstract. Generation of chaos is of the highest interest for many kind of applications as secure
transmissions, image processing or telecommunications. In order to obtain chaotic signals that can be
used in applications, simple circuits including switches have been considered those last years. Their
interest is of two types: �rst, they belong to the class of hybrid systems that have recently attracted
a great interest, secondly, they permit to obtain chaos in a very easy way. Such circuits are very easy
to implement and robust chaos can be obtained, depending upon parameter values. For this aim, it is
necessary to study and understand the bifurcation structures of the circuit model. In this paper, we
propose two kinds of chaos generators obtained from simple RC circuits including switches managed
using a clock (impulse waveform) and the charging/discharging of the capacitors. Our models are given
via one-dimensional (1D) or two-dimensional (2D) nonlinear maps. We present the bifurcation studies
permitting to understand the evolution of the behaviour of our systems and the appearance of chaos.
Keywords. chaotic signal; bifurcation; switching circuit; piecewise-smooth map.
AMS classi�cation. 94; 37Gxx; 65Pxx.

Résumé. L'utilisation du chaos présente un grand intérêt dans beaucoup d'applications en lien avec
les télécommunications, le traitement d'images ou les transmissions sécurisées. Des circuits très simples
comprenant des commutations peuvent être utilisés pour produire des signaux chaotiques. Leur intérêt
est double, tout d'abord ils appartiennent à la classe des systèmes hybrides qui ont récemment attiré
l'attention, ensuite, ils permettent de générer des signaux chaotiques robustes de manière très simple
et ils sont faciles à implémenter. Néanmoins il est nécessaire d'étudier et de comprendre les structures
de bifurcations sous-jacentes. Dans cet article, nous proposons deux sortes de circuits RC très simples
comportant des commutations qui utilisent une horloge a�n de charger ou décharger les capacités. Les
modèles proposés sont basés sur des récurrences de dimension un ou deux. Les structures de bifurcation
des deux circuits sont étudiées et permettent de comprendre la génération de signaux chaotiques.

1. Introduction

The concept of chaos has been introduced during the second half of the twentieth century. Chaos corresponds
to a kind of irregular behaviour, which can be obtained in nonlinear dynamical systems in many areas, especially
in physical systems, for instance nonlinear circuits. Chua's circuit [18] or Du�ng oscillator [11] are classical
examples, more recently, MicroElectroMechanical Systems (MEMS) [3] have been studied in detail. The �rst
researches about chaos have concerned its analysis, and more particularly the understanding of route to chaos by
studying bifurcations giving rise to chaos. Then, during the two last decades, many researchers have tried to �nd
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applications to chaotic signals, which also look like random signals. Some applications concern the use of chaotic
signals for secure transmissions, telecommunications and image processing [19] [24]. It appears that all chaotic
signals cannot be used in such applications. Indeed, even if chaotic signals look random, depending upon their
origin, they do not have the same properties. Speci�c properties are required for speci�c applications, among
them : i) broad spectrum, (ii) robustness of chaos to small parameter variations [1], (iii) speci�c bifurcations
giving rise to chaos in an easy way. Good candidates with respect to these properties can be circuits including
switches. Such systems are of interest for two reasons: �rst, they belong to the class of hybrid systems that
have attracted much interest those last ten years, secondly, they can give rise to chaotic signals, which verify the
properties (i)(ii)(iii). Chaotic generators can be obtained using continuous time models as systems based on the
Chua's circuit (analogical circuit), while others are discrete time systems which directly iterate a chaotic map
(digital circuit). The problem with these systems is that chaos is not necessarily as robust, in the sense given
in [1]. Hybrid systems usually evolve in continuous time, but it is possible to model them using discrete time
maps by introducing a discretization similar to the building of a Poincaré map. A way to obtain robust chaotic
signals is to consider systems where border collision bifurcations appear [2] [16] [12] [13] [23], such systems
constitute a class of hybrid systems. In this paper, we consider two kinds of hybrid circuits modeled using
discrete time maps and we analyze their dynamics.

