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We extend the analysis on the effects of the entry constraints on the dynamics of an adaptive segregation model of Shelling’s type
when the two populations involved differ in numerosity, level of tolerance toward members of the other population, and speed
of reaction. The model is described by a two-dimensional piecewise smooth dynamical system in discrete time, where the entry
constraints represent possible exogenous controls imposed by an authority in order to regulate the maximum number of members
of the two populations allowed to enter the system, usually the district in which they live in. In this paper, we investigate the nature
of some particular border collision bifurcations and discuss the policy implications of the entry constraints in terms of segregation.
The investigation reveals that asymmetries in the level of tolerance of the two populations involved may lead to phenomena of
overreaction or overshooting in the adjustment process. In order to avoid the risk of segregation, suitable entry limitations must be
imposed at least on the more tolerant population.

1. Introduction

In the modern economic world, with flows of workers from
country to country, (residential) segregation represents one of
the main socioeconomic concerns for the public authorities.
In the past, the problem regarded mainly the cities in the
USA; see, for example, [1]. In the last two decades, segregation
has become one of the main public economic issues also in
allWestern-European countries.The open borders policies of
the European Union facilitate the migration from country to
country of people of different nationalities, languages, skills,
and cultures. This process raises the necessity of integration
between the indigenous dwellers and the newcomers.

The main force that prevents integration between mem-
bers of different groups is the limited tolerance of members
of one group towards members of other groups. Aware of
this, the policymakers tend to avoid segregation by com-
bining some integration policies mainly focused to promote
multiculturalism; see, for example, [2], with more drastic
measures such as the imposition of some entry constraints

for the members of the different groups. Although possible
effects of this strategy are still not completely investigated, this
last solution is often adopted by public authorities as it is the
one that generates results in a short period.

In this paper, by means of an adaptive segregation model
of Shelling’s type, as proposed in [3] and formalized in a
mathematicalmodel in [4], we study the effectiveness of entry
constraints in preventing segregation. The model is a simpli-
fied representation of a real world situation in which there
are two groups of people which differ in some respects, such
as, color of skin, religion, and political affiliation. Each single
member of each group has a different and limited level of
tolerance on the maximum number of people of the other
group living in the same system, where system commonly
refers to a “district” of a city. This model captures the rele-
vant mismatch between individual preferences, which would
exclude segregation, and collective pattern that results from
the interplay of individual choices, which often lead to
segregation, see [5].The validity of this theoretical finding has
been confirmed, mainly through empirical surveys, by many

Hindawi Publishing Corporation
Discrete Dynamics in Nature and Society
Volume 2014, Article ID 569296, 17 pages
http://dx.doi.org/10.1155/2014/569296

http://dx.doi.org/10.1155/2014/569296


2 Discrete Dynamics in Nature and Society

scholars; see for example, [1, 6–8]. This aspect is not only
a peculiarity of the issue described here but is typical of all
socioeconomic systems that the willingness of the individuals
is not reflected in the collective choice.

The dynamical analysis of the model is conducted with
the aimof understanding the possible consequences of impos-
ing more or less stringent entry constraints in terms of seg-
regation. The investigation reveals that, to avoid segregation,
it is good to impose entry constraints on the more tolerant
population as this reduces the risk of overshooting or over-
reaction among agents of the two groups and leads to an
equilibrium of coexistence. The finding is of particular inter-
est as it runs counter to common opinion that, to avoid seg-
regation, we have to limit entrances of the less tolerant popu-
lation and reveals that policymakers should impose the entry
constraints for the different groups involved in a system in
such a way to balance the entries of the members of each
group into the system if they want to prevent segregation.

The analysis conducted in the paper is also devoted to
show the different dynamical scenarios that can occur for dif-
ferent values of the entry constraints. In particular, an accu-
rate bifurcation analysis highlights the existence of interesting
border collision bifurcations which lead to the transition
from a stable fixed point to cycles of different periodicity and
chaotic attractors.Themathematical analysismakes use of the
last developments on the bifurcation theory of nonsmooth
dynamical system in discrete time; see, for example, [9–12], to
provide a full and comprehensive description of the complex
dynamics that comes out of the original model of segregation
of Shelling.The dynamics of the system are particularly inter-
esting from a mathematical point of view as the model is
described by a continuous two-dimensional piecewise differ-
entiable map characterized by several borders through which
the system changes its definition. It is worth remarking that
the dynamics associated with piecewise smooth systems is a
quite new research branch, and several papers have been ded-
icated to this subject in the last decade; see for example, [13,
14]. Such an increasing interest towards nonsmooth dynamics
comes both from the new theoretical problems occurring due
to the presence of borders and from the wide interest in the
applied context. In fact, many models are described by con-
strained functions, leading to piecewise smooth systems, con-
tinuous or discontinuous. We recall several oligopoly mod-
els with different kinds of constraints considered in the books
[15, 16], nonsmooth economic models in [17–19], financial
market models in [20–22], and multiple-choice models in
[23–25].

This paper extends and generalizes the results in [26] to
asymmetric cases, where the two populations involved in the
systemdiffer in terms of number ofmembers,maximum level
of tolerance ofmembers of the other group, and speed of reac-
tion to differences between the maximum tolerated number
of members of the other group and their effective presence
in the system. The analysis conducted here is of particular
interest as in reality the groups of people that are involved
in the system differ in at least one of the three mentioned
aspects. The investigation of the dynamics of the segregation
model for an asymmetric setting of the parameters reveals

that new type of bifurcations can occur with respect to the
symmetric case studied in [26].

The paper is organized as follows. In Section 2, we intro-
duce the model and we indicate its fixed points. In Section 3,
we provide a deep investigation of the main dynamics gen-
erated by the model and the possible scenarios for different
parameters’ values, and we discuss the findings in terms of
policy implications. In Section 4, we conclude and provide
some possible future extensions and improvements of the
model.

2. The Segregation Model and Its Peculiarities

We consider the SegregationModel as originally proposed by
Schelling, formalized in [4] and considered also in [26]:
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. Indeed, by definition of 𝐹

𝑖
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have that the number of members of population 𝑖 that decide
to enter (or exit) the system at each iteration is simply given
by the difference between the maximum tolerated number of
members of the other group and the number of agents of the
other group that are in the system; that is, 𝛾
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𝑖
is a parameter measuring the speed of adjustment.

The parameter 𝐾
𝑖
represents the entry constraint indicating

themaximumnumber of members of population 𝑖 allowed to
enter the system. The smaller the values of these two param-
eters, the more stringent are the entry constraints.
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From the definition of the map, we have that the phase
plane of the dynamical system can be divided into several
regions where the system is defined by different functions.
On the boundaries of these regions, the map is continuous
but not differentiable.
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curves 𝐹
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These curves of nondifferentiability divide the phase plane
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in each of which a different function is to be applied, so that
we have
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and, as already remarked, the map is continuous: on a border
between two different regions the applied functions take the
same value.

