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We consider a two-parametric family of one-dimensional piecewise smooth maps with one
discontinuity point. The bifurcation structures in a parameter plane of the map are investigated,
related to codimension-2 bifurcation points defined by the intersections of two border collision
bifurcation curves. We describe the case of the collision of two stable cycles of any period and
any symbolic sequences. For this case, we prove that the local monotonicity of the functions
constituting the first return map defined in a neighborhood of the border point at the parame-
ter values related to the codimension-2 bifurcation point determines, under suitable conditions,
the kind of bifurcation structure originating from this point; this can be either a period adding
structure, or a period incrementing structure, or simply associated with the coupling of colliding

cycles.
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1. Introduction

Piecewise smooth maps are well-known to show
several phenomena which cannot occur in smooth
systems. The most characteristic are border colli-
sion bifurcations (BCB for short) occurring when a
point of a cycle collides (under parameter variation)
with a border point which separates different defini-
tion regions of the system. Such a collision may be
associated with the disappearance of the cycle and
may lead to a drastic change in the dynamic behav-
ior, as for example, to a direct transition from an
attracting cycle to a chaotic attractor (see [Nusse &
Yorke, 1992; di Bernardo et al., 1999]).

An important feature of 1D maps with one
discontinuity point regards the occurrence of
codimension-2 BCBs. In fact, when dealing with a
two-dimensional parameter plane of a discontinu-
ous map one can observe particular points at which
two BCB curves, related to BCBs of two different
cycles, intersect transversely. These points are of
great interest, because in many cases they represent
so-called organizing centers giving rise to different
complex bifurcation structures [Avrutin et al., 2007;
Gardini et al., 2012]. In this paper we consider a
codimension-2 BCB point B, which corresponds to
the simultaneous collision of two attracting cycles

1450024-1


http://dx.doi.org/10.1142/S0218127414500242

L. Gardini et al.

with the border point from its opposite sides, i.e.
a point of one cycle collides with the border point
from the left and a point of the other cycle from the
right.! As we show, at point B the first return map
defined in a neighborhood of the border point is con-
tinuous in the border point, which also represents
a fixed point for this first return map. Accordingly,
the creation of different bifurcation structures in a
neighborhood of B is closely related to the problem
of a break up in continuity at an attracting fixed
point.

The question arises how to identify the struc-
tures originating from such organizing centers. For
a generic codimension-2 BCB point the answer
depends on the properties of the cycles which
undergo the BCBs. In this paper, we consider the
case in which two stable cycles of any periods
undergo BCBs. We show that period adding and
period incrementing bifurcation structures may
issue from the intersection point of the associated
bifurcation curves. By period adding bifurcation
structure we mean the one in which the periodic-
ity regions of attracting cycles are ordered in the
parameter space according to the Farey summation
rule [Hardy & Wright, 1960; Apostol, 1990] applied
to the rotation numbers of the cycles [Leonov,
1959; Keener, 1980; Homburg, 1996; Gardini et al.,
2010; Avrutin et al., 2010]. The period increment-
ing bifurcation structure represents a sequence of
partially pairwise overlapping periodicity regions of
attracting cycles with periods which are increased
by a constant value in each step [Homburg, 1996;
Avrutin & Schanz, 2006; Gardini & Tramontana,
2010; Avrutin et al., 2011; Gardini et al., 2012].
This problem is related to the gluing bifurcations
in flows in the case of one-loop homoclinic orbits,
as considered by many authors [Gambaudo et al.,
1988; Ghrist & Holmes, 1994; Ghrist, 2000].

Our object is to identify which bifurcation
structure issues from a codimension-2 BCB point.
We construct the first return map in a neighborhood
of the border point, which is a piecewise smooth
map with two contracting branches defined on the
left and on the right sides of the border point by
suitable compositions of the functions of the origi-
nal map. Depending on whether these contracting
branches are increasing or decreasing, we describe

the behavior of the original map in the neighbor-
hood of the codimension-2 BCB point. This is done
by proving three separate theorems which consider
a codimension-2 BCB point associated with two
fixed points colliding on opposite sides of the border
point, set to = 0. The theorems differ depending
on the local monotonicity of the two functions in a
neighborhood of the border point. The assumptions
are given mainly on qualitative properties and the
proofs are new, depending on topological properties
instead of more analytical ones which have recently
been published, among which it is worth mention-
ing [Labarca & Moreira, 2001, 2006; Golmakani &
Homburg, 2011; Labarca & Moreira, 2010; Winck-
ler, 2011; Labarca & Vésquez, 2012].

The 1D piecewise smooth maps with one dis-
continuity point considered here are not only chal-
lenging from the theoretical point of view, but also
provide an adequate description of the possible
dynamics for several one- and higher-dimensional
applied models. For example, as recalled above, it
is known that the essential dynamics for a class of
three-dimensional Lorenz-like flows can be investi-
gated by using a 1D piecewise smooth map. This
subject, originated from Lorenz’s work [Lorenz,
1963], and since then studied by many researchers.
A list of important contributions, although not com-
plete, includes [Guckenheimer & Williams, 1979;
Sparrow, 1982; Birman & Williams, 1983; Turaev &
Shil’nikov, 1987 (Russian version 1986); Lyubimov
et al., 1989; Homburg, 1993, 1996; Ghrist & Holmes,
1993, 1994; Glendinning, 1988|. Thus, to link our
theorems in maps with a wide literature on flows,
we provide several examples by using the Lorenz
maps, showing that the codimension-two points in
the considered parameter plane can be rigorously
explained by our results.

This paper is organized as follows. In Sec. 2
we consider a generic piecewise smooth 1D map f
with one discontinuity point, also called the border
point. We assume that in a parameter plane two
BCB curves of two different stable cycles O, and O,
transversely intersect in a codimension-2 BCB point
B, and that the cycles O, and O, exist on one side
of the corresponding curves and do not exist on the
other side. We construct the first return map f in
a neighborhood of the border point which describes

IRecall that in 1D continuous piecewise smooth maps such a collision occurs at a nonsmooth fold bifurcation, also called a fold
BCB, in which case the colliding cycles are necessarily complementary to each other, that is, their symbolic sequences differ
by only one colliding symbol. Given that the condition of fold BCB is the same for both cycles, it defines just one BCB curve.
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the behavior of the map f close to point B and clas-
sify the possible cases for a general 1D discontinuous
piecewise smooth map, by Theorems 1-3 presented
in Sec. 3. In Sec. 3 we first describe the necessary
assumptions and in three different subsections we
prove the theorems based on the local monotonic-
ity of the functions. In Sec. 3.1 we prove that if
the branches are both locally increasing, point B
represents an organizing center from which an infi-
nite number of disjoint periodicity regions of stable
cycles issue, organized in a full period adding struc-
ture. If one of the local branches is increasing and
the other one decreasing, then point B represents
the issuing point of a period incrementing structure,
formed by partially overlapping periodicity regions
of one infinite family of stable cycles with increasing
periods. Finally, if both the branches are decreasing,
then from point B only one more periodicity region
issues, thus, this point does not represent an orga-
nizing center. This region overlaps partially with
each of the existence regions of colliding cycles and
is related with a cycle whose symbolic sequence is
the concatenation of the symbolic sequences of the
colliding ones. For the sake of brevity we call this
structure a coupling bifurcation structure. In Sec. 4
we recall the relation between Lorenz-like flows and
the associated 1D discontinuous piecewise smooth
family of maps. For such maps (see [Sparrow, 1982;
Glendinning, 1988; Lyubimov et al., 1989; Hom-
burg, 1996; Zaks, 1993|) a codimension-1 BCB point
corresponds to the appearance/disappearance of a
limit cycle via a homoclinic orbit; a codimension-2
BCB point represents the simultaneous occurrence
of two homoclinic orbits (which are merging, or
gluing), associated with two different limit cycles.
We show that our theorems can be applied to the
codimension-2 BCB points which exist in the asso-
ciated parameter plane. Section 5 concludes.

2. Codimension-2 Border Collision
Bifurcations

Consider a family of 1D piecewise smooth maps f,
depending on at least two parameters (7, (o, and
defined on two partitions (i.e. different regions of
the state space) by two smooth functions f; and

fr on opposite sides of a border point.? Without
loss of generality, the border point can be fixed at
z=0:

Tnt1 = f(xnv (Cla 42))

{fﬁ(xna (Cly CQ))
fr(@n, (C1,¢2))

It is well known that the bifurcation structure in
the parameter space of these maps may be quite
complicated, including infinitely many periodicity
regions related to cycles of different periods. Often
these regions originate from some particular points,
called organizing centers, the investigation of which
represents an efficient way to explain the related
bifurcation structures.

In the present paper, we consider organizing
centers given by the intersections of two BCB curves
of two attracting cycles of map f. It is worth noting
that an organizing center can be obtained not only
by an intersection of two BCB curves. For exam-
ple, in piecewise linear 1D maps a codimension-2
bifurcation point at which a BCB curve intersects
a degenerate flip bifurcation curve may represent
an organizing center as well (for some examples,
see [Avrutin et al., 2006; Gardini & Tramontana,
2011]). On the other hand, as shown below, not
every codimension-2 BCB point represents an orga-
nizing center. We are interested in the bifurcation
structure originating from the intersection point of
two BCB curves in a parameter plane of map (1).

Let O, and O, be two cycles of map (1), with
symbolic sequences® o = 0001+ 0p—1 and 9 =
0001 - - - 0g—1, respectively, where oj,0r, € {L, R}
with j = 0,...,p—1 and &k = 0,...,g — 1. Let
§§ denote the BCB curve in the parameter plane
(C1,(2) related to the attracting cycle O, at which
the point x5 < 0 of this cycle closest to x = 0
from the left side collides with the border point,
that is, the periodic point satisfies the equation

if ¢z, <0

(1)

if x, > 0.

fo(xg, (G, G)) = 3§,

fro(x,(C1,¢2)) = fo, 0+ 0 foo(2,(C1,C2))
with o9 = L. (2)

where

2Note that in Eq. (1) we do not specify the value of the function f at x = 0, as this value has no relevance for the bifurcation

structure of the map.