The chaos generators that we propose are obtained from simple RC circuits including switches managed
using a clock (impulse waveform) and the charging/discharging of the capacitors. Their models are given via
one-dimensional (1D) or two-dimensional (2D) nonlinear maps. Previous studies of such circuits have been done
in [4] [6] [7] [8] [9] [10]. Our aim is to present the analogy between both kinds of circuits and the bifurcation
studies. In this paper, we consider chaos and chaotic attractors in the sense given in [5], [22]. The section 2 is
devoted to the description of the circuits and the recall of their modeling. Both kinds of models are based on the
de�nition of piecewise continuous maps using three determinations. In section 3, bifurcation studies permitting
to obtain periodic orbits and chaos are recalled.

2. Description of the circuits

We consider two simple RC circuits including switches, the �rst one is modeled via a one-dimensional (1D)
map and the second one via a two-dimensional (2D) map. They both depend upon parameters that can vary
and give rise to chaos. Both maps (1D and 2D) are piecewise continuous with three determinations. Now, we
describe the two circuits and their modeling.

2.1. The 1D circuit

The 1D proposed chaos generator is a very simple circuit, which is sketched in Figure 1; it is very similar to
those discussed in [16] [12]. The state variable is v(t), the voltage across the capacitor. The switchings are given
by a logical part including the clock, the two R-S latches and the logical functions XOR and AND. A switch
occurs at every clock period T or when the state variable v(t) reaches the value of VD or VU . The capacitor
charges (p=0) when v(t) reaches VD or discharges (p=1) when v(t) reaches VU . Then, we can use the classical
equations of a RC circuit to obtain a model describing the possible states of the circuit. For more details on the
functioning of the circuit and its modelization, see [9]. After normalization of the variables and the parameters
in order to deal with dimensionless values and a normalized phase space equal to [0, 1], the circuit is modelled
by the map xn+1 = F (xn) (cf. Figure 2), which is de�ned as follows:

if xn ∈ I1 = [0, xa[, F (xn) = F1(xn) = 1− (1− xn)δ

if xn ∈ I2 = [xa, xc[, F (xn) = F2(xn) = (1− xn) δβ
1−β

if xn ∈ I3 = [xc, 1], F (xn) = F3(xn) = 1− (1− xn) δm
1−βm
1−β

(1)
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Figure 1. The RC 1D circuit with the logical part including the clock and the two R-S latches.

where the state variables and the parameters are:

xn ∈ [0, 1] , xn+1 ∈ [0, 1]

β ∈ ]0, 1[ , 0 < m < 1 , δ ∈ ]0, 1]
(2)

with the switching values:

xa = 1− 1−β
δ , xc = 1− m(1−β)

δ
(3)

The map (1) is well de�ned as F is continuous (piecewise linear) and F maps the interval [0, 1] (the phase
space of interest) into itself. F is de�ned using the three di�erent determinations F1, F2 and F3 depending
upon the location of the state variable in [0, 1].

2.2. The 2D circuit

The 2D circuit is shown in Figure 3 and its model has been introduced in a more detailed way in [4] [7] [10].
Just recall that the state variables of the system are the two voltage capacitors vx(t) and vy(t). At every clock
period T , the �ip-�op is set and then the switches position is '1'. When one of the capacitance voltages reaches
the reference value Vref , the two switches are turned toward their position '0'. So, according to the switches
position, the two capacitors are simultaneously charging or discharging. Thus, using classical models of circuits,
we easily obtain the equations of the system. As in the 1D case, we normalize the state variables and the
parameters. Then we obtain the 2D map (xn+1, yn+1) = G(xn, yn) de�ned as follows in Q = [0, 1]× [0, 1]:



26 ESAIM: PROCEEDINGS AND SURVEYS

Figure 2. The 3-pieces piecewise linear map (1).

if (xn, yn) ∈ D1 :

G(xn, yn) = G1(xn, yn) =

{
α+ (xn − α)δ
αρ+ (yn − αρ)δ1/µ

if (xn, yn) ∈ D2 :

G(xn, yn) = G2(xn, yn) =

{ α−xn
α−1 δ

(αρ(α−xnα−1 )1/µ − αρ+ yn)δ1/µ

if (xn, yn) ∈ D3 :

G(xn, yn) = G3(xn, yn) =

{
(α(αρ−ynαρ−1 )µ − α+ xn)δ

(αρ−ynαρ−1 )δ1/µ

(4)

with:

xn ∈ [0, 1] , xn+1 ∈ [0, 1]

α > 1 , ρα > 1 , µ > 0 , δ ∈ ]0, 1]
(5)

where the three domains D1, D2 and D3 are de�ned as follows (see Figure 4):
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Figure 3. The 2D circuit.

