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Homoclinic orbits and heteroclinic connections are important in several contexts, in partic-
ular for a proof of the existence of chaos and for the description of bifurcations of chaotic
attractors. In this work we discuss an algorithm for their numerical detection in smooth or
piecewise smooth, continuous or discontinuous maps. The algorithm is based on the con-
vergence of orbits in backward time and is therefore applicable to expanding fixed points
and cycles. For simplicity, we present the algorithm using 1D maps.
� 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

When dealing with chaotic sets (chaotic attractors or repellers), the concept of homoclinic orbits and heteroclinic connec-
tions plays a central role. In particular, it can be used for the proof of the existence of chaos. Indeed, it is proved in [12,6,13]
that the existence of a non-degenerate (persistent under parameter perturbation) homoclinic orbit to an expanding fixed
point of a smooth map f implies the existence of an invariant set in a neighborhood of the homoclinic orbit, on which f is
chaotic. Note that the same result applies also for a non-degenerate heteroclinic connection. For piecewise smooth (contin-
uous and discontinuous) maps this result was extended in [8], where the concept of a critical homoclinic orbit was intro-
duced. Recall that in the framework of homoclinic orbits and heteroclinic connections, for a continuous function f the
only points we call critical points are fold points (that is, for 1D maps, the values at smooth or non-smooth local extrema),
while for discontinuous piecewise smooth functions also the values at discontinuity points are called critical points. A
homoclinic orbit or a heteroclinic connection which includes a critical point is called critical and is non-persistent under
parameter perturbations. It was proved that the existence of a non-critical homoclinic orbit implies the existence of chaos
in its neighborhood, a similar result applies also for non-critical heteroclinic connections.

Investigating homoclinic orbits and heteroclinic connections is relevant not only for the proof of the existence of chaos
but also for the description of several bifurcations of chaotic attractors (crisis bifurcations), since such bifurcations are
caused by homoclinic bifurcations of repelling fixed points or cycles. This issue is of a particular interest when dealing with
piecewise smooth systems (continuous or discontinuous), as these are able to show chaotic dynamics in extended regions in
uniurb.it
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the parameter space (following [5], denoted as robust chaos). The domain of robust chaos may be organized in complex
bifurcation scenarios [3,4,1] formed by several bifurcations of chaotic attractors, frequently referred to as crises [10,11,9]
or contact bifurcations [15,7,14]. Such bifurcations may lead to a sudden change of the shape of the attractor, or to a change
of the number of its bands (connected components), and are necessarily related to a homoclinic bifurcation of a repelling
cycle. Moreover, it is proved in [8] that they are associated with the existence of a critical homoclinic orbit. Due to the pres-
ence of a critical homoclinic orbit at the bifurcation point, the properties of the cycle undergoing the homoclinic bifurcation
may change. In particular, it can be non-homoclinic before the bifurcation and homoclinic after. For example this occurs in
the case of a merging bifurcation, at which some bands of a multi-band chaotic attractor merge pairwise [2]. It can also be
non-homoclinic before the bifurcation and one-side homoclinic after. This happens for example in the case of a final bifur-
cation (boundary crisis) in a 1D map, at which a chaotic attractor is transformed into a chaotic repeller [2]. Therefore, to
describe such bifurcations it is necessary to determine the properties of the involved cycles, in particular whether they
are homoclinic or not.

To determine if there exists a homoclinic orbit to a particular cycle or a heteroclinic connection between two particular
cycles of interest, it is necessary to analyze the global structure of the phase space. In most of the cases, this can only be done
numerically. The goal of this paper is to discuss an algorithm for the detection of homoclinic orbits and heteroclinic connec-
tions. By contrast to algorithms related to local stable and unstable manifolds of saddles, the algorithm discussed below is
based on convergence of orbits in backward time and hence it is applicable to expanding fixed points and cycles. In the pres-
ent work we discuss the algorithm only for 1D maps, in which case every repelling fixed point or cycle is expanding.

The paper is organized as follows. In Section 2 we collect the basic definitions regarding homoclinic orbits and heteroclin-
ic connections. In Section 3 we show the basic idea of the algorithm for finding homoclinic orbits and heteroclinic connec-
tions to repelling fixed points in 1D maps. Technical issues regarding possible implementations of the algorithm are
discussed in Section 4. Thereafter, in Section 5 we discuss possible problems that appear when the algorithm is applied
to the detection of homoclinic orbits and heteroclinic connections to repelling cycles, as well as the solutions of these prob-
lems. In Section 6 some examples are shown. To conclude, in Section 7 we discuss a possible extension of the algorithm to
higher-dimensional systems.

2. Definitions and properties

Let us first recall some basic definitions and notions. In the following we consider a 1D map defined by a function f which
may be smooth or piecewise smooth, continuous or discontinuous. We assume f to be piecewise monotone:
xnþ1 ¼ f ðxnÞ ¼
f1ðxnÞ if xn 2 D1

. . .

fkðxnÞ if xn 2 Dk

8><
>: ð1Þ
where Dj; j ¼ 1; . . . ; k are (bounded or at most one-side unbounded) intervals of monotonicity of f. Accordingly, each func-
tion fj is invertible on its domain Dj; j ¼ 1; . . . ; k, i.e. there exists an inverse function
f�1
j : V j # Dj with V j ¼ f ðDjÞ ð2Þ
The border points of the intervals Dj are the points at which the derivative f 0 is either equal to zero (smooth extrema of f)
or not defined (kink points and discontinuity points of f). We assume further that map (1) has an invariant interval I , i.e.
f ðIÞ ¼ I .

Let us consider now a repelling fixed point x� 2 I of map (1). For sake of simplicity, we assume that f is smooth in x�

(although the results remain correct also for the case that f is non-smooth but continuous in x�) and that x� belongs to
the interior of some interval of monotonicity, denoted in the following by D‘, ‘ 2 f1; . . . ; kg. Recall that the stable and unsta-
ble sets of x� are defined by
Ws x�ð Þ ¼ x j lim
i!1

f iðxÞ ¼ x�
� �

ð3Þ

Wu x�ð Þ ¼ x j lim
i!1

f�i
ji
ðxÞ ¼ x�

� �
ð4Þ
Note that ff�i
ji
ðxÞgi¼1

i¼0
represents a suitable sequence of preimages, that leads from the point x to the fixed point x�, with

ji 2 f1; . . . ; kg. In other words, the stable set Wsðx�Þ of x� is the set of points x for which x� is the x-limit set and the unstable
set Wuðx�Þ of x� is the set of points x for which x� is the a-limit set. As we assume x� to be repelling on both sides, the set
Wsðx�Þ consists of points which are eventually mapped on x�, i.e. the set of preimages of x� of all ranks. In this case,
Eq. (3) is equivalent to
Ws x�ð Þ ¼ x j f nx ðxÞ ¼ x�; nx P 1
� �

ð5Þ
Let us consider now the interval D‘. As x� 2 D‘, it includes the local unstable set of x� defined by
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Wu
‘oc x�ð Þ ¼ x 2 D‘ j lim

i!1
f�i
‘ ðxÞ ¼ x�

� �
ð6Þ
By definition, the set Wu
‘ocðx�Þ consists of points to which the local inverse f�1

‘ applies. It can easily be shown that
Wu x�ð Þ ¼
[
nP0

f n
Wu

‘oc x�ð Þ
� �

ð7Þ
and that
Wu
‘oc x�ð Þ � D‘ \ V‘ ð8Þ
In the most simple case, if f‘ is an increasing function onD‘ and there are no stable fixed points of f inD‘, then the local unsta-
ble set of x� coincides with the interval D‘, i.e. Wu

‘ocðx�Þ ¼ D‘ (see Fig. 1(a)). If there are stable fixed points of f in
D‘, then the interval Wu

‘ocðx�Þ may be confined by two such fixed points (Fig. 1(b)) or by one such fixed point and one of
the border points of D‘ (Fig. 1(c)).

Similarly, if f‘ is a decreasing function on D‘, then Wu
‘ocðx�Þmay coincide with D‘ (Fig. 2(a)), may be confined by the points

of a sTable 2-cycle (Fig. 2(b)) or by one border point of D‘ and by its image by f‘ (Fig. 2(c)).
A point q 2Wuðx�Þ \Wsðx�Þ is called homoclinic to x�. By definition of Wuðx�Þ and Wsðx�Þ, the sequence of images of q as

well as a suitable sequence of preimages of q both converge to x�. The union of these sequences gives an orbit homoclinic to
x� or, equivalently, a homoclinic orbit of x�:
Ox� ðqÞ ¼ x�  . . . ; q�i; . . . ; q�1; q; q1; . . . ; qm ¼ x�f g
q0 � q; qiþ1 ¼ f ðqiÞ for i ¼ 0; . . . ;m� 1

q�i�1 ¼ f�1
ji
ðq�iÞ for i > 0; ji 2 f1; . . . ; kg

qm ¼ x�; lim
i!1

q�i ¼ x�

ð9Þ
Clearly, for each homoclinic orbit the point q can be chosen so that it belongs to Wu
‘ocðx�Þ. Hence, the homoclinic orbit defined

by Eq. (9) is equivalent to
Ox� ðqÞ ¼ x�  . . . ; q�i; . . . ; q�1; q; q1; . . . ; qm0 ¼ x�f g
q0 � q; qiþ1 ¼ f ðqiÞ for i ¼ 0; . . . ;m0 � 1

q�i�1 ¼ f�1
‘ ðq�iÞ for i > 0

qm0 ¼ x�; lim
i!1

q�i ¼ x�

ð10Þ
An example for a homoclinic orbit to the repelling fixed point OR of the logistic map
xnþ1 ¼ f ðxnÞ ¼ axnð1� xnÞ ð11Þ
is shown in Fig. 3(a). The intervals of monotonicity of the map are given by D1 ¼ fxjx 6 1
2g and D2 ¼ fxjx P 1

2g. The inverse
functions on these intervals are
f�1
1 ðxÞ ¼

1
2

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

a

r !
and f�1

2 ðxÞ ¼
1
2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4x

a

r !
ð12Þ
respectively. As one can see, the local unstable set Wu
‘ocðORÞ � D2 of the fixed point is bounded by the maximum point x ¼ 1

2

and its image by f. The only preimage of OR different from itself, namely the point q ¼ f�1
1 ðORÞ (see Fig. 3(a)) is located
Fig. 1. Possible locations of the local unstable set Wu
‘ocðx�Þ of a repelling fixed point x� in the case of an increasing branch f ‘ .



Fig. 2. Possible locations of the local unstable set Wu
‘ocðx�Þ of a repelling fixed point x� in the case of a decreasing branch f ‘ .

Fig. 3. (a) A homoclinic orbit to the repelling fixed point OR of the logistic map at a ¼ 3:9. The local unstable set Wu
‘ocðORÞ is marked. (b) The critical

homoclinic connection between the repelling fixed point OL and OR of the logistic map at a ¼ 4:0. The local unstable sets Wu
‘ocðORÞ and Wu

‘ocðOLÞ are
marked.

1204 V. Avrutin et al. / Commun Nonlinear Sci Numer Simulat 22 (2015) 1201–1214
outside Wu
‘ocðORÞ, while the preimage of q by f�1

2 (the point q0 in Fig. 3(a)) is located inside. Accordingly, when the homoclinic
orbit shown in Fig. 3(a) is written using the point q0, then it has the form given by Eq. (10) with f�1

‘ � f�1
2 .

A heteroclinic orbit between two repelling fixed points x� and x�� is defined similarly. A point q belongs to a heteroclinic
orbit from x�� to x� if its forward orbit is mapped into x� in a finite number of iterations, and a sequence of preimages of q
tends to x��. A heteroclinic orbit from x�� to x� is a sequence of such points:
Ex�

x�� ðqÞ ¼ x��  . . . ; q�i; . . . ; q�1; q; q1; . . . ; qm ¼ x�f g
q0 � q; qiþ1 ¼ f ðqiÞ for i ¼ 0; . . . ;m� 1

q�i�1 ¼ f�1
ji
ðq�iÞ for i > 0; ji 2 f1; . . . ; kg

qm ¼ x�; lim
i!1

q�i ¼ x��

ð13Þ
Following the same reasoning as above, for each heteroclinic orbit Ex�

x�� ðqÞ the point q can be chosen so that it belongs to
Wu

‘ocðx��Þ. Then the heteroclinic orbit defined by Eq. (13) is equivalent to
Ex�

x�� ðqÞ ¼ x��  . . . ; q�i; . . . ; q�1; q; q1; . . . ; qm0 ¼ x�f g
q0 � q; qiþ1 ¼ f ðqiÞ for i ¼ 0; . . . ;m0 � 1

q�i�1 ¼ f�1
‘ ðq�iÞ for i > 0

qm0 ¼ x�; lim
i!1

q�i ¼ x��

ð14Þ
A heteroclinic connection Ox�
x�� between two fixed points x�� and x� is a union of two heteroclinic orbits, one from x�� to x� and

one from x� to x��:
Ox�
x�� ¼ Ex�

x�� [ Ex��

x� ð15Þ
An example for a heteroclinic connection between two repelling fixed point of the logistic map is shown in Fig. 3(b).
A fixed point is called homoclinic iff there exists a homoclinic orbit to it; it is called one-side homoclinic iff all points

homoclinic to it in the local unstable set Wu
‘ocðx�Þ are located on one side of it, and double-side homoclinic otherwise. Clearly,

if a homoclinic fixed point belongs to a decreasing branch of f, it is necessarily double-side homoclinic. A homoclinic fixed
point belonging to an increasing branch of f may be one-side or double-side homoclinic.
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3. Basic idea of the algorithm

