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Use of Chebyshev Polynomial Kalman Filter for pseudo-blind

demodulation of CD3S signals

Moussa Yahia, Davide Radi, Laura Gardini and Valerio Freschi

Abstract: Chaos based communication represents an attractive solution in order to design secure

multiple access digital communication systems. In this paper we investigate the use of piece-

wise linear chaotic maps as chaotic generators combined, on the receiver side, with Chebyshev

Polynomial Kalman Filters in a dual scheme configuration for demodulation purpose. Piecewise

linear maps results into enhanced robustness properties of the spreading chaotic sequence, while

approximation of nonlinear systems through Chebyshev polynomial series allows closed form

estimation of mean and variance. Therefore, statistical moments can be computed by means of

simple algebraic operations on matrices in compact form. In this work we extend these concepts

to a dual Chebyshev Polynomial Kalman Filter scheme, suitable for signal recovery in chaos

based spread spectrum systems. Numerical simulations show that the proposed method achieves

lower error levels on a wide range of the bit-energy-to-noise-power-spectral-density ratio with

respect to a state-of-the-art method based on unscented Kalman filters.

Keywords: Kalman filter, chaotic direct sequence spread spectrum communication, Chebyshev

polynomials, nonpolynomial maps, estimation.

1. INTRODUCTION

Estimating the current state variables of nonlinear sys-

tems affected by Gaussian or non-Gaussian noise is of fun-

damental importance in a wide range of fields such as sig-

nal processing, robotics, localization and economics.

Indeed, it is quite common that in real situations the re-

quired information is not directly available, but must be

retrieved posteriorly once evidences are acquired through

measurements. To cope with the issue, some interesting

Kalman filtering methods have been introduced. Notably,

filtering methods have been applied to different but re-

lated problems, (e.g. inverse modeling of discrete-time

nonlinear systems) without requiring any prior knowledge

of noise statistics [1, 2].

For what concerns Kalman filtering methods, the most

known are the Unscented Kalman Filter (UKF) and the

Exact Polynomial Kalman Filter (ExPKF). The first one

was introduced in [3]. It can deal with any type of non-

linearity and it is based on a deterministic sampling tech-

nique, known as the unscented transform, used to select a

minimal set of sample points around the mean (the sigma
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points). At each step of the recursion, these sample points

are propagated through the nonlinear function of the model,

from which the posterior mean and variance are recovered.

The technique is based on a rather coarse approximation

as only a small set of sigma points is usually employed.

Moreover, as only a point representation is propagated in-

stead of the entire Gaussian distribution, it does not allow

to capture higher-order information of the prior density of

the nonlinear functions.

Differently, the ExPKF, introduced in [4], is a closed-

form estimator for polynomial nonlinear systems. The

main drawbacks are the computational cost and the impos-

sibility to work with nonlinear non polynomial functions,

such as piecewise linear functions. In order to overcome

both problems, recently [5] and [6] reformulated the Ex-

PKF algorithm. The reformulation is based on the Cheby-

shev series approximation of the original model which al-

lows to exploit the Chebyshev polynomial properties to

derive and express in vector-matrix notation the closed-

form solutions for the moment propagation ensuring a com-

putationally efficient implementation. This new method is

named Chebyshev Polynomial Kalman Filter (CPKF). As

shown in [6], the computational performance of CPKF is

comparable to that of UKF.

The CPKF and the UKF schemes can both be used in

the demodulation of signals generated by a Chaotic Direct

Sequence Spread Spectrum (CD3S) communication sys-

tem. This communication system makes use of a chaotic

sequence, generated by means of a chaotic map, to secure

information signals sent on a channel. In order to ensure

security, the chaotic sequence generated by the chaotic
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map has to be robust, i.e. persistent under parameter per-

turbations, which means that there must exist a neighbor-

hood in the parameter space of the map with no periodic

attractors. As it is well known that smooth maps can-

not generate robust chaos, see e.g. [7], we are forced to

use a piecewise-smooth map, and so a non-polynomial

map, such as the skew tent map, to generate the chaotic

sequence required in the CD3S communication system.