3Here we use the standard notation for a symbolic sequence associated with a cycle of a map defined on two partitions: a
point of a cycle located in the left half-axis * < 0 is associated with the letter £ and a point located in the right half-axis

x > 0 with the letter R.
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At the moment of the border collision we have
x§ = 0, so that the equation fz(0,(¢1,¢2)) = 0 is
satisfied. Accordingly, we define the BCB curve as:

€5 = {(¢1,0) | £2(0,(C1, &) = 0. (3)

We assume that as the parameters cross this BCB
curve, the cycle O, appears/disappears. Similarly,
let 575 denote the BCB curve of the attracting cycle
O, at which the point zf of this cycle closest to

= 0 from the right side collides with the bor-
der point, that is, the periodic point satisfies the
equation

fR('I"gv (Cla C2)) = 9387
fr(@,(C1,G2)) = fo, ©

where

0 foo(,(C1,(2))
with go =R (4)
and we define the BCB curve as:

&R =1{(¢1, &) | fr(0,(C1, &) = 0} (5)

Now let us assume that the two BCB curves
§§ and fz,z intersect transversely in a codimension-2
BCB point

Byjp = (C1,(2) € €5 NER (6)

and that at the parameter point B,,, the colliding

Jo/e
cycles are hyperbolic (that is, \%fg(m,l’)’g/g)|x:0 #+
1 and |%f7g(x,30/g)\z:o 7& 1).

From the definition of a BCB it follows that for
parameter values (1,(2 belonging to the curve §§
we have fr(0,B,/,) = 0 and for parameter values

located at the curve 575 we have fR(O,Bg/Q) = 0.
Hence, at the codimension-2 BCB point B,,, the
condition

a/e

££(0,B,/,) = fr(0,B,/,) =0 (7)

is satisfied. Thus, a first return map can be con-
structed, as stated by the following proposition:

Proposition 1. For parameter values in a neighbor-
hood of a point B, belonging to the intersection of
two BCB curves as in (6), the first return map in a
neighborhood of the point x = 0 of the map f given
in (1) is defined as follows:

F(@n, (G1,62))

fﬁ(xn) = fop ©

Tp+l =
0 fcro (xna (Cla 42))
if xn, <0

20 foo (T, (C1,C2))

if xn > 0.

Jr(zn) = fo, ©

From condition (7) we have that at the point
B,/, the first return map (8) is continuous in z = 0.
This map represents an adequate tool in investigat-
ing the dynamics of map (1) for parameter values
in a neighborhood of point B, ,.

From the way in which the map (8) is con-
structed, it follows that the points x§ and z§ of
the cycles O, and O, of the original map (1) corre-
spond to two fixed pomts of the first return map (8),
denoted Oy and Og, respectively. Accordingly, for
the parameter values located at the BCB curve ¢4
at which the point z{ collides with x = 0, the fixed
point O of the first return map undergoes a BCB
as well. The same also applies to the fixed point
Op of the first return map and the parameter val-
ues located at the BCB curve 55.

As the attracting cycles O, and O, exist on
one side of the corresponding BCB curve and do
not exist on the other side, the bifurcation structure
of map (8) in a neighborhood of point B, /, in the
parameter plane ((1,(2) is as shown schematically
in Fig. 1. The curves ¢4 and 57; (confining the exis-
tence regions P, and P, of the cycles O, and O,,
respectively) divide the parameter space into four
quadrants. In one of these quadrants both attract-
ing fixed points O and Og exist (the correspond-
ing existence regions are denoted by P, and Pg,
respectively); in two others only one of them exists;

Fig. 1. Schematic structure of the parameter plane of

map (1) close to the codimension-2 BCB point B, /, belong-

ing to the intersection of the BCB curves §§ and 55.

1450024-4



Codimension-2 BCB in One-Dimensional Discontinuous Piecewise Smooth Maps

and in the remaining quadrant neither (’35 nor (’)R
exist. The bifurcation structure of this last quad-
rant, denoted by Pg, depends mainly on whether
the functions fr and fr (which are locally contract-
ing) are strictly increasing or decreasing in a left and
right neighborhood of the point = = 0, respectively.

A sufficient condition to satisfy these properties
comes from the derivatives of the functions f, and
fr at the origin and at the parameter point 5
namely

/o>

Y

d -~
Sc = %fﬁ(x780/9> o

; (9)
SR = %fR(xv Ba/g)

=0
Clearly, |sg| < 1 and |sg| < 1, as the fixed points
O, O are attracting. If s; > 0 or s; < 0,
i € {L,R}, then a neighborhood of z = 0 exists
in which ﬁ is strictly increasing or decreasing,
respectively. In the switching case s; = 0 the sign
of the lowest order nonzero derivative determines
whether locally the branch f; is strictly increasing
or decreasing. B

The overall four possible shapes of f for differ-
ent combinations of s, and s are shown schemati-
cally in Fig. 2. It can easily be shown that maps
in the configurations 1 and 4 are topologically

A
1§ f(x) 2) f(x)

N

Sz

3) f(x) 4) f(z)

N

-1 s 1

-1

Fig. 2. Schematic representation of possible shapes of the
first return map (8) at the codimension-2 point B, ,, associ-
ated with BCBs of two stable cycles.

a/e

conjugate and hence have qualitatively the same
bifurcation structure.

Regarding the monotonicity of the functions
fg, fR, if the functions fr and fgr are increasing
in their partitions, then for any pair of cycles O,
O, the branches fr, fr of the first return map (8)
are increasing in the considered neighborhoods as
well (since any composition of increasing functions
is increasing). Diversely, if at least one of the func-
tions fr, fr is decreasing, then the branches of the
first return map at the parameter point 5,,, may
be increasing or decreasing depending on the par-
ticular cycles O, O,.

The existence of period adding, period incre-
menting and coupling bifurcation structures asso-
ciated with cases A: both increasing functions, B:
one increasing function and one decreasing and C:
both decreasing functions, is proved, respectively,
by applying Theorems 1-3 given in the next section
to the first return map f in a neighborhood of point
B/, Examples of the application of the theorems
are given in Sec. 4.

The theorems in Sec. 3 also prove that in a
proper neighborhood of a point B/, associated
with two attracting cycles the bifurcation structure
for a generic piecewise smooth map f in Eq. (1) is
qualitatively the same as that of piecewise linear
maps. A similar connection between generic piece-
wise smooth maps and piecewise linear maps can
also be expected for the case of unstable cycles.
Some results regarding the bifurcation structures in
piecewise linear maps for generic cases are reported
in [Avrutin et al., 2012].

3. Continuity Breaking

In this section we consider the case in which the
attracting cycles colliding with the border point
xz = 0 are fixed points of a two-parameter family
of piecewise smooth maps

Tr(xy; if 2, <0
Tny1 = T(zn; () = { lnid) L (10)
Tr(xn;C¢) ifx, >0
where ¢ = ((1, (2). We assume that for any ¢ belong-
ing to a suitable region defined below the func-
tion Tz (x;() is smooth for x < 0 and the function
Tr(x; ) is smooth for x > 0. We recall that the def-
inition of map 1" at the border point x = 0 does not
affect the bifurcation curves we are interested in, so
that at £ = 0 map T can be defined indifferently as

Tr(0;¢) or as TR (0; ().
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The sets
& ={C|T(0;¢) =0} and
¢r = {¢|Tr(0;¢) = 0}

are related to the collision of fixed points with
x = 0. That is, if ( € &¢, then a fixed point of
Tr(x;C), say x, is merging with = 0 and simi-
larly if ¢ € &g, then a fixed point of Tz (x;(), say
T, is merging with o = 0. The following assump-
tions are considered:

(11)

(H1) In the parameter plane ((1,(2) a point B =
(C1,C2) € £ N &R exists such that in a neigh-
borhood W (B) of B the sets {, and (g are
two regular curves transversely intersecting
in B, and an attracting fixed point z}. of T
exists on one side of the bifurcation curve £,
say for {¢|7T-(0;¢) < 0} C W(B), and does
not exist on the other side, for {¢|7(0;¢) >
0} € W(B). Similarly for the other bifurca-
tion curve {r, an attracting fixed point z7, of
T exists on one side of the bifurcation curve
&R, and does not exist on the other side.

(H2) Ti(z;(¢1,¢2)) is differentiable with respect
to (1 and (o in x = 0, ( = B, and
I T5 (5 Q)| (z=0;c=p)| < 1 fori=LR.

It follows from our assumptions on 7;(x; () in
(0; B) that a neighborhood U(B) C W(B) of B
exists such that for any ¢ € U(B) the two func-
tions T (x;¢) and Tr(x; () are contracting in a left
and right neighborhood of = = 0, respectively, say
in J; and Jr. Then let us also assume that

(H3) Ti(z;() is strictly monotone in J; for any
CeU(B),i=LRA

In the neighborhood U(B) (as shown quali-
tatively in Fig. 1) the set &, (resp. {r) is an
arc of the BCB curve associated with the appear-
ance/disappearance of a fixed point 7 from the left
side (resp. 2% from the right side) of the discontinu-
ity, and B is a codimension-2 bifurcation point. For
parameters ¢ in U(B) belonging to the overlapping
of the two existence regions, both attracting fixed

points exist in map 7', one in J, and one in Jg,
and we can assume (eventually decreasing U(B))
that T(0;¢) converges to x7: while TR (0;¢) con-
verges to x}*zﬁ For parameters in the neighborhood
U(B) belonging to the two regions adjacent to the
overlapping one, map 7 has only one fixed point
in Jp U Jr, either in J, or in Jr. Meanwhile for
parameters in the neighborhood U (B) belonging to
the remaining region Pg, the map T has no fixed
points in J, U Jg. The object of the present section
is to describe the bifurcation structure existing in
the region Pg. We have assumed monotone func-
tions in J; for any ¢ € U(B) and thus the shape of
the functions at the bifurcation moment, when the
parameters are on the bifurcation curves bounding
region Pp is known. What we consider afterwards
is any arc (or segment of a straight line) - connect-
ing two points on these curves, say Ar € &z and
Ar € & in the region Pp in U(B) as qualitatively
shown in Fig. 1. The offsets T» (0, ¢) and T(0, () in
the point A. satisfy Tr(0,¢) < T(0,¢) = 0, while
in point Ag it is 0 = T»(0,¢) < Tr(0,¢). Then we
assume that

(H4) As a parameter point ¢ moves from Az € &,
to A € {r along any segment 7 in Pg where
T has no fixed points, the offsets T (0; () and
Tr(0;¢) are increasing.

Notice that at the parameter point B the map
is continuous in z = 0 as T, (0; B) = TR(0;B) = 0
which is a fixed point, so that Theorems 1-3 proved
in this section also describe the results of a continu-
ity breaking in a locally attracting fixed point, under
the assumption of locally monotone functions on
both sides of the fixed point x = 0.

In the following, to simplify the notation, we
shall omit (when not explicitly needed) the depen-
dence of T" on the parameter point (, writing sim-
ply T(z) = Tz(z) for x < 0 and T'(z) = Tr(z) for
x> 0.

3.1.