D1 = {(x, y)| 0 ≤ x ≤ xb and 0 ≤ y ≤ yb}
D2 = {(x, y)| xb ≤ x ≤ 1 and ∆(x, y) ≥ 0}
D3 = {(x, y)| yb ≤ y ≤ 1 and ∆(x, y) ≤ 0}

(6)

with the switching values in Q = [0, 1]× [0, 1]:

x = xb , xb = α− α−1
δ

y = yb , yb = αρ− αρ−1
δ1/µ

∆(x, y) = 0 , ∆(x, y) = (αρ−yαρ−1 )µ − α−x
α−1

(7)

assuming xb ≥ 0 and yb ≥ 0, which occurs for

δ < δ < 1 , δ = max

{
α− 1

α
, (
αρ− 1

αρ
)µ
}

(8)

It is easy to see that the map is well de�ned as G is continuous and maps the square Q (the phase space of
interest) into itself. As in the 1D case, the map is de�ned using three determinations G1, G2 and G3, depending
upon the location of the state variables in Q.
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Figure 4. Phase space Q of the map G (4) and the three di�erent regions Di, i = 1, 2, 3 where
the three di�erent determinations G1, G2 and G3 are de�ned.

3. Study of bifurcations and chaos in the two circuits

3.1. The 1D circuit

The map (1) is a 1-dimensional piecewise linear map with three pieces. In this section, we recall results
about the �xed points, order k periodic orbits and their bifurcations [9]. We also put in evidence the homoclinic
bifurcations giving rise to chaotic behaviour. First, let us give the slopes of the map, depending where is located
the point in the interval [0, 1]. These values will be useful for the rest of our study.

if x ∈ [0, xa[, p1 = δ > 0

if x ∈ [xa, xb[, p2 = −δβ
1−β < 0

if x ∈ [xb, 1], p3 = δ
m

1−βm
1−β > 0

(9)

3.1.1. Fixed points

We recall the results about �xed points, see for instance [8] or [9] for more details. Two �xed points X∗
1 and

X∗
2 exist and are given by:

X∗
1 = δβ

1−β+δβ ∈ [xa, xb]

X∗
2 = 1

(10)
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X∗
1 is stable when the slope p2 = −δβ

1−β ∈] − 1, 0[, that means β < 1
1+δ . X∗

2 is stable when the slope

p3 = δ
m

1−βm
1−β ∈]0, 1[, that means β < m−δ

m(1−δ) and m > δ. So, we can de�ne the bifurcation curves related to

�xed points bifurcations:

FB1a : β = 1
1+δ ,m < δ, FB1b : β = 1

1+δ ,m > δ

FB1c : β = m−δ
m(1−δ) ,m > δ

(11)

These curves correspond to degenerate �ip bifurcations, FB1a corresponds to the appearance of a stable
order 2 cycle after the �ip bifurcation of X∗

1 , FB1b corresponds to the appearance of an order 2 cyclic chaotic
attractor (C1, C2), after X∗

1 has changed its stability; indeed, the order 2 periodic orbit (Y1, Y2), which appears
at the �ip bifurcation FB1b, undergoes in the same time a border collision bifurcation (Y2 is merging with xb)
and becomes unstable (see Fig. 5). FB1c corresponds to a border collision bifurcation for X∗

1 , which disappears
when merging with xb; at the same bifurcation value, X∗

2 becomes a stable �xed point. The curve FB1c also
corresponds to a degenerate bifurcation for X∗

2 with the appearance of an order 2 cyclic chaotic attractor, after
X∗

2 has become unstable (see Fig. 6). Then, the order 2 cyclic chaotic attractor, after an homoclinic bifurcation,
gives rise to an one-piece chaotic attractor (see Fig. 7). Such chaos can be considered as robust in the sense of
remaining chaotic even if the parameters or the initial conditions are slightly changed [1].