Employing a non-polynomial map to generate a robust

chaotic sequence prevents the use of the ExPKF to de-

modulate the signals and requires the use of the CPKF

scheme, i.e. it requires to fit with a Chebyshev polynomial

of a suitable order a piecewise-smooth map. The proper-

ties of the Chebyshev polynomials allow to compute the

moments required by the Kalman estimator in closed and

compact vector-matrix form. This ensures precision and

speed of execution. On the contrary, the UKF does not al-

low to capture higher-order information of the prior den-

sity of the nonlinear function and this could cause a loss

of precision.

In this paper, we propose to extend the CPKF method to

a dual Kalman filtering scheme in order to pseudo-blindly

demodulate a signal generated through a CD3S commu-

nication system. We derive analytical closed form ex-

pression of appriximated statistical moments and provide

simulation results for evaluating the effectiveness of the

proposed approach. A numerical comparison between the

CPKF and the UKF, based on Monte Carlo simulations,

shows the improved performance of the CPKF in term of

Bit-Error-Rate (BER), in particular for low levels of the

bit-energy-to-noise-power-spectral-density ratio (Eb/No).

The paper is organized as follows. The Chebyshev ap-

proximation and the related moments computation proce-

dure in matrix form required by the CPKF scheme is de-

scribed in section 2. The principles of the CD3S transmit-

ter are shortly summarized in section 3. Section 3 contains

the Kalman estimation scheme implemented for demod-

ulating the signal produced by a CD3S communication

system and a short description of the chaotic map used

to generate the chaotic sequence of the spreading system.

The numerical results are summarized and commented in

section 4. Section 5 concludes.

2. APPROXIMATION VIA CHEBYSHEV

POLYNOMIALS AND COMPUTATION OF

MOMENTS

In this section we recap shortly the algebraic procedure

required to implement the Chebyshev Polynomial Kalman

Filter (we refer to [5] for more details). For a nonlinear

non-polynomial transformation of a random variable x,

say f (x) :=Ω→Ω, where Ω= [−1,1] (it is worth to point

out that the same hold true for a nonlinear non-polynomial

transformation f (x) := [a,b]→ [a,b] with a,b∈R, see for

instance [6]), it is not possible to apply the Exact Polyno-

mial Kalman Filter introduced in [4] as it works only for

polynomial systems. To overcome the problem, in [5] the

authors proposed first to exploit the orthogonality prop-

erties of Chebyshev polynomials to fit a polynomial g(x)
to the nonlinear and non-polynomial function f (x), and

then to use the ExPKF on the polynomial g(x) to estimate

the original signal. The technique is summarized in the

following. Let us start recalling that the Nth-order Cheby-

shev polynomial of the first kind is defined as

TN (x) = cos(N arccos(x)) , N = 0,1,2, ... (1)

which, given the initial conditions T0 (x) = 1 and T1 (x) =
x, can also be rewritten in a recursive way as

TN (x) = 2xTN−1 (x)−TN−2 (x) , N = 2,3, ...

A first important property of the Chebyshev polynomial

TN (x) is that all its zeros for x ∈ [−1,1] are located at

xk = cos

((
k− 1

2

)
π

N

)
k = 1,2, ...,N (2)

and a second one is the orthogonality property of the Cheby-

shev polynomials Ti, i = 0,1, ...,N over the zeros xk of

TN+1 (x) , i.e.,

N+1

∑
k=1

Ti (xk)Tj (xk) =





0
N
2

N

i 6= j

i = j 6= 0

i = j = 0

(3)

for 0 ≤ i, j ≤ N.