The proof of Theorem 1 (given in this subsection)
follows reasoning similar to that in [Homburg, 1996]

Period adding structure

4We note that by replacing this condition with the assumption T (z; b)|(z=0:p=n) # 0 for i = L, R we have strict monotonicity,

but we prefer to use less restrictive assumptions, which allow us also to deal with the condition T'(x;¢ )|(x:0;<:B) = 0 for

i =L and/or R.

5As the values at the discontinuity point (or offsets, or critical points) converge on the attracting fixed points, the discontinuity
point x = 0 and its preimages belong to the frontier of the related basins of attraction for 7.
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(Sec. 3.2). Moreover, we make use of the complexity
levels introduced by Leonov [1959], as in [Gardini
et al., 2010; Tramontana et al., 2012] for piecewise
linear maps.

Theorem 1. Let T in Eq. (10) satisfy assumptions
(H1)-(HYj) given above. If for any ¢ € U(B) the
functions Ty (x;C) and Tr(x; () are strictly increas-
ing in the intervals Jp and Jg, respectively, then
B is an organizing center of a full period adding
structure.

Proof. Let us consider the region Pp in U(B)
bounded by the BCB curves &, and {g, associated
with no fixed points of T" in the no-escape interval,’
where we can assume (eventually decreasing U(B))

[0,7-(0)] € Jr and [TR(0),0] C Jz I = [Tr(0),
T£(0)]. Then for parameters belonging to the inte-
rior of Pg the map T is a gap-map in I, with the
gap Zo = (Tr 0 T(0), T, o Tr(0)).

When the parameters belong to curve &y on
the boundary of Pp [let Az be such a point, see
Fig. 3(e)], map T has the fixed point z = 0. This
fixed point attracts all initial conditions from the
interval I = [T»(0),0] (whose trajectories have the
symbolic sequence £>°), and all initial conditions
from the interval (0,75 (0)) (whose trajectories
have the symbolic sequence RL>®), see Fig. 3(f).
Similarly, when the parameters belong to curve £z
on the boundary of Pg [let Ax be such a point,
see Fig. 3(e)], the fixed point x = 0 of the map
T attracts all the points of I = [0,7,(0)] (having

@) 7)) (b)  T(z) © 1)}
- — _ Tﬁ(g)
| TrRlo T (0 .
TeoTR(0), e 5 / "
o - g - g -
Tr ¢ T(0) T=(0)
- ' T;.'(0) o
lll':
\Illl“
@ 7))t (e) \
< .,
Prr N
7:(0) , G
%T oTRV B Ar
PE— %
ks
® 7@t B 7 §ke
Y &
() N\
P A S
0 i =
g | / Ap
Tr(0)
&r

Fig. 3.

increasing functions.

Schematic structure of the parameter plane of map 7" in the neighborhood U(B) of point B when T is defined by two

6A no-escape or a trapping interval is an interval which is mapped into itself, i.e. an interval from which the trajectories cannot

escape.
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trajectories with the symbolic sequence R*°), and
the points from the interval (T:'(0),0), (having
trajectories with the symbolic sequence LR>) see
Fig. 3(c).

Consider an arc 7 in the region Pg connect-
ing Ag with Az [see Fig. 3(e)]. When a parameter
point belongs to the arc v then the absorbing inter-
val must include the discontinuity point and it can
be written as

= [Tr(0), Tr o T2(0)] U Zq
U [Tz o Tr(0),T£(0)]. (12)

When the parameter point is close to point Ag
then the discontinuity point x = 0 must belong
to the interval [T»(0),Tr o T,(0)] [see Fig. 3(b)],
while when the parameter point is close to Ag,
the discontinuity point = 0 must belong to the
interval [Tz o Tr(0),T.(0)] [see Fig. 3(d)]. It fol-
lows that, starting from one end point of ~, say
Ag, and moving the parameters along the arc =,
before reaching point Ay there is a segment of ~
for which x = 0 belongs to Zy [see Fig. 3(a)]. A
gap-map with the discontinuity point in the gap
Zy necessarily has at least one cycle of period 2,
with the symbolic sequence LR. In fact, the map
T%(z) = Ty o Tr(x) is continuous and increas-
ing in [0,72(0)] and T2([0,T£(0)]) C [0,72(0)] (as
T2(0) > 0 and T?(T(0)) < Tz(0)). Thus, at least
one attracting 2-cycle of the map T exists, which
under our assumptions (72 is a contraction on the
left and right neighborhoods of x = 0 in I) is
unique and globally attracting in I. As the parame-
ter point moves from Ag to Az, the offsets decrease
(by assumption (H4)), and it follows from (12) that
the first BCB curve which is met, say &z, is given
by Tr o T(0) = 0 at which the 2-cycle is collid-
ing with the discontinuity point x = 0 from the left
side, while on the second curve, say £rp, given by
Ty o Tr(0) = 0, the 2-cycle is colliding with = 0
from the right side. Note that the symbolic sequence
LR of the 2-cycle is just a concatenation of the
starting symbols £ and R related to the colliding
fixed points.

Summarizing, we
Fig. 3(e)]

have shown that [see

e in the arc v there exists a segment, say v,/r,
associated with a 2-cycle with symbolic sequence
LR,

e the BCBs occurring at the boundaries of the arc
vrwr are given by implicit equations:

§re = {TL o Tr(0) = 0}
§er = {Tr o T (0) = 0}

e segment v,k is an internal subset of v, and mov-
ing from Ar to Ay the order of the bifurcation

curves is {r, {£Rr, ERe, -

(13a)
(13b)

Clearly point B satisfies both equations in (13)
(as Tz(0) = 0 and T»(0) = 0 in B), so that these
equations define curves in the parameter plane issu-
ing from B. Hence, instead of an arc v,z we can
consider a periodicity region P, issuing from the
point B bounded by &r, and £rz [see Fig. 3(e)].

The steps performed above, leading to the 2-
cycle, can now be repeated considering the region
bounded by the bifurcation curves £,z and &g on
one side of the periodicity region Py, and the
region bounded by &r, and £, on the other side.
Let us consider the first region (as for the second
one the reasoning is the same, with the symbols £
and R exchanged).

So let us consider the portion on the arc ~
between the curves {,r and &g [see Fig. 3(e)].
We can argue as before with map F'(x) defined as
Fr = Tr oTg(x) in a left neighborhood of z = 0,
satisfying Fz(0) = 0 on the point belonging to
¢er, and Fr = Tr(x) in a right neighborhood of
x = 0, satisfying Fr(0) = 0 on the point Ag (on
¢r). Both branches F and Fr are increasing and
contracting, and when the parameters are moved
from &g to {rr the offset Fp(0) = Tr o Tr(0)
decreases monotonously from a positive value to
zero, as explained above. Thus map F is in the
same configuration as map 7' (with Fy and Fr in
place of Ty and Tx). Therefore, between &,r and
&r an arc associated with a 2-cycle of F' in the
interval [Fr(0), F(0)] = [T»(0), T o T (0)] must
exist. The related cycle has the symbolic sequence
LR for F and LR? for T. The BCB curves of this
cycle are given by the following implicit equations:

§rier) = {Fz o Fr(0) = Tr o Tp 0 Tr(0) = 0},
(14a)

§eryr = {Fr 0 F(0) = T 0 Tr 0 T(0) = 0}.
(14b)
These BCB curves bound the periodicity region

issuing from B, related to the 3-cycle of T" with the
symbolic sequence LR?.

1450024-8
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Similarly, it is possible to show the existence of
periodicity regions of maximal cycles having sym-
bolic sequences LR™ for any n;. The BCB curves
bounding these regions are given by implicit equa-
tions as follows:

Eperm—1 = {TR ™" oTr o Tr(0) =0} (15a)
Ecrm = {T o Tz (0) = 0} (15b)

The related periodicity regions accumulate on the
bifurcation curve £. In fact, from our assumptions
on T (x) it follows that T% (z) — 04 as n — oo for
any zo € [0,72(0)]. Thus, in the limit, T%(0) = 0
holds, which is the equation of the BCB curve {r.

As already noted, all the periodicity regions of
maximal cycles with the symbolic sequence RL™
for any n; must also exist, with BCB curves given
by implicit equations as follows:

Erpem = {T% o Tr o Tp(0) = 0}

{rem = {1} o Tr(0) = 0}

(16a)
(16b)

which accumulate on the bifurcation curve &, (as
follows from our assumptions on 7Tz (x) and reason-
ing as above).

The regions related to maximal cycles consti-
tute the periodicity regions of the first complexity
level. They all exist, issue from point B, and, as we
have seen above, are disjoint. Now, considering the
space between any two consecutive regions of the
first complexity level (i.e. without any other period-
icity region of the first complexity level in between),
say the region bounded by £,z and Egprri [whose
equations are given in (15)], we have that these two
BCB curves correspond to collisions of cycles on
opposite sides of z = 0. Namely, curve £,gn1 corre-
sponds to a collision of the periodic point z of the
cycle with the symbolic sequence LR" from the
left side of = 0 (that is, the colliding point satis-
fies T o Tr(xo) = xo). Meanwhile, curve {rorm
corresponds to a collision of the periodic point x( of
the cycle with the symbolic sequence RLR™ on the
right side of z = 0 (that is, the colliding point satis-
fies T o Ty o Tr(xo) = o). Thus, for the segment
of v between £,rn1 and Erprni We can repeat the
same arguments as above for any n1, and obtain two
infinite families of periodicity regions with the two
starting curves £,rn and Erprn as limit sets. One
family of periodicity regions is related to cycles with
the symbolic sequence LR™ (RLR™ )"2, for any ng,
and these regions are bounded by the BCB curves

which satisfy the following implicit equations:

§(R£Rn1 VLR (RLR™ )n2—1

= (T} o Te o TR)"™ ™ o (T 0 Ty)

o (TR oTr o Tr)(0) =0} (17a)
§LrRm (RLR™M )2
={(T% oToTr)™ o T o T,(0) = 0}.
(17b)

These curves issue from point B and accumulate
on the curve {rpprni. The second family of peri-
odicity regions is related to cycles having the sym-
bolic sequence RLR™ (LR )™2. The corresponding
BCB curves are given by

ERLRM (LR™ )2
= {(TR o T)" o (Tl 0T o Tr)(0) = 0}
(18a)

§(LRM)RLRM (LR™M yn21
= {(TR o T)" ™ o (T o T 0 Tr)

o (T oTr)(0) =0} (18b)
and accumulate on £prn .

The same arguments can be repeated with
respect to the other side of the 2-periodicity region,
that is, in the region bounded by &, and £x,. The
regions of the first complexity level associated with
cycles with symbolic sequences RL™ must exist,
whose BCB curves are as given in (16). Between
any pair of regions related to the symbolic sequences
RL™ and LRL™, two infinite families of periodic-
ity regions of cycles of second complexity level must
exist with the symbolic sequences RL™ (LRL")"2
and LRL™(RL™ )2, for any ny > 0. The BCB
curves of these cycles are given in (17a)—(18b) with
the symbols £ and R interchanged.