From the definition ofmap𝑇 in (1), it follows immediately
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explained. To this purpose, let us first recall from [26] a few
remarks on the fixed points that the system can have.
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The label “natural fixed points of non segregation” makes it
clear that these fixed points exist without imposing entry
constraints.These fixed points are feasible or admissible if and
only if they belong to the region Ω

1
∩ 𝐷; otherwise, they are

called virtual.

We call “artificial fixed points of non segregation” those
which would not exist without imposing entry constraints.
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7
∩ 𝐷 then it is a superstable fixed

point. While when 𝑃 does not belong toΩ
7
∩ 𝐷, then for the

dynamics of the points in region Ω
7
it is enough to consider

the trajectory of the only point 𝑃.
Other regions with degeneracies are Ω

3
, Ω
4
, and Ω

6

as all of them are mapped into fixed points, (0, 0), (0, 𝐾
2
),

and (𝐾
1
, 0), respectively. These fixed points do not deserve

other comments apart from their local stability/instability.
The equilibrium of extinction is unstable while the two other
fixed points of segregation are superstable when Ω

4
and Ω

6

intersect𝐷 in a set of positive measure, stable otherwise.
There are other degeneracies of the map, due to the

regions bounded by the border curves𝐵𝐶
𝑖,𝐾

(see Figure 1(a)).
The portion of the phase plane bounded by the border
curve 𝐵𝐶

1,𝐾
is mapped onto the line 𝑥

1
= 𝐾
1
. Similarly the

whole region bounded by the border curve 𝐵𝐶
2,𝐾

is mapped
onto the line 𝑥

2
= 𝐾
2
. Thus, in both regions we have one

degeneracy as the Jacobian matrix in all the points of these
regions has one eigenvalue equal to zero. As a whole region is
mapped into a segment of straight line, the stability/instability
of the fixed points belonging to these lines, which are the
artificial fixed points of nonsegregation, can be investigated
considering the one-dimensional restriction of 𝑇 to the lines
(when they are real fixed points of 𝑇 and not virtual). As we
shall comment in the next section, an example is shown in
Figures 1(b) and 1(c).

Summarizing, besides the natural fixed point of nonseg-
regation satisfying the equations in (13), which may be real
(stable or unstable) or virtual, we list below those which can
be considered the principal fixed points of the constrained
model, although other fixed points may exist, depending on
the values of the parameters (for example in the piecewise
smooth maps of the restrictions on the lines 𝑥

𝑖
= 𝐾
𝑖
).

(0, 0), fixed point of extinction, unstable,
(𝐾
1
, 0), fixed point of segregation, stable or super-

stable,
(0, 𝐾
2
), fixed point of segregation, stable or super-

stable,
(𝐾
1
, 𝐾
2
), fixed point of segregation (real or virtual),

superstable,
(𝐾
1
, 𝑥∗
2,𝑎

), fixed point of nonsegregation (real or vir-
tual), unstable,
(𝐾
1
, 𝑥∗
2,𝑏

), fixed point of nonsegregation (real or vir-
tual), stable or unstable,
(𝑥∗
1,𝑎

, 𝐾
2
), fixed point of nonsegregation (real or vir-

tual), unstable,

(𝑥∗
1,𝑏

, 𝐾
2
), fixed point of nonsegregation (real or vir-

tual), stable or unstable.

The explicit analytic expressions of the fixed points of nonseg-
regation, as well as their local stability analysis as a function
of the parameters, are obtained as shown in [26] by using the
one-dimensional first return map and also reported in the
next section.

As already remarked in the Introduction, the goal of this
paper is to investigate the role of the constraints, which are
the values of 𝐾

1
and 𝐾

2
, when the two populations involved

are characterized by some form of asymmetry such as 𝛾
1

̸= 𝛾
2

or 𝜏
1

̸= 𝜏
2
or𝑁
1

̸= 𝑁
2
. We recall that𝐾

1
and𝐾

2
represent the

upper limit number of individuals of a population allowed
to enter the system and, thus, represent possible regulatory
policy choices.

In the next section, we shall describe several regions in the
parameter plane (𝐾

1
, 𝐾
2
) which lead to interesting dynamic

behaviors, emphasizing on the differences with respect to the
dynamics occurring in the symmetric case.

3. The Dynamics of the Model and
Its Interpretation

In [26], we have analyzed the model of segregation and the
effects of the entry constraints, 𝐾

1
and 𝐾

2
, for the peculiar

case of two symmetric populations; that is, 𝑁
1
= 𝑁
2
, 𝛾
1
=

𝛾
2
, 𝜏
1

= 𝜏
2
. In the current work, we investigate the case

of asymmetric populations. In order to better compare the
results, in our numerical simulations we keep the value of the
parameters of population 1 as in [26]; that is

𝑁
1
= 1.5, 𝛾

1
= 1, 𝜏

1
= 4 (11)

changing the values of the parameters of population 2. We
start investigating the effects of the entry constraints assum-
ing that population 2 differs from population 1 for a smaller
number of members:

𝑁
2
< 𝑁
1
, 𝛾

2
= 1, 𝜏

2
= 4. (12)

We notice that although a few parameters are fixed, we shall
describe the dynamic behaviors assuming 𝑁

2
, 𝛾
2
, and 𝜏

2
at

several different parameter constellations, keeping as goal the
two-dimensional parameter plane (𝐾

1
, 𝐾
2
), and bifurcation

structures similar to those illustrated and commented in this
section have been obtained also when fixing different values
for the parameters.

This asymmetric case is interesting as it is realistic to
assume that the two groups allowed to enter a system are of
different size. We can consider, as an example, the case of a
city inhabited by natives and immigrants which both have
to face the decision of living close to each other or not. The
immigrants are usually less in number than the natives. As
a first example, let us start analyzing the dynamics of the
model for 𝑁

2
= 1.4 and setting the entry constraints such

that the largest population is more limited to enter the system
with respect to the other population, assuming 𝐾

1
< 𝐾
2
.