Exploiting the above-mentioned properties of the Cheby-

shev polynomials, it is easy to combine equations (1), (2)

and (3) to prove that if f (x) is an arbitrary function de-

fined in the interval Ω = [−1,1], and if N + 1 coefficients

c j, j = 0,1, ...,N are defined as:

c j = 2
N+1 ∑N+1

k=1 f (xk)Tj (xk)

= 2
N+1 ∑N+1

k=1 f

[
cos

(
(k− 1

2 )π

N+1

)]
cos

(
j(k− 1

2 )π

N+1

)

(4)

then the approximation formula

f (x)≈ g(x) =

[
N

∑
j=0

c jTj (x)

]
−

1

2
c0 (5)

is exact for x equal to all of the N + 1 zeros of TN+1 (x).
The numerical calculation (4) of the series coefficients is

an important aspect as it allows a polynomial representa-

tion, i.e. (5), of a given nonlinear function f (x).
As ExPKF demands closed-form calculations of the mean

µy and the variance σ2
y of a one-dimensional random vari-

able y = f (x), using the Chebyshev series to fit a polyno-

mial g(x) to f (x), it is possible to satisfy the requirements.

The whole process of moment calculation is summarized

in the following. First of all, we have

y = f (x)≈ g(x) =
N

∑
n=0

anxn (6)
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where an = c0:NAn
N and c0:N = [c0,c1, ...,cN ] is the vector

of series coefficients obtained as in (4), while An
N is the

n-th column of the matrix AN of Chebyshev coefficients

defined by

AN =
[
α0

0:N ,α
1
0:N , ...,α

N
0:N

]T
(7)

so that αn
0:N =

[
αn

0 ,α
n
1 , ...,α

n
N

]T
comprises all coefficients

of the n-th Chebyshev polynomial up to and including the

N-th monomial. Then, given that x ∼ N
(
x,σ2

x

)
, it can

be written as x = x+∆x, where ∆x ∼ N
(
0,σ2

x

)
is a zero

mean Gaussian random variable, and by means of Pascal’s

triangle rule, the terms xn can be expanded as:

xn = (x+∆x)n =
n

∑
i=0

ci
n (x)

n−i (∆x)i

where ci
n =

n!
i!(n−i)! is a binomial coefficient. Consequently,

the expression (6) becomes

y ≈
N

∑
n=0

an

n

∑
i=0

ci
n (x)

n−i (∆x)i

The mean of the random variable y, i.e. y = E [y] ≈
E [g(x)], can then be expressed as

y ≈
N

∑
n=0

an

n

∑
i=0

ci
n (x)

n−i
mi (8)

where mi denotes the ith-order moment of the random

variable ∆x. Given that a0:N = [a0,a1, ...,aN ] = c0:NAN ,

equation (8) can be written in matrix notation as:

y ≈ a0:NCx
Nmx

0:N (9)

where mx
0:N stands for [1,0,m2, ...,mN ]

T
and Cx

N denotes a

lower triangular matrix that, in order to reduce the compu-

tation cost, we write as Cx
N = Mc

N ⊙Mx
N , where

Mc
N =




c0
0 0 0 · · · 0

c0
1 c1

1 0 · · · 0

c0
2 c1

2 c2
2 · · · 0

...
...

...
...

...

c0
N c1

N c2
N · · · cN

N



,

Mx
N =




x0 0 0 · · · 0

x1 x0 0 · · · 0

x2 x1 x0 · · · 0
...

...
...

...
...

xN xN−1 xN−2 · · · x0




and ⊙ is the Hadamard product form.

In this way, we can reduce computational burden as Mc
N

is a constant matrix and for Mx
N , we only build its (N +

1)th-row : RN =
[
xN ,xN−1, ...,x0

]
and then we truncate

this vector to obtain the other rows of matrix Mx
N .

The term (y− y) can also be approximated by a polyno-

mial function whose vector of polynomial coefficients is:

b0:N = [a0 − y,a1,a2, ...,aN ], so that, for n > 1, the nth-

order approximated central moment of the transformed

variable y, i.e. E [(y−y)n], is expressed by the expected

value of the polynomial approximating (y− y)n
:

E [(y−y)n]≈E
[(

g(x)−g(x)
)n]

=V0:nN

(
Mc

nN ⊙Mx
nN

)
mx

0:nN

(10)

whose coefficients vector noted V0:nN is obtained by means

of Algorithm 1:

Algorithm 1:

V0:nN = b0:N

for i = 1 to n− 1 do

V0:nN =Conv(V0:nN,b0:N)
end for

where Conv stands for convolution (i.e. polynomial mul-

tiplication). Algorithm 1 has to be used to find the vector

V0:nN needed to calculate the variance Pyy ≈ E
[
(y− y)2

]
.