Figure 5. Map (1). Degenerate �ip bifurcation (FB1b) in the plane (xn, xn+1) for δ = 0.2,
m = 0.3 and β = 0.8333.
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Figure 6. Map (1). In the (m,β) plane, δ = 0.2, bifurcation curves of the map F related to
�xed points and order 2 cycles.

When there exists a stable order 2 cycle, this cycle can undergo a degenerate �ip bifurcation, which gives rise
to an order 4 cyclic chaotic attractor. The bifurcation curve is given by the following equation, corresponding
to the slope of F 2 that becomes equal to −1:

FB2a : β = 1
1+δ2 (12)

FB2a corresponds to the slope of F 2 equal to p1p2 (F
2 = F1F2). It is impossible to obtain a �ip bifurcation

for F 2 = F1F3, because p1p3 can never be negative.
Other bifurcation curves correspond to border collision bifurcations. It is possible to have F 2(xa) = xa or

F 2(xb) = xb. The corresponding curves are respectively denoted BC2a and BC2b. Their equations are given
by:

BC2a : β = 1
1+δ

BC2b : β = m−δ2
m(1−δ2) ,m > δ2

(13)

Let us remark that BC2a = FB1b. Figure 5 illustrates this case. (Y1, Y2) is an order 2 cycle. All points
between Y1 and Y2 are points of order 2 cycles, there exist in�nitely many of them. This is why the �ip
bifurcation is a degenerate one (FB1b). At the same time, Y2 is merging with xb, this is the border collision
bifurcation (BC2a).

3.1.2. Bifurcations of order k periodic orbits

Using the same method as for �xed points and order 2 cycles, we can obtain the bifurcation curves for order
k cycles. It is necessary to look at the way of exchange of points by the map F . The exchange depends upon
the location of each point and the determination of F , F1, F2 or F3, which has to be applied. In this paragraph,



ESAIM: PROCEEDINGS AND SURVEYS 31

Figure 7. Map (1). An one-piece chaotic attractor C appears after an homoclinic bifurcation.
Parameter values are δ = 0.2, m = 0.5 and β = 0.87.

we do not intend to study and write the bifurcation curves equations for all the categories of order k cycles that
can be de�ned, but only for those that we have obtained in numerical simulations. It is clear that in simulations
and for a practical use, small orders of cycles are of interest. This is why we give the analytical equations of
bifurcation curves for cycles, which order is up to 7. We have generalized when it was possible to the equation
of bifurcation curves for any order. Moreover, it is worth of noting that previous studies concerning bimodal
piecewise linear maps have been done in a more general way [15] [21].

First, we give the bifurcation curves corresponding to the degenerate �ip bifurcations. Indeed, if we consider
an order k cycle, each point X of this cycle veri�es F k(X) = X and F k is obtained by a combination of its
three determinations F1, F2 and F3. We can write that, in F k, F1 appears i times, F2 j times and F3 l times,
with i + j + l = k. So regarding the degenerate �ip bifurcation, it is obtained by considering the three slopes
p1, p2 and p3 such that pi1p

j
2p
l
3 = −1. We have:

Proposition 1 For the map (1) , the equation of the degenerate �ip bifucation of an order k cycle is:

FBkijl : δk = (1−β)j+lml
(1−βm)lβj

, i+ j + l = k, (14)

This result is obtained, using:
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Figure 8. Map (1). Stability areas of k periodic orbits, k = 1, ..., 5 in the parameter plane
(δ, β) for m = 0.35.

Figure 9. Enlargment of Fig. 8. Stability areas of k periodic orbits, k = 1, ..., 5 in the
parameter plane (δ, β) for m = 0.35. They are limited by bifurcation curves obtained in Fig. 10.
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Figure 10. Map (1). Bifurcation curves of k periodic orbits, k = 1, 2, 3, 4, 5 in the parameter
plane (δ, β) for m = 0.35. They limit the stability areas of Fig. 9.