Depending on the particular task of investigation, several questions may be of interest. One may ask whether a specific
fixed point or cycle is homoclinic or not. For a homoclinic fixed point or cycle the question may arise if it is one-side or dou-
ble-side homoclinic. It may also be necessary to determine the sequence of applications of the inverse functions
f�1
j ; j ¼ 1; . . . ; k, which leads from a given fixed point to its local unstable set.1 Similar questions may also be asked for het-

eroclinic connections.
The basic idea behind the algorithm for solving the questions mentioned above follows immediately from the definition

of homoclinic and heteroclinic orbits given by Eqs. (9) and (13), respectively. Accordingly, starting with a repelling fixed
point x� we can calculate the sequences of its preimages. If a sequence of preimages is found which converges to the point
x�, then this sequence belongs to a homoclinic orbit of x� as given by Eq. (9). Similarly, if a sequence of preimages is found,
which converges to a different repelling point x��, then there exists a heteroclinic orbit from x�� to x�, as given by Eq. (13). For
simplicity, we only discuss the computation procedure for homoclinic orbits below, as the arguments for the calculation of
heteroclinic orbits remain the same with the obvious exchange of one x� by x��.

From a practical point of view, this direct approach of computation of all the preimages is not feasible. Since each point p
may have up to k preimages (namely xj ¼ f�1

j ðpÞ; j ¼ 1; . . . ; k, where k is the number of branches of monotonicity of f) the
number of possible sequences of preimages up to rank m grows exponentially, as km. To improve the performance, the fol-
lowing two arguments can be used:

1. If a point xj is located outside the invariant interval I , its preimages do not need to be considered, as they can not
enter the interval I again.

2. If a point xj is located in the unstable set Wuðx�Þ, then the existence of a sequence of preimages of xj which converges
to x� is guaranteed. Moreover, if xj belongs to the local unstable set Wu

‘ocðx�Þ, then this sequence is obtained by apply-
ing the corresponding local inverse.

Clearly, within the calculation procedure we can use instead of the complete unstable set Wuðx�Þ any subset T �Wuðx�Þ,
denoted in the following as the target set. Obviously, the smaller the target set T is, the longer the sequence of preimages
reaching T gets. Therefore, to increase the performance of the calculation procedure one has to take the target set as large
as possible. However, the particular choice of the target set depends both on the investigation task and the properties of the
investigated system.

� If the investigation task is to find a homoclinic orbit to x� in the form given by Eq. (10)), then obviously the target set
must be equal to the local unstable set x�, i.e. T ¼Wu

‘ocðx�Þ.
� If the task is to determine whether the fixed point x� is, for example, right-side homoclinic, then the left-side neigh-

borhood of x� must be excluded from consideration, i.e. T ¼Wu
‘ocðx�Þ \ fx > x�g.

� If the task is to decide whether x� is homoclinic or not, and so the existence of a homoclinic orbit in the form given by
Eq. (9)) is sufficient, then any T # Wuðx�Þ can be used.

The complete unstable set Wuðx�Þ can be calculated by forward iteration of the set Wu
‘ocðx�Þ, as given by Eq. (7). Recall that

Wu
‘ocðx�Þ is an interval, while the stable set Wsðx�Þ is in general a set of points. Therefore, when dealing with a particular sys-

tem one has to decide which task is easier:

– calculation of the sequences of preimages belonging to the stable set Wsðx�Þ (which requires a backward iteration of
points),

– calculation of a larger interval T # Wuðx�Þ (which requires a forward iteration of intervals).

If the analytical expressions for the inverse functions f�1
j , j ¼ 1; . . . ; k, are explicitly known, as in the examples discussed

below, the first choice is preferable. In this case we can use T ¼Wu
‘ocðx�Þ, so that T is a single interval, and obtain a homo-

clinic orbit in the form given in Eq. (10). In the opposite case, when the calculation of the preimages can be done only numer-
ically and represents therefore a time-consuming step, the performance can be significantly improved using a larger set as a
target set T . In this case the target set T may be an interval or a finite collection of intervals, and a homoclinic orbit is
obtained in the form given in Eq. (9).

The search procedure for heteroclinic orbits is similar with only one obvious difference regarding the target set. Namely,
when searching for a heteroclinic orbit from x�� to x�, then the target set T must be defined based on Wu

‘ocðx��Þ, which belongs
to the interval of monotonicity of f which contains the point x��.
1 As there are in general infinitely many sequences of preimages entering the local unstable set, corresponding to infinitely many homoclinic orbits, the
question regards the shortest of them.
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4. Implementation of the algorithm

As described in the previous section, the main task that has to be done in this approach is to determine the sequence of
preimages, that leads from a given point x� to a point in the target set T . Since each point may have up to k preimages, this
leads to a search algorithm in a k-nary tree.2

To guarantee that the search procedure terminates in the case that no connection from x� to T exists, a suitable maximum
preimage rank rmax has to be chosen. Therefore, during the search not only preimages located outside the invariant interval I
but also preimages with rank higher than rmax are excluded from further consideration.

The search begins at the given repelling fixed point x�. As x� is a fixed point, its preimage by the local inverse is the point
itself, so this preimage must be excluded from the search.

The search can terminate in three different ways. If a preimage is found that is inside the target set T , the search is suc-
cessful. If no such preimage is found, then two cases are possible. One is that there are no further preimages to continue the
search, since all have been discarded because they were not located in the invariant interval I . If this is the case then we
can conclude that there cannot exist a connection from x� to the target interval T . The other possible case is that at least
one preimage has been discarded because its rank was larger than the maximum preimage rank rmax. If that is the case,
we can only conclude that no connection from x� to the target interval T exists, that has a length smaller than or equal
to rmax.

Following this reasoning, an algorithm to determine whether there exists a connection from a repelling fixed point x� to
the target set T , can be outlined as shown in Listing 1.