Thus, from (10) we have

Pyy =V0:2N

(
Mc

2N ⊙Mx
2N

)
m0:2N

Moreover, as it is easy to observe that the term (x− x)(y− y)
is an (N + 1)-order polynomial function, it is sufficient

only to find its coefficient vector to calculate the covari-

ance Pxy. As we have shown, closed-form solutions for

moment propagation can be derived and expressed in vector-

matrix notation, given a Chebyshev series expansion of a

system, which allows a computationally efficient imple-

mentation. In the next section we employ these moments

propagation expressions in a Kalman filter framework in

order to (demodulating the signal of a CD3S) obtain a

Gaussian estimator of a CD3S system.

Before moving to the next section, let us just recall the

basic philosophy of the CPKF. Let us consider the follow-

ing nonlinear non polynomial model:

{
xk+1 = f (xk)+ηk+1

yk = h(xk)+ µk
(11)

where f (·) is a nonlinear non-polynomial function, which

is approximated with Chebyshev polynomials of a suitable

order N (see eq. (5)) in case of CPKF, and h(·) is the mea-

surement function. Moreover, the dynamical noise ηk+1

and measurement noise µk are independent Gaussian ran-

dom variables with probability density function, N (0,Q)
and N (0,R), respectively (in the previous part of this pa-

per random variables were indicated in bold, while in the

following part we avoid to use bold face to denote random

variables since we specify the related probability density

function and there is no risk of confusion).

Known the value yk at the receiver, the Kalman Fil-

ter (KF, for short) constructs a posterior state estimate

x̂k+1/k+1 of the original signal xk+1. The structure of the
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Kalman observer needs to estimate the mean, the variance

and the covariance of the stochastic variables. Thus, ac-

cording to the nonlinear non-polynomial model (11), the

equations of the recursive KF are derived as:





x̂k+1/k+1 = x̂k+1/k +Kxk+1

(
yk+1 − ŷk+1/k

)

Pxk+1/k+1
= Pxk+1/k

−K2
xk+1

Pyk+1/k

Kxk+1
=

Pxk+1/kyk+1/k

Pyk+1/k

(12)

where

x̂k+1/k = E [ f (xk)+ηk+1] (13)

ŷk+1/k = E
[
h
(
x̂k+1/k

)
+ µk+1

]
(14)

Pyk+1/k
= E

[(
yk+1 − ŷk+1/k

)2
]

(15)

Pxk+1/k
= E

[(
xk+1 − x̂k+1/k

)2
]

(16)

Pxk+1/k,yk+1/k
= E

[(
xk+1/k − x̂k+1/k

)(
yk+1 − ŷk+1/k

)]

(17)

3. CD3S COMMUNICATION SYSTEMS

The design of communication systems based on chaos

is an increasingly active area of research. Indeed, sev-

eral interesting features of chaos signals (namely, sensitiv-

ity to initial conditions, uncorrelation, aperiodicity) make

them valuable candidates as building blocks for secure

and reliable communications. In particular, the large band

characteristics of chaotic signals can be exploited in or-

der to modulate baseband signals to be transmitted into

spread spectrum ones, which constitute a key component

of many digital communication systems [8]. A widely

adopted approach to chaos based communication is repre-

sented by the so called CD3S systems, where chaos based

sequences are directly multiplied to the information sig-

nals to be transmitted on the channel. On the receiver

side, the knowledge (to some degree) of the structure of

the transmitter enables to recover, through proper demod-

ulation, the original signal. In general, the adoption of

chaos based signals is considered as a valuable alternative

to the use of pseudo-noise sequences in direct sequence

spread spectrum communications, sharing with the latter

some properties useful for enabling spread spectrum tech-

niques, while providing higher security levels, such as low

probability of intercept [9].