Figure 11. Map (1). A chaotic attractor is located in the three intervals I1, I2 and I3 and is
issued from an order 3-cycle whose points are exchanging using the three determinations of F .
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pi1p
j
2p
l
3 = δi( δβ

β−1 )j( δm
1−βm
1−β )l = −1, i+ j + l = k (15)

All the degenerate �ip bifurcation curves are known analytically and can be plotted in the parameter planes
(β, δ), m being �xed or (m, δ), β being �xed.

Border collision bifurcation curves can also be obtained. The collision can occur with any of both points xa
or xb. So, we have to look the parameter values for which one has F k(xa) = xa or F

k(xb) = xb. It is necessary
to determine the way of exchanging the points of cycles by the three determinations of F .

The simplest case occurs when an order k cycle has its points exchanged k − 1 times by F1 and one time by
F2 or k − 1 times by F1 and one time by F3. It is possible to obtain the border collision bifurcation curves,
which are denoted BCka if the collision occurs with xa, that means F k(xa) = xa, or BCkb if the collision
occurs with xb, that means F k(xb) = xb. We have the following result:

BCka : β = 1−δk−1

1−δk ,m < δ

BCkb : β = m−δ2
m(1−δ2) ,m > δ2

(16)

Regarding the exchange of points k − 1 times by F1 and one time by F2 or k − 1 times by F1 and one time
by F3, we obtain a period-adding sequence of periodic orbits (see [9]) for more details. This is a classical result,
which has been obtained for other maps of the same kind (see [23]).

On Fig. 8, we consider the parameter plane (δ, β), m being �xed and equal to 0.35, we can see the stability
areas of some order k cycles, k = 1, ...5. On Fig. 9, an enlargment is given. Those cycles have their points
exchanged using the three determinations of F . All the stability areas in Fig. 9 are bounded by degenerate �ip
bifurcation curves FBkijl (14) or border collision bifurcation curves. The border collision bifurcation curves
must be calculated by considering the exchange of the points of the cycle and the point xa or xb with which
there is a collision. The cycles can be classi�ed in di�erent categories, regarding the way of exchanging their
points. It is also possible to use Symbolic Dynamics of a bimodal map [14] [17], we have chosen to represent a
cycle by beginning with the point at the left of the interval [0, 1] (generally, this point is located inside I1 and
F1 is applying). The use of symbolic dynamics corresponds to give a code to every order k cycle by considering
the location of the points in the intervals I1, I2 or I3; generally, the following rule is used: a point of the cycle
is coded by L when it belongs to I1, M when it belongs to I2 and R when it belongs to I3 (sometimes, the
codes A or B can be used if one point of the cycle is merging with xa or xb, in this paper, we will not take
this possibility into account). We can propose the following classi�cation and give the equations of the border
collision bifurcation curves for some of them (let us recall that the degenerate �ip bifurcation curves are given
by (14)(15)). We obtain the following result [9]:

Proposition 2 For the map (1) , the equations of the border collision bifucation of an order k cycle are:

• Order k cycle (F2F
k−1
1 , Lk−1M), where the symbol L appears (k − 1) times. The equation is given by

(16).

• Order k cycle (F2F
k−2
3 F1, LR

k−2M), where the symbol R appears (k − 2) times. The border collision
bifurcation curves are given by:

BCka : δ
k(1−βm)k−2β+(1−β)k−1mk−2

δ(1−β)k−2mk−2 = 1,

BCkb : δk = ( (1−β)m
(1−βm) )

k−1
(17)

• Order k cycle, k odd, (F2(F3F1)
(k−1)

2 , (LR)
(k−1)

2 M), where the symbol LR appears (k−1
2 ) times. The

border collision bifurcation curves are given by:

BCka : δ
k−2(1−βm)

k−3
2

mk−4(1−β)
k−1
2

− δkβ(1−βm)
k−1
2

mk−3(1−β)
k+1
2

= 1,

BCkb : δk = ( (1−β)m
(1−βm) )

k+1
2

(18)
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• Order k cycle, k odd, F1F2F1(F3F1)
(k−2)

3 , (LR)
(k−2)

3 LML, where the symbol LR appears k−3
2 times.

The border collision bifurcation curves are given by:

BCka : δ2

(1−β) −
δkβ(1−βm)

k−3
2

m
k−3
2 (1−β)

k−1
2

= 1,

BCkb : δk = ( (1−β)m
(1−βm) )

k−3
(19)