For example, let us consider 𝐾
1

= 1.15 and 𝐾
2

= 1.3.
As shown in Figure 1(b), for this set of parameters we have
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three stable equilibria: the equilibria of segregation (𝐾
1
, 0) ∈

Ω
6
∩ 𝐷 and (0, 𝐾

2
) ∈ Ω

4
∩ 𝐷, and one of nonsegregation

(𝐾
1
, 𝑥∗
2,𝑏

) ∈ Ω
5
∩ 𝐷. This last equilibrium and the unstable

one (𝐾
1
, 𝑥∗
2,𝑎

) ∈ Ω
5
∩ 𝐷 are associated with the intersection

of the reaction curve 𝜙
2
with the straight line 𝑥

1
= 𝐾
1

(see Figure 1(b)).These two equilibria exist because a specific
constraint is imposed on the maximum number of members
of population 1 allowed to enter the system (i.e., 𝐾

1
= 1.15 <

𝑁
1
). As recalled in the previous section, each point of the

region Ω
5
∩ 𝐷 is mapped in one iteration onto the straight

line 𝑥
1
= 𝐾
1
. The local stability of these two equilibria can be

investigated considering the restriction of map 𝑇 to 𝑥
1
= 𝐾
1

for (𝐾
1
, 𝑥
2
) ∈ Ω

5
∩ 𝐷. The restriction of 𝑇 to the invariant

segment for 0 ≤ 𝑥
2
≤ 𝑥
2,𝑚

, where 𝑥
2,𝑚

= 𝐾
1
𝜏
1
(1 − (𝐾

1
/𝑁
1
))

is the maximum value belonging to Ω
5
∩ 𝐷, is given by the

one-dimensional map:

𝑥
2
(𝑡 + 1) = 𝑓

2
(𝑥
2
(𝑡)) ,

𝑓
2
(𝑥
2
(𝑡)) =

{{
{{
{

0 if 𝐹
2
(𝐾
1
, 𝑥
2
) ≤ 0

𝐹
2
(𝐾
1
, 𝑥
2
) if 0 ≤ 𝐹

2
(𝐾
1
, 𝑥
2
) ≤ 𝐾
2

𝐾
2

if 𝐹
2
(𝐾
1
, 𝑥
2
) ≥ 𝐾
2
,

(13)

where

𝐹
2
(𝐾
1
, 𝑥
2
) = 𝑥
2
[1 − 𝛾

2
𝐾
1
+ 𝛾
2
𝑥
2
𝜏
2
(1 −

𝑥
2

𝑁
2

)] . (14)

This one-dimensional map has three fixed points, shown in
Figure 1(c). The point 𝑥

2
= 0 corresponds to the fixed point

(𝐾
1
, 0) of 𝑇. By straightforward calculations we can see that

|(𝑑/𝑑𝑥
2
)𝐹
2
(𝐾
1
, 0)| < 1, which implies that this fixed point

is attracting in the direction of the line 𝑥
1
= 𝐾
1
and it has

a basin of attraction of positive measure. The nonzero fixed
points internal to the range [0, 𝑥

2,𝑚
] are, thus, associated with

the solutions of a quadratic equation, leading to

𝑥∗
2,𝑏,𝑎

=
𝑁
2

2
± √(

𝑁
2

2
)
2

−
𝐾
1
𝑁
2

𝜏
2

. (15)

These two fixed points of 𝑓
2
(𝑥
2
(𝑡)) correspond to the fixed

points 𝑃
𝑎
= (𝐾
1
, 𝑥∗
2,𝑎

) and 𝑃
𝑏
= (𝐾
1
, 𝑥∗
2,𝑏

) of the segregation
model 𝑇 and are the intersection points of the reaction curve
𝜙
2
with the line 𝑥

1
= 𝐾
1
. Calculating the value of the

derivative of 𝑓
2
(𝑥
2
(𝑡)) at the two equilibria, it is possible to

determine whether they are locally stable or unstable, from
which it follows the stability or instability of the fixed points
𝑃
𝑎
and 𝑃

𝑏
of 𝑇. It is worth remarking that the equilibria

𝑃
𝑎
and 𝑃

𝑏
belonging to Ω

5
∩ 𝐷 are present also in the

symmetric case. However, in the symmetric case considered
in [26] they are both unstable. This first difference has an
important consequence. Indeed, it suggests that when the
two populations have different size and so different level of
tolerance (as for the specific form of the tolerance functions
𝑅
𝑖
, the population with a smaller number of members is also

the less tolerant) it is possible to set the entry constraint only
for the larger and more tolerant population, in our specific
case population 1, to reduce the risk of segregation and to have
a stable equilibrium of nonsegregation.

Region of bistability

1.5

1.4

K10.3
0.3

K2

BCe,1

BCe,2

BCd,1

BCg,1

Figure 2: Two-dimensional bifurcation diagram on the (𝐾
1
, 𝐾
2
)-

parameter plane for map 𝑇 at 𝑁
1
= 1.5, 𝑁

2
= 1.4, 𝜏

1
= 𝜏
2
= 4,

and 𝛾
1

= 𝛾
2

= 1. Different colors are related to attracting cycles
of different periods 𝑛 ≤ 30; the white region corresponds either to
chaotic attractors or to cycles of higher periods. In particular, the
dark-green regions represent the set of values at which the equilibria
of segregation are stable. For parameters in the yellow region besides
the two equilibria of segregation there exists also the superstable
fixed point (𝐾

1
, 𝐾
2
). For parameters in the orange region, (𝐾

1
, 𝑥∗
2,𝑏
)

is a stable fixed point, coexisting with the two stable equilibria of
segregation.

This first example highlights immediately a difference
between the symmetric case and the asymmetric one con-
sidered here. To better understand the differences in the
dynamics and the role of the entry constraints in the two
situations, it is useful to observe the parameter space (𝐾

1
, 𝐾
2
)

in Figure 2. The stability region of the equilibrium (𝐾
1
, 𝑥∗
2,𝑏

)
is the one colored in orange. This is a region in which this
stable equilibrium of nonsegregation 𝑃

𝑏
coexists with the two

stable equilibria of segregation (which are stable whatever
the values of the entry constraints 𝐾

1
and 𝐾

2
). An example

of the related basins of attraction is shown in Figure 1(b). In
Figure 2, the yellow region represents the set of values of the
entry constraints for which the superstable equilibrium of
nonsegregation 𝑃 = (𝐾

1
, 𝐾
2
) ∈ Ω

7
∩ 𝐷 exists. The curves

𝐵𝐶
𝑒,1

and 𝐵𝐶
𝑒,2

depicted on the figure represent the set of
values of 𝐾

1
and 𝐾

2
for which the equilibrium (𝐾

1
, 𝐾
2
) has

a contact with the curves of nondifferentiability 𝐵𝐶
1,𝐾

and
𝐵𝐶
2,𝐾

, respectively, and, thus, represent curves at which the
fixed point 𝑃 undergoes a BCB. We have:

𝐵𝐶
𝑒,1

: 𝐾
2
= 𝜏
1
𝐾
1
(1 −

𝐾
1

𝑁
1

) , where 𝐹
1
(𝐾
1
, 𝐾
2
) = 𝐾
1
,

(16)

𝐵𝐶
𝑒,2

: 𝐾
1
= 𝜏
2
𝐾
2
(1 −

𝐾
2

𝑁
2

) , where 𝐹
2
(𝐾
1
, 𝐾
2
) = 𝐾
2
.