Listing 1. Algorithm for the search for a connection from a repelling fixed point x� to the target set T .
1 Input: x� the fixed point to check for a connection to T
T the target set
I the invariant interval
rmax the maximum preimage rank
ff�1

j ;Vjg the list of inverse functions and their domains,

j ¼ 1; . . . ; k
2 Output: ‘‘connection from x� to T found’’, or

‘‘connection from x� to T does not exist’’, or
‘‘connection from x� to T not found’’

3 begin
4 Sp :¼ ðx�;0Þ½ �; imax :¼ 0;
5 while Sp is not empty do
6 ðp; iÞ :¼ the first element in Sp;
7 remove ðp; iÞ from Sp;
8 if i 6 rmax then
9 imax :¼ maxðimax; iÞ;
10 for each j 2 1; . . . ; k do
11 if p 2 V j then
12 x :¼ f�1

j ðpÞ;
13 if x 2 T & x – x� then
14 return ‘‘connection from x� to T found’’;
15 if x 2 I & x – x� then
16 add (x; iþ 1) to Sp;
17 if imax ¼ rmax then
18 return ‘‘connection from x� to T not found’’;
19 else
20 return ‘‘connection from x� to T does not exist’’;

The algorithm shown in that listing uses a data structure Sp in which elements of the form ðp; kÞ are saved, with p being a
preimage of x� and k being the rank of that preimage. At each step of the calculation procedure the points saved in this data
structure are leaf-nodes of the already processed sub-tree of the k-nary preimage tree.3
2 A k-nary tree is a tree in which every node has at most k child nodes.
3 Note that there is no need to save the interior nodes of the already processed sub-tree. Indeed, once processed, these nodes are no longer

required for the search procedure. At the end of the search, if a point q 2 T is found, these points could be used to output the chain of preimages
leading from x� to q (see the forward orbits of q in Eqs. (9)–(14)). However, as the point q is known, the same chain can easily be reproduced by
forward iteration of q.
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One possible data structure which can be used for Sp is a queue. A queue (also called a first-in-first-out, FIFO, data
structure) is a data structure that contains elements sorted according to the order in which they were saved in the queue.
In a queue, new elements are added at the end (see line 16 in Listing 1), so that the first element of Sp is the oldest, and the
last element is the newest one. Alternatively, instead of a queue a stack (also called a last-in-first-out, LIFO, data structure)
can be used. In a stack, new elements are added at the beginning, so that the first element in Sp is the newest and the last
element is the oldest one.

The difference between both approaches is that using a queue the algorithm performs a breadth-first search in the
tree of preimages, and using a stack the algorithm performs a depth-first search. The basic idea of both approaches is
illustrated in Fig. 4 which shows a binary tree of rank-k preimages, k ¼ 1;2;3, of a point p, and the order in which
these preimages are visited by the search procedure. Such a tree corresponds for example to the case in which all
points of the invariant interval of a map have two preimages, as it is for the logistic map at a ¼ 4, see Fig. 3(b). In
a breadth-first search the algorithm first investigates all preimages of rank i before it investigates the preimages of
rank iþ 1, for all i ¼ 1; . . . ; rmax � 1. Accordingly, the search procedure first visits the rank-1 preimages of p, for example
first the left preimage x4 and then the right preimage x11. After that it continues with the rank-2 preimages, starting
for example with the left preimage of x4, i.e. the point x2, then moving to the right preimage x6, and so on. Note that
the exact order in which the sibling nodes4 are visited (or, in terms of the algorithm shown in Listing 1, the order in
which the inverse functions f�1

j ; j ¼ 1; . . . ; k are applied to a particular point p) is not significant and specific to the
implementation.

In a depth-first search for each preimage p the algorithm first investigates all preimages (of all ranks) that result from
one inverse function f�1

i1
ðpÞ before it investigates all preimages that result from another inverse function

f�1
i2
ðpÞ; i1;2 2 f1; . . . ; kg, and so on, until all preimages that can result from all inverse functions have been considered. In

the example shown in Fig. 4 this means that first the points x4; x2 and x1 are visited, as they result from the application
of the function f�1

1 .
Both kinds of search procedures will lead to the same output, however they differ in memory requirements

(meaning the maximum number of preimages that are saved in Sp at the same time during the search) and search
performance. In the worst case (meaning that during the search no preimages outside the invariant interval appear,
and that no connection to the target set is found), the memory requirements of breadth-first search are much higher
than for depth-first search. During a breadth-first search, all preimages of rank n have to be saved in Sp before they
can be processed. In the worst case, this means that all preimages of rank rmax have to be saved in Sp, which are krmax

preimages.
For the worst case of a depth-first search, the situation is different. In the k-nary preimage tree, each node has at

most k child nodes. At any time during a depth-first search, for each rank of the tree, only the child nodes of one
node of that rank need to be saved in Sp. During the search, one preimage of rank n must be removed before the
preimages of rank nþ 1 are saved in Sp, until the maximum rank rmax is reached. This means that for each rank
smaller than rmax at most ðk� 1Þ preimages are saved in Sp, and for rank rmax at most k preimages are saved in
4 Nodes with a common parent-node.
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Sp. Therefore the number of nodes saved in Sp in the worst case of a depth-fist search is ðrmax � 1Þðk� 1Þ þ k. A
detailed analysis of the memory requirements in the average case is beyond the scope of this work, though it
can be argued that in most cases depth-first search requires less memory than breadth-first search, using similar
arguments as for the worst case.

Regarding the search performance, both search procedures perform equally well in the worst case. Again, a detailed
analysis of the average case is beyond the scope of this work.

Finally, note that breadth-first has a specific advantage over depth-first search. If the k-nary preimage tree
contains multiple preimages in the target set, then breadth-first search is guaranteed to find the preimage with
the smallest rank. In contrast to that, depth-first search is only guaranteed to find one of these preimages, of
arbitrary rank.

The question may arise how the presented algorithm works when implemented on a computer, using a finite
representation of numbers and how stable it is with respect to rounding errors and other inaccuracies. In particular,
when the inverse functions are calculated numerically, the computed values of the preimages are not precise. However,
the algorithm is robust with respect to these inaccuracies. What is significant for the algorithm is the fact that some
preimage belongs to the target interval, but not the exact value of this preimage. The only case in which the algorithm
may fail due to the numerical inaccuracy is when a preimage is located closer to the boundary of some domain V j

than the deviation caused by this inaccuracy. In other words, what may be affected by these problems is the
calculation of very long paths to the target interval for parameter values which are very close to homoclinic
bifurcation points.
5. Remarks on cycles

The algorithm described above is designed for finding homoclinic orbits and heteroclinic connections of fixed
points. In principle, by using the appropriate iterate, it can also be applied to cycles. Indeed, the investigation of
the properties of an n-cycle can be reduced to the investigation of any one of n associated fixed points of the iter-
ate f n. The intervals of monotonicity of f n are bounded by points which confine the intervals of monotonicity of the
original function f, and by their preimages. Similarly, when dealing with a heteroclinic connection from an n-cycle
to an m-cycle, we can investigate heteroclinic connections between corresponding fixed points of the iterate f N

where N ¼ lcmðn;mÞ is the least common multiple of the numbers nand m. However, in practice this can lead to
problems.