We have also observed two order 7 cycles, for which we give the border collision bifurcation curves:

• Concerning order 7 cycle (F2(F 2
3F1)2, LRRLRRM), the bifurcation curves are:

BCka : − δ
7β(1−βm)4

m4(1−β)5 + δ4(1−βm)2

m2(1−β)3 = 1,

BCkb : δ7 = ( (1−β)m
(1−βm) )

5
(20)

• Concerning order 7 cycle (F2F
2
1F3F

3
1 , LLLRLLM), the bifurcation curves are:

BCka : δ3

(1−β) −
δ7β(1−βm)
m(1−β)2 = 1,

BCkb : δ7 = ( (1−β)m
(1−βm) )

2
(21)

Bifurcation curves for order k cycles, k = 1, ..., 7 are plotted on Fig. 10. They clearly limit the stability areas
of order k cycles of Fig. 9. The curves of degenerate �ip bifurcations and border collision with xb are given in
an explicit form and can be directly plotted, the curves related to the border collision with xa are given under
an implicit form and have to be plotted by using a numerical method (Newton-Raphson).

Between two stability regions, there exists a chaotic attractor. The chaotic attractor issued from a degenerate
�ip bifurcation is a cyclic one, then after a succession of homoclinic bifurcations, it becomes a one-piece chaotic
one.

For some parameter values, chaos can be located on the three domains I1, I2 and I3 (Fig. 11). This chaos is
obtained from border collision bifurcations of order k-cycles whose points exchange by F1, F2 and F3. This is
the case around the stability area of the order 3-cycle (F2F3F1, LRM)(see Fig. 9 and 10). In this case, chaos
can be considered as robust; indeed its existence domain in the parameter space is large enough.

A further study will be to consider the cyclic chaotic attractors and to try to limit the areas where they can
exist before becomming attractors in a single piece.

3.2. The 2D circuit

Previous studies of the map (4) have been done in [4] [7] [10], they concern some speci�c cases. The map (4)
depends upon four parameters; in [7], the study has been done for µ = 1 and in [4] and [10], the case of ρ = 1
has been studied. Here, we present some results in the general case as those given in [8].

First, we have the following result:

Proposition 3 For the map (4) , the four cases related to µ or ρ less than or greater than 1 are topologi-
cally conjugated, whatever be α and δ.

The proof follows immediately due to the following property:

G1(xn, yn, α, δ, µ, ρ) = G1(yn, xn, αρ, δ
1/µ, 1/µ, 1/ρ) (22)

G2(xn, yn, α, δ, µ, ρ) = G3(yn, xn, αρ, δ
1/µ, 1/µ, 1/ρ) (23)

This proposition permits to reduce the study to only one case. Here we consider µ < 1 and ρ < 1.
Then, let us remark that G can be written under the following form:
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G1(x, y) =

[
δ 0
0 δ1/µ

] [
x
y

]
+

[
α− αδ
αρ− αρδ1/µ

]

G2(x, y) =

[
δ

1−α 0

A(x) δ1/µ

] [
x
y

]
+

[ −αδ
1−α
−αρδ1/µ

]

G3(x, y) =

[
δ B(y)

0 δ1/µ

1−αρ

] [
x
y

]
+

[
−αδ
−αρδ1/µ
1−αρ

]
(24)

From (24), we can remark that G1 is a�ne with the part depending upon x and y that can be written from
a diagonal matrix. Concerning G2 and G3, they also are a�ne, with the part depending upon x and y that
can be written by the way of triangular matrices. So, we can deduce that G is nearly linear and the dynamics
and the bifurcations can mainly be obtained from the linear part. For instance, only the diagonal terms play
an important role to detect bifurcations of periodic orbits.