(17)
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While the dark-green regions represent the values of the entry
constraints for which only the two equilibria of segregation
(𝐾
1
, 0) and (0, 𝐾

2
) are stable, it is worth noting that this

occurs either when both entry constraints are not stringent,
that is, 𝐾

1
takes values close to 𝑁

1
and 𝐾

2
takes values

close to 𝑁
2
(the green region in the upper-right corner of

Figure 2), or when the entry constraints for one population
are very stringent while the one for the other population is
not stringent at all. For example, the dark-green region on
the upper-left corner of Figure 2 represents the situation in
which the members of population 1 are severely restricted
to enter the system, while the members of population 2 are
onlymarginally restricted to enter the system. In this case, the
members of population 2 do not have problems to tolerate the
small number ofmembers of population 1 allowed to enter the
system, but the members of population 1 do not tolerate the
large presence of members of population 2 that are allowed
to enter the system. This situation attracts more members of
population 2 in the system and, at the same time, urges the
members of population 1, which do not tolerate the growing
number of members of population 2, to exit the system.
This mechanism prevents the existence of an equilibrium of
nonsegregation. Relaxing the entry constraint for population
1 (i.e., increasing the value of𝐾

1
), we first have the appearance

of a stable 2-cycle (a cycle of period two), the magenta region
in Figure 2, and then, increasing further the value of 𝐾

1
,

a sequence of bifurcations from which stable cycles of any
period appear, and also chaotic attractors, up to a region
in which a 2-cycle is stable again. From this point, relaxing
further the entry constraint for the members of population 1,
it is possible to enter the orange region in Figure 2 associated
with the existence of a stable equilibrium of nonsegregation.
This is the sequence of bifurcations that occurs moving the
parameters along the black horizontal arrow in Figure 2.

The appearance either of a stable cycle of nonsegregation
or a stable nonsegregation equilibrium by relaxing the entry
constraint for population 1 has a straightforward social expla-
nation. Indeed, relaxing the entry constraint for population 1
we have more members of this population that can enter the
system. This prevents the members of population 2 that are
only marginally restricted or not restricted at all, to enter the
system as they do not tolerate the larger and larger number of
members of population 1 that are allowed to enter the system
when 𝐾

1
increases. It follows that a balancing effect prevails.

Members of population 1 tolerate more the presence in the
system of members of the other group and they would enter
the system in a great number but are prevented to do so by
the imposed entry constraint. At the same time, members
of population 2, that can enter the system as they do not
suffer or only partially suffer an entry constraint, do not
enter the system in a massive way as they do not tolerate the
larger presence of members of population 1 that are allowed
to enter due to a relaxation of their entry constraint. As a
result, the number ofmembers that enter the system is limited
for both the populations and this leads to a stable equi-
librium of nonsegregation. This example suggests that, in
order to have the coexistence of two different groups of
people with a different level of tolerance toward each other in
a system, an entry constraint on the more tolerant group has

to be imposed. This will partially reduce the presence of the
members of the more tolerant population in the systems and
as a consequence it will reduce thewillingness of themembers
of the less tolerant population to leave the system. However,
the entry constraint for the more tolerant population should
not be too tight, as there is the risk to make the system to
much attractive for the less tolerant population with the pos-
sibility to have amassive presence of itsmemberswhich could
lead to equilibria of segregation.

We can conclude that the entry constraints must be
imposed in such a way to balance the entries of the two
involved populations.

The possibility to have the equilibrium of nonsegregation
𝑃
𝑏
= (𝐾
1
, 𝑥∗
2,𝑏

) ∈ Ω
5
∩ 𝐷 stable represents one of the main

differences between the symmetric and asymmetric cases.
This region is represented in orange in Figure 2.This denotes
that, to have a stable equilibrium of nonsegregation there, is
the possibility to impose an entry constraint only on the larger
population, which has to be fixed neither too stringent and
nor too weak.

On the other hand, it is very interesting to note that
not imposing or imposing very weak entry constraints to
the larger population and at the same time imposing entry
constraints on the smaller population, there is no possibility
to converge to a stable equilibrium of nonsegregation. Note
that the vertical arrow depicted in Figure 2 does not cross
any yellow or orange region (the only regions that indicate
the presence of stable equilibria of nonsegregation). This
has a straightforward explanation related to the effect of
limiting the entry to the members of the smaller and less
tolerant population. In particular, imposing a stringent entry
constraint on the less tolerant population and a relaxed entry
constraint (or not imposing it at all) on the more tolerant
population increases the risk of segregation manly due to
overshooting. Indeed, this leads to a situation in which many
members of the more tolerant population enter the system
attracted by the large and positive gap between themaximum
tolerate number of members of the other group and their
limited presence in the system imposed by the stringent entry
constraint and members of the less tolerant population leave
the system because the massive presence of the members of
more tolerant population is much over themaximum tolerate
number.

For the same reason, the dark-green region on the lower-
right corner of the parameter space in Figure 2 is much larger
than the dark-green region on the upper-left. It follows that
it is more convenient to impose an entry constraint on the
more tolerant population to avoid the risk of segregation.
This is an interesting and surprising finding as it is common
opinion that an entry constraint should be imposed on the
less tolerant population to avoid segregation.

We have provided the intuition behind the existence and
the stability of the nonsegregation equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) ∈
Ω
5
∩𝐷. Let us go further and try to understand throughwhich

bifurcation this nonsegregation equilibrium loses its stability;
that is, let us identify the nature of the bifurcation curves that
bound the orange region in Figure 2. We start analyzing the
nature of the bifurcation occurring at the straight line that
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∗
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∗
2,a
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K2
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1.5x1 K1
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0
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∗
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∗
2,a

(b)

1.4

1.3
0
0 x∗2,a x∗2,b
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Figure 3: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.4, 𝜏

1
= 𝜏
2
= 4, 𝛾

1
= 𝛾
2
= 1, 𝐾

1
= 1, and 𝐾

2
= 1.4. Panel (a), phase space divided in regions Ω

𝑖
,

𝑖 = 1, . . . , 9. Panel (b), the green (resp., azure) region is the basin of attraction of the superstable equilibrium of segregation (𝐾
1
, 0) (resp.,

(0, 𝐾
2
)), while the red region is the basin of attraction of the stable 2-cycle. In the first two Panels, 𝐵𝐶

1,𝐾
and 𝐵𝐶

2,𝐾
are the dark-green

curves and 𝐵𝐶
1,0

and 𝐵𝐶
2,0

the dark-red curves, while 𝜙
1
and 𝜙

2
are the black curves. Panel (c), restriction of the map 𝑇 on 𝑥

1
= 𝐾
1
for

𝑥
2
∈ [0, 𝑥

2,𝑚
].

marks the left border of the orange region. Let us denote this
bifurcation line as 𝐵𝐶

𝑑,1
.