As all these regions, issuing from B, intersect
the arc v in disjoint segments, the process can con-
tinue ad infinitum. Between any two consecutive
regions of the second complexity level (that is, with-
out other regions of the second complexity level
between them) there exist periodicity regions of the
third complexity level (two infinite families accumu-
lating on the starting BCB curves).

In general, between any two consecutive regions
of the same complexity level k there exist two

1450024-9
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families of regions of complexity level k& + 1. As
already stated, when the parameters belong to any
periodicity region, the related gap map 7T has a
unique attracting cycle with a rational rotation
number. From the process described above it follows
that the rotation numbers of the cycles of complex-
ity level k + 1 are obtained from the rotation num-
bers of the cycles of complexity level k£ applying the
Farey summation rule (see [Gardini et al., 2010] for
details). The periodicity regions of all complexity
levels densely fill region Pg, except for particular
curves which are related to irrational rotation num-
bers (the related attracting set of 7" is a Cantor set
attractor) (see [Keener, 1980]).

We note that the reasoning used above can be
applied to the region between any pair of BCB
curves, associated with the collision of different
cycles on opposite sides of x = 0, having any kind
of symbolic sequences (one starting with £ and the
other one with R). The existence of a cycle with a
symbolic sequence obtained by the concatenation of
the sequences of the colliding cycles is in any case
true, but the period of such a cycle is prime only
if the starting cycles have rotation numbers which
are Farey neighbors.” W

Let us now consider two cycles O, and O, of
map (1), and let B,,, be a point at which two

BCB curves §§ and 57; intersect transversely, satis-
fying the assumptions of Theorem 1. By Theorem
1 applied to the first return map f given by Eq. (8)
we have that the point B;/, is an organizing center
of a full period adding structure. The bifurcation
structure in the parameter plane around the point
B/, is shown schematically in Fig. 4.

As shown above, the periodicity regions forming
the period adding structure are ordered according
to the Farey summation rule applied to the rota-
tion numbers of the related cycles. Namely, if the

rotation numbers p; = % and py = B are Farey

q2
neighbors, then between the periodicity regions of
the cycles with the rotation numbers p; and ps there
exists a periodicity region of a cycle with the rota-

tion number p; & py = %. In this case, if the

— D
q1

_p2

and p2 -

"Recall that two irreducible fractions 1

cycle with the rotation number p; has the symbolic
sequence o and the one with the rotation number po
has the symbolic sequence o, then the cycle with the
rotation number p; @ po has the symbolic sequence
oo obtained by the concatenation of the symbolic
sequences o and 0.8 Accordingly, for the first return
map (8) we can specify the families of attracting
cycles whose existence regions issue from the point
B; /,- In particular, between the existence regions of

the fixed points O, and Ox there are two families
of the existence regions of attracting cycles

{Orcm [n1 >0}, {Ogrm |n1 >0} (19)

These cycles (frequently called maximal, or prin-
cipal, or basic) are referred to as cycles with the
complezity level one [Leonov, 1959; Gardini et al.,
2010; Avrutin et al., 2010].

For each nj the existence region Pron of cycle
Orrm is bounded by the BCB curves given by

Erpem = {f} " o fro fe(0) =0}
Erem = {f7 o fr(0) =0}

whereby the definition of the functions fz, fr
depends on the particular cycles O, O, as given by
Eq. (8) (see examples in Sec. 4). Similarly, the exis-
tence region Prrni of the cycle Orrm is bounded
by the BCB curves

Ecrm = { [} o f(0) = 0}
SReRm -1 = {f;érl o fro fr(0) = 0}.

Note that if the functions fz, fr are linear,? and
hence the functions fz, fr are linear as well, then
for any nj the implicit equations of the BCB curves
given by (20) and (21) can be solved explicitly
with respect to the offsets of the functions f,, fr
[Leonov, 1959; Gardini et al., 2010; Avrutin et al.,
2010]. In general this is not the case.

All the related regions are disjoint and in the
space between two consecutive existence regions
7§Rgn1 and 75R£n1+1 of the cycles Oren and
Oppm+1 for each n; there are two families of

(20a)

(20b)

(21a)

(21D)

are called Farey neighbors iff |pag1 — p1g2| = 1.

8Recall that symbolic sequences associated with cycles are shift-invariant. However, when dealing with the concatenation of
sequences and also with the specification of the BCB curves, they must be cyclically shifted in such a way that the point of
the associated cycle which collides with the border point corresponds to the first letter og and gg, respectively, as in Egs. (2)

and (4).

9Here “linear” is used in the wider meaning of “affine”.
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Fig. 4. In (a) the shapes of the first return map (8) in the increasing-increasing configuration, and (b) the bifurcation
structures close to the intersection point B, /o of the border collision bifurcation curves §~ r and éR are shown schematically.
(c¢) and (d) show the associated bifurcation and period (p) diagrams, respectively, under variation of the angle ¢ along the arc
marked blue in (a) and (b).

regions associated with the cycles of complexity  and for the second one by
level two:
§LRLm (RLM )2
(22) = {(JFZ1 ° fR)M o fEl o fR o fL(O) =0} (24a)

SRemLrRL™ (RL™1)m2 1

{Orcem (cremyms |mi > 0,i = 1,2},
{@LRLM (RLM1)m2 |n; > 0,i=1,2}.

The BCB curves for the first of these families are

given by = {(le o fR)nrl
§LRLMRLM (CRLM )21 © fE” o frofro fE” © fR(O) =0} (24b)
(Mg Fo o Fayn2—l Note that although the so-called map replacement
{(fet o fro fr) technique reported in [Avrutin et al., 2010] is appli-
° le o fr o le ofrof £(0) = 0} (23a) cable for the explicit calculation of these bifurcation
curves predominately if the functions f, and fr
§Rm1(gnm1)n2 are linear, the implicit equations of the BCB curves

= P associated with cycles with arbitrary complexity
={(fz' o fro fe)™ o fz' o fr(0) =0} (23b)  Jevels can always be obtained using this technique.

1450024-11



L. Gardini et al.

Similarly, between each two existence regions
Prrr and 75£Rn1+1 of the cycles Opgni and
Oppni+1 there are two other infinite families of
regions associated with the cycles of the complexity
level two:

{@RﬁRnl(ﬁRnl)nz |n; >0,i=1,2},
N (25)
{Ocrm (ReRr)me |05 > 0,0 = 1,2}

The BCB curves bounding the related periodicity
regions are as given in Egs. (23) and (24) by inter-
changing the symbols £ and R.

This process continues ad infinitum, so that
between each two subsequent regions associated
with cycles with the complexity level k for any k > 0
there are two infinite families of regions associated
with cycles of the complexity level k -+ 1. The union
of all regions of all complexity levels covers the
region P (in the neighborhood of B, ,) except for a
Cantor set of particular bifurcation curves. For the
parameters belonging to any of these curves the first
return map is associated with an irrational rota-
tion number and has a Cantor set attractor, which
represents the closure of quasiperiodic trajectories
[Keener, 1980; Ding & Fan, 1999].

The results obtained for the first return map (8)
can easily be interpreted in terms of the original
map (1). As the fixed points Oy and O of the first
return map (8) correspond to the cycles O, and O,
of map (1), the same correspondence can be pro-
vided for other cycles of the first return map (8).
For example, the cycles of the complexity level one
of the first return map (8) given in (19) correspond
to the cycles

{OQJM \nl > 0}, {Oo’gnl ’711 > 0} (26)

of map (1). The related BCB equations are obtained
(for any complexity level) replacing fr and fr by
their definitions given in Eq. (8).

3.2. Period incrementing structure

Theorem 2 given in this subsection is proved by
similar reasoning as in [Homburg, 1996] (Sec. 3.3)
and in [Gardini & Tramontana, 2010; Gardini et al.,
2012] for particular classes of maps. A different
proof is given in [Avrutin et al., 2011].

Theorem 2. Let T in Eq. (10) satisfy the assump-
tions (H1)—(H4) given in Sec. 3. If for any ( €
U(B) the function Tr(x;() is strictly increasing in
Jr and Tr(x;C) is strictly decreasing in Jg, then B

18 an organizing center of a full period incrementing
structure accumulating on &..

Proof. Let us consider region Py associated with
no fixed points of T in the no-escape interval
I = [Tr 0o Tr(0),7T-(0)] as we can assume (even-
tually decreasing U(B)) that [0,72(0)] C Jr and
[TroTr(0),0] C Jg. If the parameter values belong
to the interior of Py, then map 7" has the absorbing
interval I = [T'gr o T(0),T,(0)] where T(0) > 0
and Tr o T, (0) < 0.

Any point on the right side of I, that is, any
xo € [0,7£(0)], is mapped into the left side in one
iteration, that is, 1 = Tr(zg) € [Tr o T(0),0].
Then, after a number k of iterations by 71, the tra-
jectory is back to the right side of I, that is, to the
interval

J = [0,7:(0)]. (27)

Thus, the properties of map T in I can be com-
pletely studied using its first return map, say F,(z),
defined on the interval J. Namely, for each point
x € J, x # 0, its first return value F,(z) is given
by T% o Tr(z) where k > 1 is the first integer such
that T% o T (x) € J. It follows that any cycle of the
map 7 in I is necessarily a maximal cycle, that is,
a cycle with symbolic sequence RLF. The periodic
point xg > 0 of such a cycle is obtained as a solution
to the equation Tﬁ o Tr(xo) = xo. A BCB of this
cycle occurs when xy = 0, therefore, the equation

Erce = {TF 0 Tr(0) = 0} (28)

defines one BCB curve bounding the periodicity
region Pr,r. The other BCB of the same cycle
occurs when the periodic point x; < 0, which is
a solution to Tﬁ_l o Tr o Tr(xp) = zy, collides
with = 0, so that the corresponding BCB curve
is given by

ererr = {TF " o Tr o T(0) = 0}.

Notice that this equation also corresponds to the
point z¢g = T (zk) colliding with the right bound-
ary of the interval I (which is also the right bound-
ary of J), that is, point x¢ = Tz (z) colliding with
point T(0), and the BCB curve in (29) can also
be written as T% o T o T(0) = T(0). The BCB
curves given in Egs. (28) and (29), bounding the
periodicity region Py sk, issue from point B (as both
equations are obviously satisfied in that point).
When the parameters belong to the curve &,
on the boundary of Pp [let Az be such a point,

(29)
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Fig. 5.