As in the case of the 1D circuit, we can obtain analytically some bifurcation curves related to the case where
two determinations of the map have to be considered to obtain the attractors. We have the following proposition:

Proposition 4 For the map (4) , equations of the degenerate �ip bifurcation curves related to Gk = Gk−1
1 G2

or Gk = Gk−1
1 G3 are:

DFBka : δ = (α− 1)
1
k for Gk−1

1 G2

DFBkb : δ = (αρ− 1)
µ
k for Gk−1

1 G3
(25)

These curves [7] [10] are related to exchange of points using G1 and G2 (DFBka) or G1 and G3 (DFBkb)

and are obtained by considering one eigenvalue of the Jacobian of Gk−1
1 G2 or Gk−1

1 G3 equal to −1. Figure 12
illustrates the case of DFB1a, a �xed point undergoes a �ip bifurcation and there exist a curve of in�nitely
many order 2 cycles at the bifurcation. We also want to focus on the possibility of exchange of points using the
three determinations G1, G2 and G3 of the map. We can obtain the curves BCBk (Figure 13), which correspond
to border collision bifurcations, in a particular case when considering the k-cycles (k even) obtained using:

G
k
2−1
1 G3G

k
2−1
1 G2 (26)

These curves are obtained numerically, they correspond to a point of the k-cycle (k even) merging with the
border x = 1. After the border collision bifurcation, a chaotic attractor exists, which is located in the three
domainsD1, D2 andD3 (Figure 16). These curves also correspond to limit of stability areas of periodic attractors
(Figure 14). Figure 15 correspond to a bifurcation diagram with α, ρ and µ �xed (µ = 0.29, see Figures 13
and 14 where the line µ = 0.29 is given), we can see the succession of periodic orbits (order k =1,2,4,3,6,4,8)
and chaotic attractors between two periodic windows and after the existence of periodic windows.

Our circuits have also been implemented and the existence of periodic or chaotic attractors have been put in
evidence in the implementations in spite of noise inherent to such experimentations. Figures 17 and 18 show
an order 3 cyclic chaotic attractor respectively obtained experimentally and by Matlab simulations.

4. Conclusion

We have proposed two examples of simple circuits permitting to obtain chaotic signals. Both circuits are
modeled using maps with three determinations in the phase space. For both models, it is possible to obtain
analytically the equations of some bifurcation curves. It permits to understand the appearance of chaos by
border collision bifurcations. Such chaos can be robust. Chaos can also be obtained using the three possible
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Figure 12. For the map (4), in the phase space (x, y), degenerate �ip bifurcation (DFB1a)
for α = 1.053, µ = 0.35, δ = 0.053 and ρ = 0.95. A curve of in�nitely many order 2 cycles exist
at the bifurcation. Some of them are plotted on the �gure.

determinations, but as the parameter values that permit to obtain it are in smaller domains of parameter space,
such chaos does not seem so robust in our examples. Nevertheless, chaos obtained using the three determinations
of the map could be more useful for applications (for instance, in secure communications, it could be harder to
detect it).

We intend to continue and develop our studies in order to improve the way of obtaining more robust chaos
useful for applications. For instance, depending on parameter values, chaos can appear as cyclic chaotic attractor
or as a single piece chaotic attractor. Of course, with the aim of using it in applications, it seems better to
consider a single piece attractor instead of a cyclic one with di�erent pieces. So, it can be of interest to limit
such areas in parameter space. In this paper, we have considered deterministic chaos. From another point
of view, statistical studies of our chaotic signals could be of interest. Indeed, chaotic signals can be used for
applications, for instance cryptography or secure transmissions and it is important to evaluate their randomness.
Then, it can be of great interest to apply the statistical NIST tests [20] or to study the auto-correlation and
cross-correlation of such signals.
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Figure 15. Bifurcation diagram for the map (4) in the parameter plane (δ, x) when µ = 0.29,
α = 1.053 and ρ = 0.95.
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Figure 16. Chaotic attractor in the phase space (x, y) for the map (4) when α = 1.053,
µ = 0.15, δ = 0.9 and ρ = 0.95. The attractor is located in the three domains D1, D2 and D3.

Figure 17. Experimental implementation of the circuit modeled by the map G. An order 3
cyclic chaotic attractor has been obtained for α = 1.053, µ = 0.48, δ = 0.4 and ρ = 0.95.
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Figure 18. Chaotic attractor for the map (4) obtained by simulations when α = 1.053, µ =
0.48, δ = 0.4 and ρ = 0.95. It corresponds to the attractor experimentally obtained in Figure 17.