Comparing Figures 1 and 3, we can see that, as 𝐾
1

is reduced form 1.15 to 1 and the line 𝐵𝐶
𝑑,1

is crossed,
moving from the orange region to the magenta region, the
equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) remains feasible; that is, it still belongs
to the region Ω

5
∩ 𝐷. As remarked above, the region Ω

5
∩ 𝐷

is degenerate as the entire region is mapped in one iteration
on the line 𝑥

1
= 𝐾
1
, so that each equilibrium in this

region must belong to 𝑥
1
= 𝐾
1
and it has at least one zero

eigenvalue. It follows that, to understand the destabilization
of the equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) crossing the bifurcation curve
𝐵𝐶
𝑑,1

in the parameter space, it is sufficient to study the
bifurcation that the fixed point 𝑥∗

2,𝑏
(given in (15)) of map

𝑓
2
(𝑥
2
) undergoes for 𝐾

1
crossing 𝐵𝐶

𝑑,1
. By straightforward

calculations it is easy to see that𝑥∗
2,𝑏

losses its stability through
a flip bifurcation occurring when 𝐾

1
decreases, compare

Figure 1(c) with Figure 3(c). It follows that the bifurcation
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at which (𝐾
1
, 𝑥∗
2,𝑏

) from stable becomes unstable is obtained
solving (from the definition of 𝑓

2
(𝑥
2
) in (13))

𝑑

𝑑𝑥
2

𝐹
2
(𝐾
1
, 𝑥∗
2,𝑏

) = −1 (18)

form which we obtain the bifurcation value:

𝐾
1
=

1

8
(𝛾
2
𝜏
2
𝑁
2
− 8)

+
1

8
√(𝛾
2
𝜏
2
𝑁
2
− 8)
2

+ 32𝛾2
2
(𝜏
2
𝑁
2
𝛾
2
− 2).

(19)

For 𝐾
1
< 𝐾
1
the equilibrium 𝑥∗

2,𝑏
(equivalently (𝐾

1
, 𝑥∗
2,𝑏

)) is
stable while for 𝐾

1
> 𝐾
1
the equilibrium loses its stability

and a stable 2-cycle appears. It follows that the BCB curve at
which (𝐾

1
, 𝑥∗
2,𝑏

) undergoes a nonsmooth period doubling (or
flip) bifurcation (also shown in Figure 2) is the following:

𝐵𝐶
𝑑,1

: 𝐾
1
= 𝐾
1
. (20)

Starting from a point in the orange region of the (𝐾
1
, 𝐾
2
)-

parameter space of Figure 2, where the nonsegregation equi-
librium (𝐾

1
, 𝑥∗,𝑏
2

) is stable and feasible, decreasing 𝐾
1
(i.e.,

making the entry constraint for population 1 more stringent)
it loses stability via the bifurcation described here, crossing
𝐵𝐶
𝑑,1
. However, we can see that another different bifurca-

tion occurs as𝐾
1
is increased (relaxing this entry constraint).

From Figure 3 we can also see that there exists a strip in
which we have coexistence between the stable equilibrium
of nonsegregation and a stable 2-cycle, also observable in
Figure 4.

Let us first investigate the bifurcation leading to the
appearance of this stable 2-cycle. FromFigure 4(a) we observe
that it is of the form {(𝐾

1
, 𝑥
2
), 𝑇(𝐾

1
, 𝑥
2
)} with (𝐾

1
, 𝑥
2
)

belonging to the straight line𝑥
1
= 𝐾
1
inside the regionΩ

1
∩𝐷,

while the other point 𝑇(𝐾
1
, 𝑥
2
) belongs to the regionΩ

5
∩𝐷.

Thus, the periodic point (𝐾
1
, 𝑥
2
) of the 2-cycle is mapped

in 𝑇(𝐾
1
, 𝑥
2
) = (𝐹

1
(𝐾
1
, 𝑥
2
), 𝐹
2
(𝐾
1
, 𝑥
2
)) ∈ Ω

5
∩ 𝐷 and then

a second iteration leads to the same point; that is, (𝐾
1
, 𝑥
2
) =

𝑇2(𝐾
1
, 𝑥
2
) = (𝐾

1
, 𝐹
2
(𝐹
1
(𝐾
1
, 𝑥
2
), 𝐹
2
(𝐾
1
, 𝑥
2
))) = (𝐾

1
, 𝐺(𝑥
2
)).

So the appearance of the 2-cycle can be investigated by use of
the following one-dimensional first return map on 𝑥

1
= 𝐾
1
:

𝑥
2
(𝑡 + 1) = 𝐺 (𝑥

2
(𝑡))

= 𝐹
2
(𝐾
1
, 𝐹
2
(𝐹
1
(𝐾
1
, 𝑥
2
) , 𝐹
2
(𝐾
1
, 𝑥
2
)))

(21)

in the range 𝑥
2,𝑚

= 𝐾
1
𝜏
1
(1 − (𝐾

1
/𝑁
1
)) < 𝑥

2
< 𝐾
2
. This

one-dimensional map is represented in Figure 4(c), see
also an enlargement in Figure 4(d). This one-dimensional
first return map shows that the stable 2-cycle appears via
a saddle-node BCB together with another 2-cycle which is
unstable. This is an interesting border-collision bifurcation
which does not occur in the symmetric case analyzed in
[26], marking another difference between the symmetric and
asymmetric case.

It isworth remarking the situations depicted in Figure 4(c)
(for the first return map of 𝑇 on 𝑥

1
= 𝐾
1
) as well as in

Figures 1(c) and 3(c) (for the restriction of𝑇 on𝑥
1
= 𝐾
1
when

𝑥
2

∈ [0, 𝑥
2,𝑚

]). The unstable fixed point of nonsegregation
𝑃
𝑎

= (𝐾
1,
𝑥∗
2,𝑎

) marks the border of the basins of attraction
between the stable fixed point of segregation (𝐾

1
, 0) and a

different attracting set of nonsegregation. This underlines an
interesting aspect of the entry-exit dynamics of the model.
Indeed, it shows that when the presence of members of
population 2 in the system at the current time 𝑡 is small,
specifically 𝑥

2
(𝑡) < 𝑥∗

2,𝑎
, all of them sooner or later will exit

the system and the only possible scenario is the convergence
to the fixed point of segregation (𝐾

1
, 0). On the contrary,

when their presence in the system is relatively large, that
is, 𝑥
2
(𝑡) > 𝑥∗

2,𝑎
, their persistence in the system is ensured

in the long period. Although the causes are different and
mainly related to the myopic adaptive mechanism employed
by agents, this phenomenon resembles the well-know demo-
graphic Allee effect in population dynamics, which indicates
a decrease in population growth rate at low density; see for
example, [27]. Clearly, a similar effect is observable on the line
𝑥
2
= 𝐾
2
.