Schematic structure of the parameter plane of map 7' in the neighborhood U(B) of the point B in the increasing—

decreasing case. The graphs of T" are shown in red, and its first return map F; in blue.

as shown in Fig. 5(f)], map T has an attracting
fixed point x; = 0 which attracts all the points
of I = [T'r(0),0] as well as the points of a proper
right neighborhood of x = 0 leading to trajecto-
ries with the symbolic sequence RL>. Diversely,
when the parameters belong to the curve £z on the
boundary of P (let Ax be such a point), the fixed
point 27, = 0 is not an attracting fixed point of T’
[see Fig. 5(b)]. As the length of interval 7,'(J) =
[O_1,0] is larger than the length of interval J, and
the length of 75" o T;'(J) = [0,0_5] is larger as
well, we have O_y = T o T;(0) > Tp(0). Tt fol-
lows that the first return map of 7" in J is given by
F.(x) =Tr oTr(x) and it has a globally attracting
(in J) fixed point, corresponding to a 2-cycle of T

It can be shown that the region Pgr in which the
fixed point z7, exists and x7: does not exist is par-
tially overlapped with the region Pr related to the
2-cycle. Indeed, bistability occurs if the inequality
T3'(0) < T£(0) holds. The BCB leading to the

appearance of a 2-cycle coexisting with the fixed
point % occurs for T (0) = T, (0) [see Fig. 5(c)].
This condition is obviously equivalent to the one
given in (29) for k = 1, that is,

§er = {Tr o T (0) = 0}.

The BCB curve {,r issues from point B and neces-
sarily enters the region Pg.

Now let us consider an arc v belonging to the
region Pg connecting Ar with A, [see Fig. 5(e)].
Using the first return map F,(z) defined on the
interval J we can show that when the parameter
point moves from Ag towards A, along the arc ~,
all the regions Pr,» must be crossed. Moreover,
any two consecutive regions Pr 1 and Pppr+1 par-
tially overlap, which leads to bistability. In fact,
at point Ag (which corresponds to the BCB curve
&r associated with the disappearance of the fixed
point }), a 2-cycle with the symbolic sequence
RL exists and, as we have seen, the condition

(30)
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O_y =T5' oT;1(0) > T (0) holds [see Fig. 5(b)],
so that for parameter values close to point Az on
the arc v the first return map of 7" in the interval
J is given by

Fo(x) =T o Tr(x) (31)

and the 2-cycle of the map T is globally attracting
in I. Moving the parameter point along the arc v a
BCB occurs when the condition T' o T,'(0) =
T, (0) is satisfied [see Fig. 5(a)], which defines a
BCB curve

§cre ={T 0o Tr o Tr(0) = 0} (32)

associated with the appearance of a 3-cycle of T,
with the symbolic sequence RL? [see Fig. 5(e)].
As the parameter point continues to move along
the arc v the preimage of the discontinuity point
O_y = Tx' o T;'(0) € J, so an arc y must exist
such that the first return map is defined as

To(x) = T o Tr(x)
Fr(.%) _ if0<z<0O_y (33)
T1 (CE) = T% o TR(LE)

if Oy <x< TL;(O).

From T(](sz) = Tg o) TR(O,Q) =0 and T1 (0,2) ==
T2 o Tr(O—2) = T¢(0) it follows that each of the
two decreasing branches of F,(x) must have a sta-
ble fixed point, so that there is a coexistence of a
stable 2-cycle and a stable 3-cycle of T'.

Now let us show that in Pp there exist period-
icity regions Pgx for any k& > 0, issuing from B,
accumulating on the curve £,, and any two consec-
utive regions partially overlap.

For parameters in Pg the first return map F,.(x)
of T in .J is either continuous, defined via one unique
decreasing function, or it has at most one disconti-
nuity point in J, being defined via two decreasing
functions. In fact, the discontinuity points of F,(x)
are given by the preimages of x = 0 in the interval
J. The function Tz (z) and hence T%(x) are increas-
ing, thus invertible in I, and the function Tg(x) is
decreasing thus invertible in I. Let O_ 41y be the
preimage of x = 0 belonging to the right side of
closest to x = 0. It is given by

O_ (k1) = T' o T*(0) (34)

for some k > 1. The functions T' o Tzk(x) are
expanding, so that, apart from the bifurcations

occurring at O_ 4.1y = T,(0) (which corresponds to
TR o T7F(0) = Tz (0), that is, T o Tr 0 T (0) = 0,
related to the BCB of a (k + 2)-cycle as given in
Eq. (29) with & in place of £ — 1), and O_j41) =0
[which corresponds to T'5' o Tzk(()) = 0 that is
T% o Tr(0) = 0, which is the bifurcation of a
(k + 1)-cycle as given in Eq. (28)], we have only
two possibilities.

(a) If O_(rq1) > T,(0), then map Fr(x) is defined
as

Fr(z) =T% o Tr(z) (35)

for x € J [see Fig. 6(a)].

(b) If0 < O_41) < T,(0) (given that at most one
preimage can belong to J), then map Fr(x) is
defined as

To(x) = T% o Tr(z)
if0 <z <O_gqy
Ti(z) = TE! o Tr(x)
if O_(r41y) <2 < Tr(0).
(36)

Fr(z) =

In this case, To(O_(x41)) = TﬁoTR(O_(kH)) =
0 implies the existence of a fixed point of Tp,
that is a stable cycle with symbolic sequence
RLF for T. Meanwhile, Ty (O_(,41)) = T3 o
TR(O_(k+1)) = T(0) implies the existence of
a fixed point of 77 in J, that is a stable cycle
with symbolic sequence RLFH! for T. Hence,
two stable cycles of T' coexist [see Fig. 6(b)].

Note that the expansivity of the function T7_€1 o

Tz(kﬂ) implies that at a bifurcation defined by
O—(k+1) = 0 we have O—(k+2) > Tg(O).

So, as the parameter point moves along the arc
~ inside the region Pp approaching A, (where the
trajectories have the symbolic sequence RL>), all
the periodicity regions Pp .« are necessarily crossed.
In fact, when the parameter point approaches A,
the first preimage of the origin belonging to J,
O_(k+1), occurs for values of k which become larger
and larger, approaching infinity, and the cases (a)
and (b) defined above occur for each k. Therefore,
for each k there exists a part of the region Pron in
which a cycle with the symbolic sequence RLF is
globally attracting, and a part in which this cycle
coexists with a cycle with the symbolic sequence
R £k+1.
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Fig. 6.

Summarizing: let O_41) = T7_31 o Tzk(()) be
the preimage of the origin in J. Then

e cither O_(y41) > Tr(0), in which case there
exists a unique attracting cycle with the symbolic
sequence RLF,

e or O_g;41) € [0,7£(0)], in which case there are
two coexisting attracting cycles, with symbolic
sequences RLF and RLFH.

The BCB curves associated with the cycles are
given in Egs. (28) and (29) bounding the regions
Prox for all k, and accumulating on the BCB curve
&, as k tends to infinity.

If function T, is decreasing and function T is
increasing, the same results are valid with £ and R
interchanged. W

Consider two cycles O, and O, of the map (1),
and let B,,, be a point of a transverse intersec-
tion of two BCB curves £§ and 57;, at which the
assumptions of Theorem 2 are satisfied by the first
return map f given in (8). Then point B, /, is an
organizing center of a period incrementing struc-
ture. The bifurcation structure in the parameter
plane around point B/, is shown schematically in
Fig. 7. This bifurcation structure is formed by an
infinite family of periodicity regions Prsn, n > 0, of
stable cycles

{Orrn |n > 0} (37)

—~_ 1T(0)
i \

First return map F» in the cases in which map 7" has (a) a unique cycle and (b) two cycles.

pairwise partially overlapping for any n > 0. More-
over, for n — o0, the regions Pren accumulate
towards the BCB curve £~. Accordingly, for the
original map (1) this family corresponds to the
cycles

{Opn |0 > O}, (38)

3.3. Coupling bifurcation structure

Theorem 3, proved in this section, is the simplest
case:

Theorem 3. Let T in Eq. (10) satisfy the assump-
tions (H1)—(H4) given in Sec. 3. If for any
¢ € U(B) the functions Tr(x;¢) and Tr(xz;C) are
strictly decreasing in Iy and Ir, respectively, then
a coupling structure issues from B.

Proof. Let us consider the region Pp associated
with no fixed points of 7. When the parameters
belong to the region P (boundaries included) each
point & > 0 in a neighborhood of z = 0 is mapped
into the left side in one iteration. It follows that the
properties of T' can be studied using the first return
map, say F,(z), of T on the right side, which is
necessarily defined as

F.(x) =Tg o Tr(x). (39)

From the assumptions given above we have 0 <
F/(x)|z=0 < 1 thus F,.(z) is increasing and con-
tracting in a right neighborhood of = = 0, with
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Fig. 7.
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In (a) and (b) the shapes of the first return map (8) in the increasing—decreasing configuration and the bifurcation

structures close to the intersection point of the BCB curves £ and £ are shown schematically. (¢) and (d) show the associated
bifurcation and period (p) diagrams, respectively, under variation of the angle ¢ along the arc marked blue in (a) and (b).

F,.(0) > 0. Therefore, there exists a suitable region
in a neighborhood of B such that a stable fixed point
of F exists, representing a stable 2-cycle of T', with
the symbolic sequence RL [see Fig. 8(d)]. As such a
2-cycle also exists for parameters belonging to each
of the BCB curves &, and &g, the curves associated
with its existence region, given by

Ere = {Tr 0 Tr(0) = 0}
§cr = {Tr o T(0) =0}

issue from parameter point B and enter regions P,
and Pr of the stable fixed points z}. and x} (see
Fig. 8).

In the parameter region in U(B) bounded by
the BCB curves £z and {,r we can define the first

(40a)
(40Db)

return map on the right side of x = 0, which is
given by

To(x) = TR(LE) ifo<ax<O_4
F.(z) =
Tl(IL‘) =Tro TR(J?) ifx >0_4
(41)
where O_; = TR'(0) > 0 [see Fig. 8(b)]. In

fact, on the BCB curve &g we have O_y = 0
and T-(0) > O-_q1, so that for parameters close
to &g we have O_1 > 0 and T(0) > O_;. From
Tr(0) > 0 and TR(O-1) = 0 it follows that a
fixed point of the decreasing branch Ty(z) = Tr(x)
exists, which is the stable fixed point z7. From
Tr o Tr(O-1) = Tr(0) > O_; the increasing and
contracting branch Tj(x) leads to the existence of
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(b)

T(x)]

-y

(c)

Fig. 8.