According to the scientific literature, the use of chaotic

sequences in digital communication can be traced back

to the work of Pecora and Carrol in 1990, who demon-

strated the synchronization of two coupled chaotic sys-

tems [7]. Since then, a huge body of research has flour-

ished aimed at investigating both theoretical and practical

issues towards the direction of designing chaos based dig-

ital systems. For instance, [10] introduced a CD3S sys-

tem for underwater communication. In this work a solu-

tion for demodulating the signal without exact knowledge

of the chaotic spreading sequence (also termed code) was

proposed by means of a dual UKF formulation which en-

ables the simultaneous estimation of spreading sequence

and original transmitted symbols. Luca et al. studied

how to exploit UKF to deal with carrier phase recovery in

CD3S systems [11] while the performances achieved by

UKF have been further explored by comparing it with an

exact Kalman filter approach [12]. A related issue regards

security in chaos based communication systems. In fact,

several works have been proposed with the aim of inves-

tigating the security levels guaranteed by these schemes.

For instance, methods for breaking CD3S communica-

tions with different knowledge of the transmitter/receiver

structure were introduced in recent years [13, 14].

Figure 1 reports an example of three signals at different

levels of a typical CD3S system. In particular, Figure 1

(a) refers to a message to be transmitted (i.e. a sequence

of binary symbols), Figure 1 (b) represents a chaotic se-

quence (also denoted as code) generated by a chaotic map

(namely a piecewise linear map as detailed below) and

Figure 1 (c) is the product of the first two signals.
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Fig 1: CD3S communication signals, (a) binary informa-

tion symbols, (b) chaotic spreading sequence, (c)

the transmitted CD3S signals.

As already remarked, we need a function defined in a

compact interval, with chaotic dynamics. It is well known

that in other works several authors use the logistic func-

tion F(x) = µx(1− x), however, in the logistic map the

sequences are chaotic in one interval or cyclical intervals

only at particular values of the parameter µ , correspond-

ing to homoclinic bifurcations, which (although of pos-

itive measure in the interval [3.5,4]) are not structurally

stable, and destroyed under parameter variation. Instead,

we consider the one-dimensional piecewise linear map f

given by two linear functions and defined as:

f : x 7→ f (x) =

{
fL(x) = sLx+ b, x ≤ 0

fR(x) =−sRx+ b, x ≥ 0
(18)
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where sL and sR are positive parameters associated with

the slopes of the linear branches of the function which is

the so-called skew-tent map. The rich dynamics of this

map has already been studied by many authors (see, e.g.,

[15], [16], [17], [18], [19]). The case here considered, in-

creasing/decreasing with maximum in b, is topologically

conjugate to the case decreasing/increasing with minimum

in −b, which also can be equivalently considered. The

particular case with sL = sR is the well known tent map. As

we are interested to the cases in which the map is chaotic,

we consider the ranges sL > 1 and sR > 1. The peculiarity

of this map is that the chaotic regime is structurally sta-

ble, or robust, following the definition given in [20]. That

is, the chaotic sequences are persistent under parameter

perturbation, which is a useful property required for trans-

mission security. In our simulations we consider the map

f defined in (18) assuming the slopes as follows:

sR = 2 and sL ∈ [1,2]

in order to have chaotic dynamics bounded in the interval

[−b,b]. In particular, to obtain the results shown in Fig. 3

we have fixed sL = 2 and b = 1.

It is worth to note that this choice is the result of a

deep investigation. In fact, we also tried to use a piece-

wise smooth function linear-logistic, and also a bimodal

function with chaotic dynamics and others. However, all

the alternatives have the same disadvantage of the logis-

tic function F(x). That is, as described above, with these

functions the chaotic sequences are not robust, and their

performance in our system is worse with respect to the

one obtained with map f defined in (18).

3.1. Dual estimation approach using CPKF

The dual Kalman filtering scheme requires only the noisy

observation yk+1 as input to activate the two Kalman filters

involved and it allows to estimate simultaneously, at chip

frequency (or chip rate) fs, the original chaotic spreading

sequence (or code) sk and the data symbol bk. In particu-

lar, the filter that estimates sk+1 requires and treats the last

estimated b̂k as a parameter, while the filter that estimates

bk+1 requires and considers ŝk as a parameter, where ŝk

and b̂k are estimated from the observed state yk, see fig.