Increasing further the value of𝐾
1
, in other words relaxing

the entry constraint for population 1, we have that the non-
segregation equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) becomes virtual; that is,
it undergoes a BCB crossing the boundary of its admissible
region Ω

5
∩ 𝐷 and it is no longer an equilibrium point after

the crossing (as the point enters the region Ω
1
∩ 𝐷), leav-

ing the stable 2-cycle as unique nonsegregation attractor, see
Figure 5. The equation of the border collision bifurcation
curve at which the equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) becomes virtual is
given by (𝐾

1
, 𝑥∗
2,𝑏

) ∈ 𝐵𝐶
1,𝐾

leading to

𝐵𝐶
𝑔,1

: 𝑥∗
2,𝑏

= 𝐾
1
𝜏
1
(1 −

𝐾
1

𝑁
1

) . (22)

Below, we shall see a different bifurcation mechanism occur-
ring at the right boundary of the orange region associated
with the stability of the equilibrium (𝐾

1
, 𝑥∗
2,𝑏

).
Further relaxing the entry constraint for population 1, the

2-cycle becomes unstable via nonsmooth period-doubling
border collision bifurcation and the process is repeated. Via
a sequence of similar bifurcations we observe the transition
to a chaotic attractor for the map 𝑇. At a sufficient large
value of 𝐾

1
the chaotic attractor becomes a chaotic repeller

via a contact bifurcation with the boundary of its basin of
attraction. In Figure 6 it is shown the chaotic attractor quite
close to the boundary of its basin, as the parameter𝐾

1
is close

to the bifurcation value.
The bottom-border of the orange region of Figure 2 cor-

responds to another interesting border collision bifurcation
which is worth analyzing. The equation of the bifurcation
curve 𝐵𝐶

𝑒,2
is given in (17). Starting from the orange region

of Figure 2 and tightening the entry constraint for population
2, that is, decreasing 𝐾

2
, the equilibrium (𝐾

1
, 𝑥∗
2,𝑏

) becomes
virtual, it undergoes a border collision bifurcation reaching
the boundary of the region Ω

5
∩ 𝐷, but at the same bifur-

cation value the superstable equilibrium (𝐾
1
, 𝐾
2
) becomes

feasible entering region Ω
7
∩ 𝐷. That is, crossing the curve

𝐵𝐶
𝑒,2

separating the orange region (a stable equilibrium of
nonsegregation exists) from the yellow one (the superstable
equilibrium (𝐾

1
, 𝐾
2
) exists), at the bifurcation value the two

equilibria are merging: (𝐾
1
, 𝑥∗
2,𝑏

) = (𝐾
1
, 𝐾
2
).
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Figure 4: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.4, 𝜏

1
= 𝜏
2
= 4, 𝛾

1
= 𝛾
2
= 1, 𝐾

1
= 1.19, and 𝐾

2
= 1.4. Panel (a), phase space divided in regions

Ω
𝑖
, 𝑖 = 1, . . . , 9. Panel (b), the green (resp., azure) region is the basin of attraction of the superstable equilibrium of segregation (𝐾

1
, 0) (resp.,

(0, 𝐾
2
)), the red region is the basin of attraction of the equilibrium of nonsegregation (𝐾

1
, 𝑥∗
2,𝑏
) and the white region is the basin of attraction

of the stable 2-cycle born through a nonsmooth saddle-node bifurcation. In the first two Panels, 𝐵𝐶
1,𝐾

and 𝐵𝐶
2,𝐾

are the dark-green curves
and 𝐵𝐶

1,0
and 𝐵𝐶

2,0
the dark-red curves, while 𝜙

1
and 𝜙

2
are the black curves. Panel (c) shows the restriction of the map 𝑇 on 𝑥

1
= 𝐾
1
for

𝑥
2
∈ [0, 𝑥

2,𝑚
] in pink and first return map 𝐺(𝑥

2
) in black. Panel (d) shows an enlargement of the picture in Panel (c).

The analysis performed up to now has shown the main
nonsmooth bifurcations that can occur for 𝑁

2
= 1.4 < 𝑁

1

(keeping fixed the values of the other parameters of themodel
as indicated in (11)-(12)). It is worth deepening the analysis
of the dynamics of segregation for 𝑁

2
< 1.4. Reducing

further the numerosity of population 2 and so reducing the
tolerance of themembers of this population towardmembers
of the other population, we observe a clear enlargement of
the orange region, comparing Figures 2 and 7. Moreover, the

nature of the bifurcation curve that marks the right border of
the orange region changes for different values of 𝑁

2
. Indeed,

the right border of the orange region can represent either
the moment in which (𝐾

1
, 𝑥∗
2,𝑏

) becomes virtual, exiting the
region Ω

5
, as it is the case for 𝑁

2
= 1.4 shown in Figure 2,

or the moment in which (𝐾
1
, 𝑥∗
2,𝑏

) disappears through a non-
smooth saddle-node bifurcation.That is, the stable equilibrium
(𝐾
1
, 𝑥∗
2,𝑏

) merges with the saddle (𝐾
1
, 𝑥∗
2,𝑎

) and both disap-
pear. An example is shown in Figure 8, where in Figure 8(a)
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Figure 5: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.4, 𝜏

1
= 𝜏
2
= 4, 𝛾

1
= 𝛾
2
= 1, 𝐾

1
= 1.22, and 𝐾

2
= 1.4. Panel (a), phase space divided in regions

Ω
𝑖
, 𝑖 = 1, . . . , 9. Panel (b), the green (resp., azure) region is the basin of attraction of the superstable equilibrium of segregation (𝐾

1
, 0) (resp.,

(0, 𝐾
2
)), while the white region is the basin of attraction of the stable 2-cycle born through a nonsmooth saddle-node bifurcation. In these

two Panels 𝐵𝐶
1,𝐾

and 𝐵𝐶
2,𝐾

are the dark-green curves and 𝐵𝐶
1,0

and 𝐵𝐶
2,0

the dark-red curves, while 𝜙
1
and 𝜙

2
are the black curves. The

empty dot indicates the virtual equilibrium (𝐾
1
, 𝑥∗
2,𝑏
).