Schematic structure of the parameter plane of map 7" in the neighborhood U (B) of point B in the decreasing—decreasing

case. The graphs of T" are shown in red, and its first return map F; in blue.

a fixed point, so that the stable fixed point x%
coexists with a stable 2-cycle of T. This 2-cycle
disappears when T;(0) = O_; [see Fig. 8(c)], that
is, Tr 0Tz (0) = 0, corresponding to the BCB curve
&rr which is the boundary of the periodicity region
Prr overlapping with Pgr.

Similarly, in the parameter region bounded by
the BCB curves &, and £r,s we can define the first
return map on the left side of x = 0:

To(ﬂj) =Tro Tg(:ﬂ) ifx <O_1
ifO_1<x<0

(42)

PO =\ 1) = 1)

where O_; = Tzl(O). The conditions T-(0O_1) =0
and T£(0) < 0 imply the existence of a stable fixed
point z7. of the decreasing branch T'(x) = T (x).
From Tk o Tr(O—_1) = TRr(0) < O_; the increasing
and contracting branch Ty (z) leads to a fixed point,

so that the stable fixed point 7 coexists with a sta-
ble 2-cycle of T. W

Consider two cycles O, and O, of the map (1),
and let B,,, be a point of a transverse intersec-
tion of two BCB curves ¢~ and 55, at which the
assumptions of Theorem 3 hold for the first return
map [ given in (8). Then from the point B/,
only the periodicity region of the coupled cycle Oy,
issues. The so-called coupling bifurcation structure
in the parameter plane around point B, ,, is shown
schematically in Fig. 9.

In one of the quadrants, two fixed points O
and Og of map (8) coexist; each of the adjacent
quadrants consists of two regions: in one the fixed
point exists alone, and in the second one it coexists
with the attracting 2-cycle Ogz. In the remaining
quadrant Pg only the attracting 2-cycle Opr exists.
Clearly, for the original map (1) this corresponds to

a/o
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(c)

®
(d)

Fig. 9. 1In (a) and (b) the shapes of the first return map (8) in the decreasing-decreasing configuration and the bifurcation

structures close to the intersection point of the border collision bifurcation curves é r and 573 are shown schematically. (c¢) and
(d) show the associated bifurcation and period (p) diagrams, respectively, under variation of the angle ¢ along the arc marked

blue in (a) and (b).

the attracting cycles O, and O, and the attracting
cycle Og,.

4. Lorenz-Like Flows and
Associated 1D Maps

Recall that three-dimensional Lorenz-like flows sat-
isfy the following two conditions:

e The flow has a saddle point at the origin with
real eigenvalues denoted A*°, A\ and \“, with
A% <A < 0 < A%, so that the saddle has a
stable two-dimensional manifold and an unstable
one-dimensional manifold.

e Homoclinic orbits of the flow are of the butter-
fly type as shown in Fig. 10(a), and not of the
figure-eight type [see Fig. 10(b)].1°

An example of the flow which satisfies the con-
ditions mentioned above is the original Lorenz flow
introduced in [Lorenz, 1963]. A different example
introduced in [Lyubimov et al., 1989] extends the
original Lorenz model:

t=0(y—x)+oDy(z — R)
y=Rx—y—uzz (43)

z=uxy—bz+azx.

0For the difference between the cases of butterfly type and figure-eight type orbits we refer to [Ghrist, 2000].
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e

(a)

Fig. 10.

The origin is an equilibrium of this flow. For the
commonly considered values of the parameters o,
R and b (as, for example, in Fig. 12) it represents
a saddle with a two-dimensional stable and a 1D
unstable manifold.

It is well-known (see [Sparrow, 1982; Glendin-
ning, 1988; Lyubimov et al., 1989; Homburg, 1996;
Zaks, 1993]) that dynamic properties of Lorenz-like
flows depend strongly on the saddle-index + of the
origin, which is defined by

)\8

7= (44)

For example, the saddle-index of the equilibrium at
the origin of (43) is given by

b

’Y:
o+1 oc—1
2 +\/< 2

The saddle-index v appears in the following 1D first
return map of Lorenz-like flows:

)2 +oR(1 - Do)

(45)

Tnt1 = 9(xn)

gc(xn) = pe — aglz,|”

+h.o.t. if z, <0
gR(2n) = —pr + ar|zal?
+h.o.t. if xz, >0
(46)
which is usually approximated by
Tnt1 = g(2n)
~gclen) = pe —aglza” i@, <0
gr(Tn) = —pr + aglx,|?  if x, > 0.
(47)

(b)

Standard configurations of flows: (a) a butterfly structure and (b) a figure-eight structure.

Map g describes the return of the orbits of the orig-
inal flow started at the top surface of an infinitesi-
mally small box around the equilibrium at the origin
back to this surface. Here the switching value x =0
of map g corresponds to the equilibrium at the ori-
gin of the flow. Therefore, for the sake of complete-
ness, in Eqgs. (46) and (47) one could add ¢(0) = 0.
However, it is known that the definition of the sys-
tem at the border does not influence the bifurcation
structures in the parameter space of the map, while
the values g, (0) and g (0) (so-called critical points)
are important for the description of the bifurcation
structures.

Regarding the relation between the parameters
of map ¢ defined by Eq. (47) and the parameters
of the underlying flow, we have that for a particu-
lar system the value of the saddle-index + can be
calculated analytically. In much of the literature,
the values v = % and v = 2 are considered to
be representatives for the cases of maps which are,
respectively, expanding (0 < v < 1) and contract-
ing (v > 1) around the origin. Indeed, it is proved in
[Labarca & Moreira, 2001] (resp. [Labarca & Mor-
eira, 2010]) that map (47) with any 0 < v < 1 (resp.
v > 1) is topologically conjugate to the map with
v = % (resp. v = 2). It is known that the dynamics
in these cases are basically different.

The dependency of the other parameters ar,
ar and pup, pur of g on the parameters of the
flow cannot be derived analytically. However, it
can be shown that the signs of the parameters ar,
ar depend on the rotation (twist) of the orbits
around the unstable 1D manifold. In particular,
the so-called nontwisted, single-twisted and double-
twisted configurations (see [Ghrist & Holmes, 1993])
lead to the cases in which az, ar are both positive,
have different signs, and are both negative, respec-
tively. Accordingly, we have to distinguish between
the six cases illustrated in Fig. 11. The cases shown
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| f(@) f(z) f(z)
(a) (b) (c)
f(z) f(z) f(z)

(d)
Fig. 11.

(e) ()
Map (47) in the cases corresponding to the saddle index 0 < v < 1 (a, b, ¢) and v > 1 (d, e, f). The signs of the

parameters a,, ag correspond to the nontwisted (a, d), single-twisted (b, e) and double-twisted (c, f) cases.

in Figs. 11(a)-11(c) correspond to the saddle-index
0 < v < 1, and those shown in Figs. 11(d)-
11(f) to v > 1. The nontwisted, single-twisted and
double-twisted cases are shown in Figs. 11(a) and
11(d), Figs. 11(b) and 11(e), Figs. 11(c) and 11(f),
respectively.

The one-to-one correspondence between limit
cycles in the Lorenz-like flow and periodic orbits,
or cycles, in map g leads, in particular, to the fact
that if a cycle of map (47) undergoes a BCB (that
means, one of its points collides with the border
point = 0), then the underlying limit cycle of the
flow merges with the origin and becomes a homo-
clinic orbit of the saddle of the flow.

This correspondence is illustrated in Fig. 12 for
a stable limit cycle of the flow (43) which corre-
sponds to a 2-cycle of map (47). It can be calculated
straightforwardly by Eq. (45) that at the related
parameter values the origin has the saddle-index
v = 1.5.

In Fig. 12(a) a limit cycle of (43) is shown for
the parameter values in the middle of its existence
region. When the parameter values are moved closer
to the boundary of this region [see Fig. 12(b)], one
of the loops of the limit cycle moves towards the
saddle at the origin, and the corresponding point of

the 2-cycle of map g moves towards the discontinu-
ity point = 0. For the parameter values belonging
to the boundary of the existence region of the limit
cycle, as shown in Fig. 12(c), the limit cycle merges
with the saddle at the origin and becomes a homo-
clinic orbit. For the corresponding parameter values
one point of the 2-cycle of map g merges with the
discontinuity point x = 0, that means the 2-cycle
undergoes a BCB.

Note that considering the first return map (8)
related to any two cycles O, and O, of map g in
Eq. (47) the derivatives of the functions fz(x) and
fR(x) at x = 0 are s, = sg = 0 in the contract-
ing case (that means v > 1) or s = sg = £00 in
the expanding case (that means 0 < vy < 1). As we
shall see, in such cases as well, what really matters
for the classification of the bifurcation structures
is whether functions f,(z) and fr(z) are contract-
ing or expanding and increasing or decreasing. For
map (47) with v > 1 it can easily be seen that any
cycle at the moment of a BCB is necessarily stable,
and hence any codimension-2 BCB point is associ-
ated with stable cycles and belongs to the class of
maps considered in Sec. 2. By contrast all organiz-
ing centers in map (47) for 0 < v < 1 are related to
BCBs of unstable cycles.
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z
10 f(z)
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(a)
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Fig. 12. Correspondence between a homoclinic bifurcation of the saddle at the origin in the flow (43) and the related BCB
of a 2-cycle in map (47). Parameters: ¢ = 10, R = 13.3, b = %, D = 0.05669283, (a) a =0, (b) a =0.1 and (c) a = 0.1565.
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4.1. Increasing—increasing case

Theorem 1 applies to map (47) in the case v > 1,
ar > 0, ag > 0 which corresponds to the non-
twisted case of the underlying flows. The bifurca-
tion structure issuing from point B,z marked in
Fig. 13 is already known (see for example [Turaev &
Shil’nikov, 1987 (Russian version 1986); Gambaudo
et al., 1986; Procaccia et al., 1987; Lyubimov et al.,
1989; Homburg, 1996; Ghrist & Holmes, 1994]). We
present it in Fig. 13 using the following topology-
preserving mapping of the parameters u,, ug:

8(): (=o0,00) = (=35 ).

with §(-) = arctan(-) (48)

which makes it possible to show the complete bifur-
cation structure including parameter values tending
to infinity. The origin of the (ur,pur) parameter
plane in Fig. 13 represents an organizing center of
the period adding structure (as well as infinitely

many intersection points of any two BCB curves in
the quadrant pgs > 0 and pgr > 0).

Note first that for az > 0, ag > 0 map (47) can
have at most four fixed points, two at each side of
the border point. The two fixed points on the left
side of z = 0, namely

1
O =——@1=

2ar (49)

1+ 4acps)

appear for pus < 0 due to the fold bifurcation for
the parameter values belonging to the curve

1
= , = —— 50
br {(Mc ) ’Mz: 4a£} (50)
which corresponds to the vertical line uy = —i in

Fig. 13. The unstable fixed point Ok persists for all
values of pr on the right side of this line, while the
stable fixed point O% undergoes a BCB at

§c = {(pc, pr) | e = 0} (51)

(ME]

Prrincs

Painia

PRg"

P

0

Fig. 13.