To do its work, the algorithm needs inverse functions and their domains for each interval of monotonicity of the iterate.
Recall that the number of these intervals grows exponentially with the order of the iterate. So, for example when dealing
with a function f which has only two intervals of monotonicity, and when searching for a heteroclinic connection between
a 3-cycle and a 4-cycle, one has to deal with the iterate f 12, which may have up to 212 ¼ 4096 intervals of monotonicity. In
this case it is possible to provide the inverse functions analytically only if the function f is piecewise linear. Otherwise on
each of the relevant partitions the equation f 12ðyÞ ¼ x must be solved numerically, which may be require a significant cal-
culational effort. Moreover, suppose for example that on both intervals of monotonicity the function f is quadratic. Then it is
easy to see that the calculation of the inverse may be a highly ill-conditioned problem. Therefore, the question arises if an
alternative way is possible.

In fact, instead of the iterate, the original function f can be used. This makes the application of the algorithm considerably
easier, as illustrated below. However, if the algorithm is used this way, some minor modifications are necessary, due to
details discussed below.
Fig. 5. (a) Repelling cycle OLR2 of map (1). (b) Shortest chains of preimages by the inverses of f 3 of the point x0 leading to the local unstable set Wu
‘ocðx0Þ of

the point x0 (the point q) or to the local unstable set Wu
‘ocðOLR2 Þ of the cycle (the point q0). (c) Shortest chain of preimages by the inverses of f of the point x0

leading to Wu
‘ocðx0Þ and Wu

‘ocðOLR2 Þ (the point q). Parameters: a‘ ¼ 0:5; ar ¼ �1:8; l‘ ¼ 0:34; lr ¼ 1.
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If the algorithm is used to search for a homoclinic connection of a point x� of an n-cycle O ¼ fx0; . . . ; xn�1g, then the target
set can be defined in a similar way as described in Section 2 for fixed points. For each of the points xi; i ¼ 0; . . . ; n� 1 the
local unstable set Wu

‘ocðxiÞ is defined by Eq. (6) using the local inverse of the nth iterate f n. However, when starting with some
point of the cycle, for example x0, one can use as target set not only the local unstable set of this point, i.e. T ¼Wu

‘ocðx0Þ, but
also the local unstable set of the cycle, which is defined by
Wu
‘oc Oð Þ ¼

[n�1

i¼0

Wu
‘oc xið Þ ð16Þ
Indeed, if a preimage of x0 is found in a set Wu
‘ocðxiÞwith i – 0, then its preimage by f belongs to Wu

‘ocðxi�1Þ. Applied iteratively
at most n� 1 times, this proves the existence of a preimage of x0 which belongs to Wu

‘ocðxiÞ.
Recall that when dealing with a fixed point x�, its preimage by the local inverse is excluded from consideration, as it is

the fixed point itself. If for example the target set is chosen as T ¼Wu
‘ocðx�Þ, then obviously x� 2 T , but this fact has no

relevance for the existence or non-existence of an orbit homoclinic to x�. In the algorithm shown in Listing 1 this is done
by the condition
x – x� ð17Þ
in lines 13 and 15. When dealing with a cycle, it seems to be natural to replace this condition by
x R fx0; . . . ; xn�1g ð18Þ
Independent of the definition of the target set, in all three possible cases T ¼Wu
‘ocðOÞ, T �Wu

‘ocðOÞ, and
Wu

‘ocðOÞ � T �WuðOÞ, the fact that the points of the cycle belong to the target set does not have any meaning for the exis-
tence of a connection from the cycle to the target set. However, if the condition (17) is replaced by the condition (18), the
results may be wrong.

To explain the possible problem let us consider as an example the piecewise linear map
xnþ1 ¼ f ðxnÞ ¼
f‘ðxnÞ ¼ a‘xn þ l‘ if xn < 0
frðxnÞ ¼ arxn þ lr if xn > 0

�
ð19Þ
In the configuration illustrated in Fig. 5, the map has a globally attracting invariant absorbing interval
I ¼ f 2
r ð0Þ; frð0Þ
� �

ð20Þ
which contains, among other invariant sets, the repelling 3-cycle OLR2 (see Fig. 5(a)). The question we are interested in is
whether this cycle is homoclinic at the considered parameter values. Applying the algorithm for fixed points we may con-
sider any one of the points of the cycle, which are fixed points of the third iterate, for example the first one, marked with x0 in
Fig. 5. As the target set we can choose the local unstable set of this point, which is given by
T ¼Wu
‘oc x0ð Þ ¼ f�1

‘ ð0Þ; 0
� �

ð21Þ
Then the algorithm can easily find a chain of preimages of x0 which reaches the point q 2 T in four steps, as shown in
Fig. 5(b). Moreover, when the local unstable set of the complete cycle is used as the target set, i.e.
T ¼Wu
‘oc OLR2

� �
¼Wu

‘oc x0ð Þ [Wu
‘oc x1ð Þ [Wu

‘oc x2ð Þ ð22Þ
where
Wu
‘ocðx0Þ ¼ f�1

‘ ð0Þ;0
� �

ð23aÞ
Wu

‘ocðx1Þ ¼ 0; f�1
r � f�1

r ð0Þ
� �

ð23bÞ
Wu

‘ocðx2Þ ¼ f�1
r ð0Þ; f�1

r � f�1
‘ ð0Þ

� �
ð23cÞ
then the algorithm terminates faster, finding a chain of preimages of x0 which reaches the point q0 2 T in two steps (see in
Fig. 5(b)). However, to obtain this result we need to provide the algorithm with the list of inverses for the relevant branches
of f 3 (clearly, a branch f 3

j is relevant iff Dj \ I – ;). At the considered parameter values the iterate f 3 is given by
f 3ðxÞ ¼

f‘‘‘ðxÞ ¼ f‘ � f‘ � f‘ðxÞ if x 2 D‘‘‘ ¼ �1; f�1
‘ � f�1

‘ ð0Þ
� �

f‘‘rðxÞ ¼ fr � f‘ � f‘ðxÞ if x 2 D‘‘r ¼ f�1
‘ � f�1

‘ ð0Þ; f�1
‘ ð0Þ

� �
f‘rrðxÞ ¼ fr � fr � f‘ðxÞ if x 2 D‘rr ¼ f�1

‘ ð0Þ;0
� �

frr‘ðxÞ ¼ f‘ � fr � frðxÞ if x 2 Drr‘ ¼ 0; f�1
r � f�1

r ð0Þ
� �

frrrðxÞ ¼ fr � fr � frðxÞ if x 2 Drrr ¼ f�1
r � f�1

r ð0Þ; f�1
r ð0Þ

� �
fr‘rðxÞ ¼ fr � f‘ � frðxÞ if x 2 Dr‘r ¼ f�1

r ð0Þ; f�1
r � f�1

‘ ð0Þ
� �

fr‘‘ðxÞ ¼ f‘ � f‘ � frðxÞ if x 2 Dr‘‘ ¼ f�1
r � f�1

‘ ð0Þ;1
� �

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð24Þ
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As one can see in Fig. 5(b), six of seven branches of f 3 have a non-empty intersection with I , so that the required list of
inverses with their domains is given by
f�1
‘‘r ¼ f�1