K2

1.5

1.5x1 K1

x2

0

0

Figure 6: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.4, 𝜏

1
= 𝜏
2
= 4, 𝛾

1
= 𝛾
2
= 1,

𝐾
1
= 1.31, and𝐾

2
= 1.4. The green (resp., azure) region is the basin

of attraction of the superstable equilibrium of segregation (𝐾
1
, 0)

(resp., (0, 𝐾
2
)), and the white region is the basin of attraction of the

chaotic attractor depicted in blue.

the stable fixed point (𝐾
1
, 𝑥∗
2,𝑏

) coexists with a stable 2-period
cycle and the two segregation fixed point and it is closed to
the unstable fixed point (𝐾

1
, 𝑥∗
2,𝑎

), while in Figure 8(b) fixed
points (𝐾

1
, 𝑥∗
2,𝑏

) has disappeared aftermerging with (𝐾
1
, 𝑥∗
2,𝑏

)

and the 2-period cycle has became the only stable attractor
of nonsegregation.This bifurcation occurs when the reaction
curve 𝜙(𝑥

2
) becomes tangent to the line 𝑥

1
= 𝐾
1
, so that we

get the following BCB curve:

𝐵𝐶
ℎ,1

: 𝐾
1
=

1

4
𝜏
2
𝑁
2

at which 𝐾
1
= max
𝑥
2

{𝜙 (𝑥
2
)} .

(23)

This bifurcation curve is reported at the right border of the
orange regions in Figure 7 for𝑁

2
= 1.3 and𝑁

2
= 1.2.

The social explanation for the enlargement of the orange
region is straightforward. Reducing 𝑁

2
makes population 2

less tolerant toward the presence of members of population
1, it follows that a consequence of limiting the entries in the
system of the members of population 1 is to attract members
of population 2 to enter the system. However, due to the
limited tolerance, the members of population 2 do not enter
the system in amassive way and this avoids problems of over-
shooting increasing the probability that the members of the
two groups coordinates in an equilibrium of nonsegregation.

Another interesting difference occurring when the num-
ber of members of population 2 is smaller then the number
of members of population 1 is the direct transition from the
orange region to the green region, as it occurs in Figure 7(b)
for𝑁
2
= 1.2.

The numerosity of the members of the two populations
involved in the system is not the only parameter of differ-
entiation. We can have the two populations differing also in
the parameters 𝛾

1
and 𝛾
2
whichmeasure the propensity of the

two populations to exit (enter) the system when the number
of the members of the other population exceeds (is lower



12 Discrete Dynamics in Nature and Society

K2

1.3

0.3
0.3 1.5K1

BCe,1

BCe,2

BCh,1

BCd,1

Region of bistability

(a)

K2

1.2

0.3
0.3 1.5K1

BCe,1

BCe,2

BCh,1

BCd,1

(b)

Figure 7: Two-dimensional bifurcation diagram in the (𝐾
1
, 𝐾
2
)-parameter plane for map 𝑇 at 𝑁

1
= 1.5, 𝜏

1
= 𝜏
2
= 4, and 𝛾

1
= 𝛾
2
= 1. Panel

(a)𝑁
2
= 1.3. Panel (b)𝑁

2
= 1.2. The meaning of the colored regions is as in Figure 2.

K2

1.5

1.5x1 K1

x2

00

( )K1, x
∗
2,b

( )K1, x
∗
2,a

(a)

K2

1.5

1.5x1 K1

x2

0
0

(b)

Figure 8: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.3, 𝜏

1
= 𝜏
2
= 4, 𝛾

1
= 𝛾
2
= 1, 𝐾

2
= 1.3, and 𝐾

1
= 1.3 in Panel (a), 𝐾

1
= 1.32 in Panel (b). Green

(resp., azure) region is the basin of attraction of the superstable equilibrium of segregation (𝐾
1
, 0) (resp., (0, 𝐾

2
)), the red region is the basin

of attraction of the nonsegregation equilibrium (𝐾
1
, 𝑥∗
2,𝑏
) and the white region is the basin of attraction of a stable 2-cycle.

than) the maximum level of tolerance. Let us assume that
population 2 has numerosity𝑁

2
= 1.2, as it is in Figure 7(b),

and let us reduce the speed of adjustment for population 2; the
value of 𝛾

2
reduces from 1 in Figure 7(b) to 0.5 in Figure 9(a).

As expected, the slower reaction of population 2 to the over-
presence (With overpresence of members of population-1 in
the system, wemean a presence which exceeds the maximum

tolerated by themembers of population-2 that are in a specific
moment in the system.) of members of population 1 in the
system increases the region of stability of the nonsegregation
equilibrium (𝐾

1
, 𝑥∗
2,𝑏

). The bifurcation curve 𝐵𝐶
𝑑,1

moves to
the left as 𝛾

2
decreases.

Comparing Figures 7(b) and 9(a) we can observe another
interesting region in the parameter space (𝐾

1
, 𝐾
2
) which
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Figure 9: Two-dimensional bifurcation diagram on the (𝐾
1
, 𝐾
2
)-parameter plane for map 𝑇. Parameters: 𝑁

1
= 1.5, 𝑁

2
= 1.2, 𝜏

1
= 𝜏
2
= 4,

and 𝛾
1
= 1. Panel (a) 𝛾

2
= 0.5. Panel (b) 𝛾

2
= 0.56. Panel (c) 𝛾

2
= 4. Meaning of the colors of the regions as in Figure 2.

corresponds to the existence of a stable 𝑘-cycle of someperiod
𝑘. This is an attractor of nonsegregation, and it is interesting
to observe that starting, for example, with𝐾

2
= 𝑁
2
and𝐾

1
=

𝑁
1
, the attractors of nonsegregation donot exist, but reducing

𝐾
1
of a small amount we immediately observe the presence of

a stable 𝑘-cycle as an attractor of nonsegregation. Reducing
𝐾
1
further we first observe a situation in which only the

two equilibria of segregation (𝐾
1
, 0) and (0, 𝐾

2
) can be stable

and for 𝐾
1
even smaller we have the stable equilibrium of

nonsegregation (𝐾
1
, 𝑥∗
2,𝑏

).This strange transition reducing𝐾
1

is not trivial and easy to be explained. In fact, the nonsmooth
bifurcations through which the stable cycles appear can be
explained again using the first returnmap on𝑥

1
= 𝐾
1
in away

similar to the one performed above.We skip here this analysis
for the sake of simplicity, avoiding repetition of mechanisms.

It is easy to see that the speed of adjustment, parameters
𝛾
1
and 𝛾

2
, do not influence the stability region of (𝐾

1
, 𝐾
2
)

(the yellow region), indicating that it is always possible to
fix the entry constraints in the two populations and have a
stable (𝐾

1
, 𝐾
2
) independently on the values of the speed of

adjustments.
To complete the analysis on the effects of the asymmetries

on the values of the parameters between the two populations
involved, let us analyze the effect of the parameter 𝜏

2
which

measures the level of tolerance of population 2. It is worth to
note that both parameters𝑁

2
and 𝜏
2
influence the maximum
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Figure 10: Two-dimensional bifurcation diagram on the (𝐾
1
, 𝐾
2
)-parameter plane for map 𝑇 at𝑁

1
= 1.5,𝑁

2
= 1.2, 𝜏

1
= 4, and 𝛾

1
= 𝛾
2
= 1.