S(J”-c) %

Bifurcation structure in the (uz, pr ) parameter plane of the map (47) in the increasing—increasing case (ay = ag =1,

~v = 2). The parameters pp, ugr are shown scaled by the topology-preserving scaling (48). The stability regions of the fixed
points O, Or and of the 2-cycle O,y are marked with Py, Pr, Prgr, respectively, and emphasized by colors; some other
stability regions are indicated as well. The marked rectangle is shown enlarged in Fig. 14.
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and does not exist on the right side of this line.
Similarly, we obtain the fold and the BCB curves
for the two other fixed points. The fold bifurcation
curve at which the fixed points

1
Ol =——(1=+

1+ 4 52
20m + darpr) (52)

appear, is given by

1
e (T S S
ar
and for the BCB curve of the stable fixed point 0721
we get

¢r = {(pc, pur) | pr = 0}. (54)

It can easily be seen that point By :=
(g, pr) = (0,0) is a codimension-2 BCB point
at which the function g in (47) is continuous and
strictly increasing on both sides of the border point,
so that Theorem 1 can be applied. The curves &,
and {g which intersect at By, are related to the
fixed points, hence the first return map, which has
to be considered for the description of the bifur-
cation structure originating from Bz, is given
by map (47) itself. Therefore all results stated in
Sec. 3.1 for f apply for this map. The attracting
cycles whose existence regions originate from the
point B,z and are located in Pp are as described
in Sec. 3.1. In particular, the cycles with the com-
plexity level one are as given by (19). The associated
BCB curves are given by Egs. (20) and (21) with
gr, gr in place of fr, fr, respectively. Similarly,
the cycles with complexity level two are as given
by (22), and so on for any complexity level.

As shown in Sec. 3.1, the proof of the results
stated above refers only to the bifurcation structure
in a proper neighborhood of point B %. Indeed, in
this example the results are valid in quite a large
part of the parameter plane, namely, in the region
bounded by BCB curves &,, &g and curve

Seyr = (e, pr) |92 0 gr(0) = gr © g£(0)}

= (g, uR) | e + arp = pr — acpk}
(55)

issuing from B, (although close to S, /r, besides
the BCB curves, fold bifurcation curves of k-cycles
for any £ > 0 exist and beyond the stability regions
also). The periodicity regions related to cycles of

periods larger than 2 of map g have shapes similar
to that of the 2-cycle which is highlighted in color
in Fig. 13.

In the parameter region bounded by the curves
{c, §r and Spp map (47) is invertible in the
absorbing interval I = [gr(0),9-(0)]; it is a
so-called gap map. Maps of this class have been
investigated by many authors (see for example,
[Gambaudo et al., 1986; Procaccia et al., 1987; Lyu-
bimov et al., 1989; Homburg, 1996; Berry & Mestel,
1991; Martens & de Melo, 2001; Labarca & Moreira,
2001]). In particular, for a gap map it is proved that
the rotation number of an orbit does not depend on
the initial point x € I, so that one can refer to
the rotation number of the map. It is also known
that if the rotation number is rational then possi-
ble attractors of the map are attracting cycles only.
All these cycles necessarily have the same period!!
[Keener, 1980; Ding & Fan, 1999]. By contrast, if the
rotation number of the map is irrational, then the
map has a unique Cantor set attractor. An exam-
ple of a Cantor set attractor in the flow given by
Eq. (43), corresponding to the Cantor set attractor
of the map g, is presented in [Zaks, 1993].

For parameter points located between curve
Sgyr and curves of so-called final bifurcations
(related to boundary crises) x, and xr defined by

xe = {(pc, pr) | gr(0) = Of}

= {(pz, pr) |1+ 4dagpe + 2aspur + 1 = 0}
(56a)

xr = {(pe, ir) | 92(0) = O}

= {(uc, pr) |1+ darur + 2arpuc +1 = 0}
(56b)

infinitely many other periodicity regions can be
observed. As one can see, for example in Fig. 14(a),
infinitely many BCB curves bounding the periodic-
ity regions of stable cycles intersect. Each intersec-
tion point represents an organizing center of a full
period adding structure.

As an example, let us consider such an orga-
nizing center shown in Fig. 14(b). It is the intersec-
tion point of the BCB curves {,r2, and {rrop,
of the attracting cycles Opr2, and Ogper, (we
have already mentioned that in the case v > 1
all the cycles undergoing a BCB are attracting).

11 particular this holds for map (47), for which it can also be shown that at most two stable cycles can coexist.
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1.08

S(pr

Fig. 14.
in (b).

Accordingly, to describe the periodicity regions
originating from this point, denoted in the follow-
ing as Brrag/re2re, We have to consider the first
return map given by

Tpi1 = [(2n)

fﬁ(xn)
= gr o gk o gr(zy) if 2, <0
=grogrogzogr(ws) if z, >0.
(57)

It can also be shown that at the point Brrey/rrors
we have:

d - d -
d_f[, - 07 _f'R = 07
€L z=0 dzx =0
(58)
d2 ~ 2
@fﬁ Y € (0,1), @fR L € (0,1).

Moreover, from the enlargement it can be seen that
region P in a neighborhood U(B) is such that an
arc connecting a point Az on the BCB curve {2,
(where f£(0) = 0 and fr(0) < 0) with a point
Agr on the BCB curve {grore (where f(0) > 0
and fr(0) = 0) can be chosen in the region where
i is increasing and (—ug) is increasing. Thus, if
a parameter point b = (uz,ur) moves from Ag
to Ag, then for any two points by = (uh,pk),
by = (u%,p%) such that by is passed before by, we

1.004

0.994 L —£=£
0.967

(b)

Bifurcation structure of the parameter region marked in Fig. 13. The rectangle marked in (a) is shown enlarged

have pk < p2 so that fz(0;b1) < fr(0;b) (as
a composition of increasing functions). Similarly,
from —pk < —p% we have fr(0;b1) < fr(0;bs).
Therefore, the assumptions of Theorem 1 are sat-
isfied, and in the (uz,pur) parameter plane the
existence regions of the cycles issue from point
Brr2r/reere and organized in the period adding
structure. Hence, we can also identify the families
of the associated cycles for the original map (47)
shown in Fig. 14(b). For example, the families of
the cycles with complexity level one are given by
{Orc2re(cr2c)m |1 > 0}, (59)
{Orr2c(re2RL)M |11 > 0}
whose BCB equations are given by Egs. (20)
and (21) with fr and fr as defined in Eq. (57),
and so on for the higher complexity levels.
Similarly, infinitely many other codimension-2
points which can be seen in Fig. 13 can be dealt
with. Further examples for the first return map
in the increasing—increasing configuration are com-
mented on in Secs. 4.2 and 4.3.

4.2. Increasing—decreasing case

Examples for the occurrence of a period increment-
ing structure on map (47) with v > 1, ar > 0,
ar < 0 are illustrated in Fig. 15. As in the previ-
ous case, the bifurcation structure issuing from the
intersection point B,z = (0,0) of the BCB curves
&r and &r of the fixed points of g can be specified
using the function g, which is continuous at this
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Fig. 15. Bifurcation structure in the (pz, g ) parameter plane map (47) in the increasing—decreasing case (ay = 1, ag = —1,

~v = 2). The parameters p,, pur are shown scaled by the topology-preserving scaling (48). The stability regions of the fixed
points O, O and of the 2-cycle Oy are marked with P,, Pr, Prr, respectively, and highlighted in color; some other

stability regions are marked as well.

point and satisfies

d d
e =0, —9gr =0,
€z =0 dx =0
(60)
d2 2
— 0,1 — —1,0).
dxggﬁ —0 € ( ) )7 da?2gR 0 S ( ) )

Thus, from Theorem 2 (whose assumptions are sat-
isfied) it follows that a period incrementing struc-
ture issues from B r. Accordingly, the family of
cycles whose existence regions originate from this
point is

{Orcn [ > 0}. (61)

These regions partially overlap pairwise and accu-
mulate to the BCB curve & (the vertical axis).
In particular, the lower boundary of region Prg is
located below curve g, so that the stable cycle O,r

coexists with the stable fixed point Og in a proper
region.

In Fig. 15 many other organizing centers can
be identified. For example, point B,g g2 repre-
sents the issuing point of one more period incre-
menting structure. To show that one BCB curve is
&rwr, which is the lower boundary of the periodicity
region of the attracting 2-cycle Orx (highlighted
in color in Fig. 15). Then, in the present case, the
fixed point Ox undergoes a flip bifurcation (instead
of a fold) occurring when parameter values belong
to the curve

Yr = {(pc, pr) | V1 +dagpr — 2 = 0}.

At this bifurcation curve a stable 2-cycle Oge
appears (in Fig. 15 the curve ¢z corresponds to
the horizontal line pur = —i). This 2-cycle under-
goes a BCB at the parameter values belonging to

(62)
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the curve given by the condition g%(()) =0, that is

o = {nem) im = b ()
ar

(in our example ur = —1). Thus, point Brr g2
represents an intersection point of BCB curves
er and Epe. Accordingly, we define the first
return map

Tpt1 = f(zn)

_ {fﬁ(xn) =grogc(zn) ifxz, <0 (64)

fR(fn) = 9723(3371) if 2, > 0.

Evaluating the second derivatives of fz and fg in
r = 0, from (60) we conclude that in a neigh-
borhood of point Bor,r2 function fr is strictly
decreasing and function fR is strictly increasing in
the left and right neighborhoods of = = 0, respec-
tively. This configuration is, as mentioned above,
topologically conjugate to the increasing—decreasing
one. Regarding the monotonicity of the offsets, the
results are obtained from the monotonicity of the
functions in the components (here g, is increas-
ing and gg is decreasing). If a point b = (uz, ur)
moves from a point Ay on {rr to a point Ax on
&2 along an arc < in the region Pr, then for any
two points by = (up, i) and by = (u%,u%) such
that by is passed before by, we have u}: > ,u% and
,u,%z < u%. Thus, for the left offset we have to show
that £z (0, b) < fr(0,bs). In fact, by definition of
fe we have fr(0,b1) = pp > fr(0,b1) = pZ and
hence gr(92(0,01)) = gr(up,01) < gr(9c(0,b2)) =
gr(p%, bo). Similarly, for the right offset we have to
show that fr(0,b1) < fr(0;b2). Indeed, by defini-
tion of fr we have fr(0,b1) = —uk > fr(0,b1) =
—p% and hence fr(fr(0,b1) = fr(—ubk,b1) <
fr(f(0,b2)) = fr(—p%,b2). Note that similar rea-
soning can be applied in all the other examples of
codimension-2 points. Thus, the monotonicity of the
offsets is a consequence of the monotonicity of the
functions defining the first return map. Therefore,
for the first return map (64) there exists the family
of cycles

{Orrn|n >0} (65)

whose existence regions issue from Byg r2. The
boundaries of these regions are the BCB curves
given by Eq. (21) with n; = n, and with f, and fr
defined as in (64). The family of cycles for the orig-
inal map (47) is given by the cycles with symbolic

sequences (LR)(R?)", that is
{O£R2n+1 ]n > 0}. (66)

The related existence regions Pppent1 form the
period incrementing structure originating from
point Bor gz and for each n the pair of regions
Prrent1 and Prprents partially overlap.