r � f�1
‘ � f�1

‘ ;V‘‘r ¼ f‘‘rðD‘‘rÞ ¼ fr � f‘ð0Þ; frð0Þð Þ
	 


;
�

f�1
‘rr ¼ f�1

r � f�1
r � f�1

‘ ;V‘rr ¼ f‘rrðD‘rrÞ ¼ fr � frð0Þ; fr � fr � f‘ð0Þð Þ
	 


;

f�1
rr‘ ¼ f�1

‘ � f�1
r � f�1

r ;Vrr‘ ¼ frr‘ðDrr‘Þ ¼ f‘ � fr � frð0Þ; f‘ð0Þð Þ
	 


;

f�1
rrr ¼ f�1

r � f�1
r � f�1

r ;Vrrr ¼ frrrðDrrrÞ ¼ fr � frð0Þ; frð0Þð Þ
	 


;

f�1
r‘r ¼ f�1

r � f�1
‘ � f�1

r ;Vr‘r ¼ fr‘rðDr‘rÞ ¼ fr � f‘ð0Þ; frð0Þð Þ
	 


;

f�1
r‘‘ ¼ f�1

‘ � f�1
‘ � f�1

r ;Vr‘‘ ¼ fr‘‘ðDr‘‘Þ ¼ �1; f‘ð0Þð Þ
	 
�

ð25Þ
where the inverse functions f�1
‘ and f�1

r are given by
f�1
‘ ðxÞ ¼

1
a‘
ðx� l‘Þ and f�1

r ðxÞ ¼
1
ar
ðx� lrÞ ð26Þ
In general, it may become a quite extensive and time-consuming task to provide the algorithm with a list similar to the one
given by Eq. (25). In particular, if the algorithm is applied under variation of parameters, then some branches of the iterate
may become irrelevant (leave the invariant interval or disappear completely), while new branches may appear. Clearly, it is
much easier to work with the branches of f, in which case instead of the list given by Eq. (25) we have just
f�1
‘ ;V‘ ¼ �1;l‘

� �	 

; f�1

r ;Vr ¼ �1;lr

� �	 
� �
ð27Þ
However, if condition (17) is replaced by condition (18) in both the lines 13 and 15 in Listing 1, and the list given by Eq. (27)
is used instead of the one given by Eq. (25), then we obtain a wrong result when starting from the point xLR

2

0 . Indeed, the
preimage of this point by f�1

r belongs to the cycle (the point xLR
2

2 ) and the preimage by f�1
‘ is located outside the interval

I . So, in this way no chain of preimages of xLR
2

0 leading to the target set can be found.

Listing 2. Modifications of the algorithm shown in Listing 1. The resulting algorithm searches for a connection from a
repelling cycle to the target set T .

Input: fx0; . . . ; xn�1g the cycle to check for a connection to T
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

begin
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

4 x� :¼ x0;Sp :¼ ðx�; 0Þ½ �; imax :¼ 0;
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

13 if x 2 T & x R fx0; . . . ; xn�1g then
14 return ‘‘connection from x� to T found’’;
15 if x 2 I & x – x� then
16 add (x; iþ 1) to Sp;

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

In principle, to solve the described problem, one can apply the algorithm to all the points of the cycle and then conclude
that there is a chain of preimages leading from the cycle to the target set if it is found for at least one of the points. However,
the problem can be solved much easier by modifying the line 13 and not modifying the line 15, as shown in Listing 2. The
condition in line 15 implies that the points of the cycle are added to the list of preimages of x0. The condition (17) in line 15
guarantees now that the process is stopped at the point xn�1 (supposing that n < rmax) and can not become cyclic. Although
the points of the cycle may belong to T , this does not influence the result of the algorithm, due to the condition in line 13.
However, the preimages of all these points are now taken into consideration, and this solves the problem described above.
For example, as one can see in Fig. 5(c), the chain of preimages leading from x0 to T (independent of whether the definition of
T is given by Eq. (21) or by Eq. (22)) includes the points x2 and x1 (which is the only preimage of x2). The point x1 has two
preimages, of which the left one is excluded from consideration, by the line 15 of the algorithm, as it is the starting point x0.
The right preimage of x1 leads to the point q 2 T , which proves that the cycle is homoclinic.

6. Application examples

As already mentioned, the algorithm described above can be of help not only to clarify whether a fixed point or a cycle is
homoclinic or not, but also for the description of homoclinic bifurcations and their sequences.

Let us now illustrate this using the map (19) and the example shown in Fig. 6. Note that since l‘ – lr the map is discon-
tinuous at the considered parameter combination. The sequence of bifurcations shown in Fig. 6 leads from a one-band cha-



V. Avrutin et al. / Commun Nonlinear Sci Numer Simulat 22 (2015) 1201–1214 1211
otic attractor to a six-band chaotic attractor, then to a three-band one, and eventually back to a one-band chaotic attractor. It
is well-known that particular bifurcations in this sequence are related to homoclinic bifurcations of repelling cycles. In par-
ticular, the bifurcation leading from a one-band to a six-band chaotic attractor (marked in Fig. 6 with g1

LR2 ) can immediately
be recognized as an expansion bifurcation (interior crisis), related to a homoclinic bifurcation of a repelling three-cycle OLR2 .
As mentioned in [2], an expansion bifurcation is related to a homoclinic bifurcation of a cycle with a positive eigenvalue,
which is necessarily homoclinic on one side of the bifurcation point, while on the other side it may be one-side homoclinic
or non-homoclinic.