Panel (a) 𝜏
2
= 5. Panel (b) 𝜏

2
= 6. Panel (c) 𝜏

2
= 8. The meaning of the colors of the regions is as in Figure 2.

level of tolerance of population 2. However, parameter 𝑁
2

has a double effect as it also influences the numerosity of
population 2. Let us start fixing the values of the parameters
of population 2 as in Figure 7(b); that is, 𝑁

2
= 1.2, 𝜏

2
= 4,

and 𝛾
2
= 1. From this situation, let us increase the level of tol-

erance of population 2 up to 𝜏
2
= 5. Comparing Figures 7(b)

and 10(a), it is possible to observe that an increase in the level
of tolerance of population 2 leads to a larger yellow region,
which means that the set of values of the entry constraints for
which the equilibrium (𝐾

1
, 𝐾
2
) is stable increases. However,

at the same time it is possible to observe that as 𝜏
2
changes

from 4 to 5, that is, as population 2 becomesmore tolerant, the
orange region decreases in size. Moreover, the orange region
disappears for 𝜏

2
= 6 and 𝜏

2
= 8, see Figures 10(b) and 10(c).

This means that, as population 2 becomes more tolerant, the
possibility to have an equilibrium of nonsegregation impos-
ing entry constraint only on population 1, that is, for𝐾

1
< 𝑁
1

and 𝐾
2

= 𝑁
2
, decreases to zero. Again, this phenomenon

that may seem counter-intuitive is due to the overshooting
problems explained above that threaten the existence of an
equilibrium of nonsegregation. Nevertheless, considering the
possibility to impose entry constraints on both populations,
that is, 𝐾

1
< 𝑁
1
and 𝐾

2
< 𝑁
2
, when there is one population

that it is more tolerant than the other, population 2 is more
tolerant than population 1, the risk of segregation decreases
(compare the three panels of Figure 10). Moreover, even these
examples suggest once more that to avoid segregation it is
more convenient to impose entry constraints to the more
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Figure 11: Parameters: 𝑁
1
= 1.5, 𝑁

2
= 1.2, 𝜏

1
= 4, 𝜏

2
= 8, 𝛾

1
= 𝛾
2
= 1, and 𝐾

2
= 1.2. Panel (a) 𝐾

1
= 1.48. Panel (b) 𝐾

1
= 1.44. The green

(resp., azure) region is the basin of attraction of the superstable equilibrium of segregation (𝐾
1
, 0) (resp., (0, 𝐾

2
)), the white region is the basin

of attraction of the equilibrium of extinction (0, 0).

tolerant population in order to curb the overshooting prob-
lems generated by massive waves of entries of members of
the more tolerant population that risk to destabilize the coex-
istence.

Summarizing, the investigation reveals that differences in
the level of tolerance between the two population involved
increase the risk of overreaction between populations that
could lead to segregation. The analysis provides nontrivial
policy indications; that is, to avoid overshooting, and so seg-
regation, a public authority has to impose stringent entry con-
straints to the more tolerant population.

Another interesting aspect is that the equilibrium (0, 0) is
locally unstable, but due to the piecewise smooth definition
of the map it attracts a set of points of positive measure in
the phase plane. We have already shown the gray region in all
the figures representing the phase plane (Figures 1(b), 3(a),
4(a), and 4(b), etc.). In all these cases, the gray region is
always outside the rectangle 𝐷 of interest, so that it plays no
role. However, it may happen (depending on the parameters)
that the gray region enters the rectangle 𝐷. This means the
appearance of values for the two populations which lead
to extinction. That is, all the members of the two popula-
tions can decide to exit the system, as shown for 𝜏

2
= 8 in

Figure 11(a) (where the color of the basin of the origin is set
to white instead of gray to show it in better evidence).

Themechanism throughwhich this occurs is quite simple
to be explained. Due to the high level of tolerance of the two
populations, with population 2more tolerant than population
1, whenever the number of members of population 2 that are
in the system is small thesemembers decide to enter in amas-
sive way in the system.Themassive presence of the members
of each population is highly nontolerated by the members of

the other population and this encourages all the members of
each population to leave the system.This is a clear overshoot-
ing problem which paradoxically shows that two populations
whose members have a high level of tolerance toward each
others, with one group more tolerant than the other, are
unable to self-adjust their entrance in the system in order to
converge to an equilibrium of nonsegregation, but actually all
of them leave the system.

It is worth noting that the basins of attraction of
Figure 11(a) for 𝐾

1
= 1.48 have a complicated structure. It

is clearly visible the existence of parameter regions which are
very sensitive to perturbations, so that it is difficult to predict
whether the final state will be the survival of population 1 or 2
instead of extinction of both.The complex structure is related
to the sequence of preimages.This can be seen observing that,
for 𝐾
1
= 1.44, as in Figure 11(b), the system has only the two

segregation points as unique attractors, and increasing𝐾
1
the

white region in the upper right corner crosses the absorbing
region 𝐷. Then, this small portion has infinitely many other
preimages in 𝐷 which lead to the structure observed in
Figure 11(a).

4. Conclusions

In this paper, we have analyzed the effectiveness of entry
constraints to prevent segregation in a two-populationmodel
of adaptive dynamics as proposed in [4] where members of
each group have a limited level of tolerance toward members
of the other group.This work generalizes the results proposed
in [26] for a symmetric setting to a nonsymmetric one,
where the two populations involved differ in numerosity,
maximum level of tolerance towards the others, and speed of



16 Discrete Dynamics in Nature and Society

reaction to differences in the maximum tolerated number of
the members of the other group and their effective presence
in the system.

Our analysis reveals that the entry constraints can lead
to a stable equilibrium of nonsegregation. In particular, the
investigation underlines that to have an equilibrium of non-
segregation, a policymaker has to impose more stringent
entry constraints on the more tolerant population in order
to limit their willingness to enter the system and reduce the
reaction to exit the less tolerant population.This study shows
that the entry constraints can also be responsible for compli-
cated dynamics that appears through different type of border
collision bifurcations, such as stable cycles of different periods
and chaotic attractors.

Further generalizations of the model are possible. In par-
ticular, it would be of interest to consider two different forms
of the tolerance distribution 𝑅

𝑖
(𝑥
𝑖
) for the two groups of

people considered in the model. Indeed, as suggested by
[1], different groups can have different forms of tolerance
distributions although the linear representation of these dis-
tributions considered here represents a good approximation
of the reality. Another interesting aspect that deserves to be
analyzed is the evolution of the tolerance distributions of the
groups as the result of the interaction of the members of the
two groups in the system.
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