The same reasoning applies to the intersection
point of the BCB curve {2 not only with ,%, but
also with any of the curves {5 q1—1 for £ > 1. These
BCB curves represent the lower boundaries of the
existence regions of the cycles O 1z, which emerge
at point Br . In fact, at the intersection point
Brrr-1/r2 the corresponding first return map

Tn+1 = f(xn>

fe(n) = g ogroge(en) ifa, <0

:{humzﬁum

if z, >0
(67)

is in the decreasing—increasing configuration. There-
fore, along the line &r2 we observe an infinite
sequence of organizing centers Byp r-1,z2, from
each of which a period incrementing structure is
issuing. Points Byr g2 and Brrp gz marked in
Fig. 15 belong to this family corresponding to cases
k =1 and k = 2, respectively. The period incre-
menting structure issuing from point Byg pr-1/52 is
formed by the pairwise overlapping regions associ-
ated with the cycles from the family

{OﬁRﬁk_lRQ” "I’L > 0} (68)

whose BCB curves are given by Eq. (21) with n; =
n, and with f; and fr defined as in Eq. (67).

It is also clearly visible in Fig. 15 that not all
the organizing centers in the (uc,pur) plane are
associated with period incrementing structures. For
example, point By g2 € §£ N &gz = (0,—1) gives
rise to a period adding structure. It can easily be
shown that at this point the first return map

Tpi1 = f(zy)

_ {f£($n) = gr(z,) ifx, <0 o9)
JFR@n) = 9723(5%) if ¢, >0

is in the increasing—increasing configuration and the
offsets fr(0), fr(0) are increasing when the param-
eters are moved along an arc «y in region Ppg. There-
fore, for this map we can guarantee the existence of
cycles of all the complexity levels whose existence
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regions are organized in the period adding struc-
ture issuing from point By g2. A few BCB curves
related to the first and the second complexity levels
are given in Egs. (20), (21), (23), (24) with fr and
fr defined as in Eq. (69).

There are also infinitely many other
codimension-2 BCB points located at curve &pe,
which lead to the appearance of period adding
structures. This can easily be explained taking into
account that each of the cycles Opng emerging
at point B, g undergoes a flip bifurcation at the
curve teng at which a stable cycle O zng)2 of
double period emerges. For example, in Fig. 15
the flip bifurcation curve ¢, is marked, at which
the stable cycle O(,r)2 appears. This cycle under-
goes a BCB at curve {;x)2, and the intersection
point of this curve with curve {z2 represents the
organizing center B(;g)2 g2 which is marked in
Fig. 15. It can be shown that the configuration
of the associated first return map at this point is
increasing—increasing, and the offsets are increasing

as well, so that this is an organizing center giving
rise to a period adding structure. The same rea-
soning applies to the cycle O ng)2 for any n, so
that all the intersection points B(sng)2/g2 of the
bifurcation curves {r2 and {sng)2 are organizing
centers of period adding structures.

4.3. Decreasing—decreasing case

The structure of the parameter plane of map (47)
for v > 1, ar < 0, ag < 0 is shown in Fig. 16.
As one can see in this figure, the only periodicity
region emerging at the origin of the (p ., ug) param-
eter plane is related to the 2-cycle Opyr. Indeed,
for pup > 0, pgr > 0 this 2-cycle represents the
only possible attractor of map (47). Besides the
two BCB curves £,r, &re issuing from the point
Bz = (0,0) its existence region is bounded by a
fold bifurcation curve ¢,x.

One more example of the coupling bifurcation
structure of the colliding cycles can be seen in

LME]

S(IIR)

=
2

x
2

Fig. 16.

0 S (ﬂ.—: ) %

Bifurcation structure in the (ur, ug ) parameter plane of map (47) in the decreasing—decreasing case (ap = ag = —1,

~v = 2). The parameters p,, ugr are shown scaled by the topology-preserving scaling (48). The stability regions of the fixed
points O, O and of the 2-cycle O,y are marked with P,, Pr, Prr, respectively, and highlighted in colors. Region P,or

is also bounded by the fold bifurcation curve ¢, .
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Fig. 15. In fact, Byr/r represents the intersection
point of the BCB curves ,r, (the lower boundary
of the existence region of the stable 3-cycle O 25)
and &g (the upper boundary of the existence region
of the stable fixed point Og). At this point we can
verify that the first return map defined by

Tpy1 = f(xn)

- fc(fn) =grogrogr(xz,) ifx, <0
if ¢, >0
(70)

fR(xn) = gR(xn)

is in the decreasing—decreasing configuration, and
an arc connecting the two boundaries in the region
Pp can be chosen such that pe is increasing and
(—pwr) is increasing, thus the offsets f-(0) and
fr(0) are increasing along this arc. Therefore, the
only periodicity region which emerges at point
Brre/r is the one related to the 2-cycle Orr of
map (70). Clearly, this coupled 2-cycle corresponds
to the 4-cycle @(ER)Q of the original map (47),
whose existence region partially overlaps with the
regions of the two colliding cycles, leading to
bistability.

Similar reasoning can be applied to explain the
bifurcation structure shown in Fig. 15 at infinitely
many other codimension-2 BCB points. In fact, con-
sidering the periodicity regions related to the family
of cycles Oprp, which emerge at the point By, it
can be shown that for each k£ the BCB curves &% /o«
(the lower boundary of the existence region of the
(k+2)-cycle Oprt1) and &g gx—1 (the upper bound-
ary of the existence region of the k-cycle Ogr-1)
intersect. At intersection point Bpgpk gor-1 the
related first return map is given by

Tpy1 = f(zn)

B folzn) =gk ogroge(r,) ifa, <0
if x, >0
(71)

fR(xn) = gz © gR(fn)

and it is in the decreasing—decreasing configura-
tion. Accordingly, from point Bpgrpk/rer-1 the

region of the coupled 2-cycle Oyr of map (71)
is issuing, which corresponds to the 2(k + 1)-
cycle of map (47) with the symbolic sequence
LRLFRLE! = (LFR)2. As in the previous exam-
ple, for each k the existence region of this cycle
partially overlaps with the regions of the collid-
ing cycles. Besides these curves, each region is also

bounded by the flip bifurcation curve 9,1 of the
corresponding (k + 1)-cycle O rr which belongs to
the family emerging at point B/ g.

To conclude, let us comment on a few more
codimension-2 BCB points which can be observed
in map (47) in the decreasing—decreasing config-
uration as shown in Fig. 16. By contrast to the
first quadrant, in which there is only one stabil-
ity region Prr, if at least one of the offsets p,
ur is negative, other attracting cycles appear, and
their existence regions originate from several orga-
nizing centers given by codimension-2 BCB points.
In particular, we observe points Bz g2 and B.r /r2
as in Fig. 15. As before, their appearance is caused
by the intersection of BCB curve {z2 with BCB
curves {, and {r, respectively (cf. Figs. 15 and 16).
What differs with respect to the previous case are
the shapes of the first return maps (69) and (67) at
these points. Recall that in the case of Fig. 15 the
first return map (69) is in the increasing—increasing
configuration at point B2, and, accordingly, this
point represents the issuing point of a period adding
structure. Now, in Fig. 16, the first return map (69)
is in the increasing—decreasing configuration at
point By r2. Therefore, the period incrementing
bifurcation structure is issuing from this point,
formed by a family of pairwise overlapping peri-
odicity regions of cycles with symbolic sequences
L(R?*)"™, n > 0. Similarly, we can show (by evalu-
ating the corresponding derivatives) that the point
Brg g2, which is the organizing center of a period
incrementing structure in Fig. 15, represents now,
in Fig. 16, the organizing center of a period adding
structure.

In addition to the codimension-2 BCBs points
B g2 and Brg gz, in Fig. 16 we can also observe
the organizing centers Br2/r and Bp2jr, of the
period incrementing and period adding structure,
respectively. Similarly, we can show that point
Br2/r2 € 2 N &g (at which the first return map
defined by the branches f; = g%, fr = g% is in the
increasing—increasing configuration) represents the
organizing center of a period adding structure.

5. Conclusions

In this work we have considered a two-parameter
family of 1D piecewise smooth maps with a single
discontinuity point z = 0. We have investigated the
bifurcation structures in a parameter plane, associ-

ated with a codimension-2 bifurcation point B, /,,
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given by the transverse intersection of two BCB
curves associated with attracting cycles. It is worth
emphasizing that these bifurcation curves may be
related to cycles of any period and any symbolic
sequence. We have described in Sec. 3 three different
cases associated with the different local monotonic-
ity of the functions. The result of the bifurcation
mainly depends on whether at the codimension-2
BCB point the related continuous first return map
in a neighborhood of point = 0 is increasing or
decreasing in a right and a left neighborhood of
x = 0. We have shown that if the first return map
is strictly increasing on both sides of x = 0 then
a full period adding bifurcation structure is issuing
from B ,. If the first return map is strictly increas-
ing on one side of x = 0 and strictly decreasing on
the other side, then a period incrementing bifurca-
tion structure is issuing from B,/,. In these cases
point B, /, is an organizing center. When the first
return map is strictly decreasing on both sides of
x = 0 then only two BCB curves issue from B, /,,
bounding the region of existence of a cycle obtained
by coupling the two colliding ones, whose symbolic
sequence oo is the concatenation of the symbolic
sequences of the two colliding cycles. The existence
region of such a coupled cycle partially overlaps
with the existence regions of each colliding cycle.
In Sec. 4 we have shown how the considered class
of maps is associated with Lorenz-like flows pos-
sessing a butterfly structure. Such a codimension-2
BCB point in a map associated with a Lorenz-like
flow corresponds to the merging (or gluing) of two
attracting homoclinic orbits of the flow having any
number of loops. We proved that the three theorems
apply to all the codimension-2 BCB points existing
in the parameter plane of the offsets of the original
map.
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