Regarding the cycle OLR2 one can see immediately that its eigenvalue is k ¼ a‘a2
r > 0 (as a‘ > 0). This cycle begins to exist

at the border collision bifurcation nLR2 , which takes place inside the chaotic attractor, so one can assume that the cycle is
already homoclinic when it appears. The points of the cycle are given by
xLR
2

0 ¼ � a‘ ar lr þ ar l‘ þ lr

a‘ a2
r � 1

xLR
2

1 ¼ � a2
r l‘ þ ar lr þ lr

a‘ a2
r � 1

xLR
2

2 ¼ � a‘ ar lr þ a‘lr þ l‘

a‘ a2
r � 1

ð28Þ
with xLR
2

0 < 0 < xLR
2

1 < xLR
2

2 . In the considered parameter ranges the local unstable set Wu
‘ocðOLR2 Þ is given by
Wu
‘oc OLR2

� �
¼Wu

‘oc xLR
2

0

� �
[Wu

‘oc xLR
2

1

� �
[Wu

‘oc xLR
2

2

� �
ð29aÞ
with
Wu
‘oc xLR

2

0

� �
¼ f�1

‘ ð0Þ; f�1
‘ � f�1

r ð0Þ
� �

ð29bÞ

Wu
‘oc xLR

2

1

� �
¼ 0; f�1

r � f�1
r ð0Þ

� �
ð29cÞ

Wu
‘oc xLR

2

2

� �
¼ f�1

r ð0Þ; f�1
r � f�1

‘ ð0Þ
� �

ð29dÞ
At the moment of the expansion bifurcation the points of the cycle collide with images of the critical point c‘ ¼ f‘ð0Þ, which
determine the boundaries of the six-band chaotic attractor after the bifurcation, so that the condition of the bifurcation is
given by any one of the equations
xLR
2

0 ¼ f 4 � f‘ð0Þ; xLR
2

1 ¼ f 5 � f‘ð0Þ; or xLR
2

2 ¼ f 3 � f‘ð0Þ ð30Þ
Still, the question remains whether the cycle OLR2 is one-side homoclinic or non-homoclinic after the expansion bifurcation.
Applying the algorithm, we confirm that before the expansion bifurcation g1

LR2 the cycle OLR2 is homoclinic from both
sides and we show that after the bifurcation it is one-side homoclinic. In order to check that the cycle is homoclinic from
one side, we use the target set
Fig. 6. Transition from a one-band to a 6-band chaotic attractor in map (19). Parameters: ar ¼ �2:59; l‘ ¼ 1:015; lr ¼ 1.
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T ‘ ¼ f�1
‘ ð0Þ; xLR

2

0

� �
[ 0; xLR

2

1

� �
[ xLR

2

2 ; f�1
r � f�1

‘ ð0Þ
� �

ð31Þ
and to check that it is homoclinic from the other side, the target set
T r ¼ xLR
2

0 ; f�1
‘ � f�1

r ð0Þ
� �

[ xLR
2

1 ; f�1
r � f�1

r ð0Þ
� �

[ f�1
r ð0Þ; xLR

2

2

� �
ð32Þ
Clearly, the sets T ‘ and T r are defined as subsets of Wu
‘ocðOLR2 Þ located on one side of the cycle (see Eqs. (28) and (29)). As

explained above, we use for the calculations the function f and not f 3, so that the required list of inverses is given by Eq. (27)
(see also Eq. (26)). To obtain all the results the value rmax ¼ 12 was used.

For the parameter value a‘ ¼ 0:64, which is located between the value a‘ 	 0:63835 of the border collision bifurcation
nLR2 and the value a‘ 	 0:643258 of the expansion bifurcation g1

LR2 , we obtain from Eqs. (31) and (32)
T ‘ 	 �1:58594;�1:58470ð Þ [ 0;7:89509 
 10�4
� �

[ 0:99796;0:99843ð Þ

T r 	 �1:58470;�0:98265ð Þ [ 7:89509 
 10�4; 0:23703
� �

[ 0:38610;0:99796ð Þ
and the algorithm detects the points
q ¼ f�1
r � f�1

r � f�1
‘ � f�1

‘ � f�1
r � f�1

‘ � f�1
‘ � f�1

r xLR
2

0

� �
	 4:23054 
 10�4 2 T ‘

q0 ¼ f�1
r � f�1

‘ � f�1
r xLR

2

0

� �
	 0:39638 2 T r
which confirm that the cycle is double-side homoclinic before the expansion bifurcation as expected. Similarly, after the
bifurcation, at the parameter value a‘ ¼ 0:67, the target sets are given by
T ‘ 	 �1:51492;�1:49344ð Þ [ 0;0:14394ð Þ [ 0:96271;0:97101ð Þ
T r 	 �1:49344;�0:93866ð Þ [ 0:14394;0:23703ð Þ [ 0:38610;0:96271ð Þ
and the algorithm detects the point
q0 ¼ f�1
r � f�1

‘ � f�1
r xLR

2

0

� �
	 0:41623 2 T r
but no points in the target set T ‘ can be detected. Accordingly, we conclude that the cycle after the bifurcation is one-side
homoclinic.

Regarding the other 3-cycle shown in Fig. 6, namely the cycle OL2R, the situation is significantly more sophisticated. On
the one hand, similar to the cycle OLR2 , it appears at a border collision bifurcation (marked with nL2R in Fig. 6) being already
homoclinic. On the other hand, at the parameter value marked with cL2R in Fig. 6 it undergoes a homoclinic bifurcation
related to a pairwise merging of the bands of the chaotic attractor (a transition from a six-band to a three-band chaotic
attractor). As mentioned in [2], such a merging bifurcation is related to a homoclinic bifurcation of a cycle with a negative
eigenvalue, which is necessarily non-homoclinic before the bifurcation and homoclinic after. Indeed, the eigenvalue
k ¼ a2

‘ ar < 0 of the cycle OL2R is negative (as ar < 0). However, if the cycle OL2R is homoclinic immediately after the border
collision bifurcation nL2R, but not homoclinic between the expansion bifurcation g1

LR2 and the merging bifurcation cL2R, then
the question arises at which point it becomes non-homoclinic. The most obvious assumption is that it happens at the point
g1
LR2 . However, if the cycle OL2R undergoes a homoclinic bifurcation at g1

LR2 , it must be associated with the presence of a
critical homoclinic orbit, that means a critical point must be preperiodic to the cycle OL2R. This can not be the point
c‘ ¼ f‘ð0Þ, since at g1

LR2 it is preperiodic to the cycle OLR2 . Moreover, it can be shown that this can also not be the point
cr ¼ frð0Þ, as otherwise the bifurcation occurring at the parameter point g1

LR2 would be a codimension-two bifurcation. As
the map has only two critical points, the situation seems to be contradictory and requires further consideration.

For the cycle OL2R we obtain immediately that its points are given by
xL
2R

0 ¼ � a2
‘lr þ a‘l‘ þ l‘

a2
‘ ar � 1

xL
2R

1 ¼ � a2
‘lr þ a‘l‘ þ l‘

a2
‘ ar � 1

xL
2R

2 ¼ � ar a‘l‘ þ a‘lr þ l‘

a2
‘ ar � 1

ð33Þ
with xL
2R

0 < xL
2R

1 < 0 < xL
2R

2 . and that its local unstable set in the considered parameter ranges is given by
Wu
‘ocðOL2RÞ ¼ Wu

‘oc xL
2R

0

� �
[Wu

‘oc xL
2R

1

� �
[Wu

‘oc xL
2R

2

� �
ð34aÞ
with
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Wu
‘oc xL

2R
0

� �
¼ f�1

‘ � f�1
‘ � f�1

r � f�1
‘ ð0Þ; f�1

‘ ð0Þ
� �

ð34bÞ

Wu
‘oc xL

2R
1

� �
¼ f�1

‘ � f�1
r � f�1

‘ ð0Þ;0
� �

ð34cÞ

Wu
‘oc xL

2R
2

� �
¼ f�1

r � f�1
‘ ð0Þ; f�1

r � f�1
‘ � f�1

‘ � f�1
r � f�1

‘ ð0Þ
� �

ð34dÞ
In the following we use the target set T ¼Wu
‘ocðOL2RÞ. Applying the algorithm, we confirm that the cycle OL2R is indeed

homoclinic immediately after it appearance via the border collision bifurcation nL2R at a‘ 	 0:62314. At a‘ ¼ 0:63 the target
set is given by
T 	 �1:62837;�1:61111ð Þ [ �0:01087;0ð Þ [ 1:00815;1:01481ð Þ
and the algorithm detects the point
q ¼ f�1
‘ � f�1

r � f�1
‘ � f�1

‘ � f�1
r � f�1

‘ � f�1
r � f�1

r � f�1
‘ � f�1

r � f�1
r � f�1

‘ � f�1
r �

f�1
r � f�1

‘ � f�1
r � f�1

r � f�1
r � f�1

‘ � f�1
r � f�1

‘ � f�1
r � f�1

‘ � f�1
r xL

2R
0

� �
	 �1:71651 
 10�4 2 T
belonging to this set. As expected, the cycle is also homoclinic after the merging bifurcation cL2R. At a‘ ¼ 0:67 the target set is
given by
T 	 �1:61291;�1:51493ð Þ [ �0:06565; 0ð Þ [ 0:97101;1:00885ð Þ
and the algorithm detects the point
q ¼ f�1
‘ � f�1

r � f�1
‘ � f�1

‘ � f�1
r � f�1

‘ � f�1
r � f�1

r xL
2R

0

� �
	 6:71449 
 10�3 2 T
belonging to this set. However, for the values of a‘ between nLR2 and g1
LR2 the algorithm does not find a connection from the

cycle to the used target interval.
The situation described above is explained as follows. As a‘ approaches the value corresponding to the border collision

bifurcation nLR2 all homoclinic orbits of OL2R collapse to a single critical homoclinic orbit. After nLR2 there are no orbits
homoclinic toOL2R. Instead, after the bifurcation there are heteroclinic orbits fromOL2R toOLR2 . Additionally, when the cycle
OLR2 appears there are not only orbits homoclinic to it, but there are also heteroclinic orbits from it to OL2R. Therefore, there
are heteroclinic connections between the cycles OL2R and OLR2 , which play the same role as a homoclinic orbit. In this sense
we can say that between the bifurcations nLR2 and g1

LR2 the cycle is homoclinic due to the presence of a heteroclinic connec-
tion between OL2R and OLR2 , although there are no orbits homoclinic to OL2R.

To confirm the existence of a heteroclinic connection between OL2R and OLR2 we proceed in two steps. First, we confirm
the existence of a heteroclinic orbit from OL2R to OLR2 , by using the local unstable set of OL2R as a target set and calculating
the preimages of a point of OLR2 . At the parameter value a‘ ¼ 0:64 it follows from Eq. (34) that the target set is given by
T 	 �1:62639;�1:58594ð Þ [ �0:02589; 0ð Þ [ 0:99843;1:01404ð Þ
Using the algorithm we detect the point
q ¼ f�1
‘ � f�1

r � f�1
‘ � f�1

‘ � f�1
r xLR

2

0

� �
	 7:83752 
 10�4 2 T
This proves the existence of a heteroclinic orbit from OL2R to OLR2 . Similarly, to show the existence of a heteroclinic orbit in
the opposite direction, we use as a target set the local unstable set of OLR2 and calculate the preimages of a point of OL2R. At
a‘ ¼ 0:64 we get from Eq. (29) the target set
T 	 �1:58594;�0:98266ð Þ [ 0; 0:23703ð Þ [ 0:38610;0:99843ð Þ
and using the algorithm we find the point
q0 ¼ f�1
r � f�1

‘ � f�1
r xL

2R
0

� �
	 0:39125 2 T
The homoclinic bifurcation of the cycle OLR2 occurring at g1
LR2 leads not only to the disappearance of homoclinic orbits to

this cycle, but also to the disappearance of heteroclinic orbits from OLR2 to OL2R. Note that heteroclinic orbits from OL2R to
OLR2 do still exist after this bifurcation, as can easily be confirmed by the algorithm discussed above. However, without het-
eroclinic orbits leading in the opposite direction they do not play any significant role for the dynamics. Therefore, one can say
that at the homoclinic bifurcation of the cycleOLR2 occurring at g1

LR2 the cycleOLR2 becomes non-homoclinic without under-
going a homoclinic bifurcation, but a heteroclinic one.
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7. Summary and outlook

In this work we discussed an algorithm which makes it possible to determine the existence of homoclinic and heteroclinic
orbits (and hence, heteroclinic connections) of fixed points and cycles in 1D maps. Although the basic idea of the algorithm is
straightforward, several optimization steps discussed in this work (in particular, definition of a suitable target set and use of
the original function instead of the iterated one) lead to a significant extension of the practical applicability of the algorithm.
In particular, as illustrated above, the algorithm can be of assistance for the explanation of complex sequences of homoclinic
bifurcations related to repelling cycles.

As a next step, the question arises whether it is possible to apply the algorithm to maps in Rn with n > 1. As the algorithm
is based on convergence of orbits in backward time, it can be applied mainly to expanding fixed points or cycles. Still, this
task is important as well (due to the same reasons as in 1D), and the algorithm provides a good basis for solving it. Clearly,
when dealing with a map in Rn with n > 1, the signature of the inverse functions changes to f�1

j : Rn # Rn. Moreover, the
crucial point of the implementation is an appropriate data structure for the invariant region I , the target set T , and the
domains of the inverse functions V j, which are now subsets of Rn. However, as all these regions represent the input of
the algorithm and do not change during the computations, it is enough to provide for each of these regions a corresponding
function with the signature Rn # ftrue; falseg, which determines whether a given point of Rn belongs to the corresponding
region.
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