2. Then, the dynamical model and the observation model

used for code estimation are given by the following equa-

tions:

{
sk+1

yk+1

=
=

f (sk)+υ s
k+1

sgn(b̂k)sk+1 +ηk+1

(19)

where f (·) denotes the chaotic function given in equa-

tion (18), υ s
k+1 ∼ N (0,Qs) indicates the Gaussian sys-

tem noise which is independent of the past and current

state sk and reflects the model uncertainty due to channel

imperfections, and ηk+1 ∼ N (0,R) represents the Gaus-

sian measurement noise at time point k+1 and it depends

upon the signal and noise levels at the receiver input.

Similarly, at chip rate the symbol will be estimated through

the following model:

{
bk+1

yk+1

=
=

bk +υb
k+1

bk+1 f (ŝk)+ηk+1
(20)

where υb
k+1 ∼N (0,Qb) is the Gaussian system noise which

is independent of the past and current state bk. This noise

influences the adaptability of the filter of the symbol. In

particular, a low value of Qb will result in slow changes

whereas a large value will result in rapid variations of the

symbol estimates. It is worth noticing that we assume

E [ηk+1sk+1] = E [ηk+1bk+1] = 0.

Fig 2: Code/Symbol Dual Estimation Block for the

Chebyshev Polynomial Kalman Filter.

Given the model represented by systems (19) and (20)

and the observation yk+1, the KF constructs an estimated

state ŝk+1/k+1 and b̂k+1/k+1 at the receiver. In doing so,

it requires to estimate the mean, the variance and the co-

variance of the stochastic variables sk+1 and yk+1. Then,

in order to have a closed-form KF, first the function f (·)
must be approximated with Chebyshev polynomials as de-

scribed in the previous section (it is worth to point out that

in the numerical simulation of the next section Chebyshev

polynomials up to order 10 are used in fitting f (·)).

Thus, according to the nonlinear non polynomial model

(19), the equations of the recursive KF are as follows





ŝk+1/k+1

Psk+1/k+1

Ksk+1

=
=
=

ŝk+1/k +Ksk+1

(
yk+1 − ŷk+1/k

)

Psk+1/k
−K2

sk+1
Pyk+1/k

Psk+1/kyk+1/k

Pyk+1/k

(21)

where (noting that bk is considered as a parameter and fol-

lowing the algebraic manipulation as indicated in (9) of
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the previous section),

ŝk+1/k = E
[

f (sk)+υ s
k+1

]
= E [ f (sk)]

≈ E

[
N

∑
j=0

c jTj (sk)−
1

2
c0

]

= a0:N

(
Mc

N ⊙Mŝ
N

)
ms

0:N (22)

ŷk+1/k = E

[
sign

(
b̂k

)
sk+1 +ηk+1

]

= sign
(

b̂k

)
E [sk+1]

= sign
(

b̂k

)
ŝk+1/k (23)

Psk+1/k
= E

[(
sk+1 − ŝk+1/k

)2
]

= conv(b0:N ,b0:N)
(

Mc
2N ⊙Mŝ

2N

)
ms

0:2N +Qs

(24)

with

b0:N = a0:N − ŝk+1/k [1,0, ...,0]0:N (25)

and

Psk+1/kyk+1/k
= E

[(
sk+1 − ŝk+1/k

)(
yk+1 − ŷk+1/k

)]

= E

[(
sk+1 − ŝk+1/k

)
sign

(
b̂k

)(
sk+1 − ŝk+1/k

)]

= sign

(
b̂k

)
Psk+1/k

(26)

Pyk+1/k
= E

[(
yk+1 − ŷk+1/k

)2
]

= sign

(
b̂k

)2

E

[(
sk+1 − ŝk+1/k

)2
]
+E

[
(ηk+1)

2
]

= sign
(

b̂k

)2

Psk+1/k
+R (27)

In the algebraic manipulations we have used the property

E [ηk+1sk+1] = 0.

Moreover, to estimate the binary information symbol

bk+1 one has the model described by equation (20). In

this case, ŝk is considered as a parameter, so no approx-

imation of the piecewise linear function f (·) is required.

The model is linear and the equations of the recursive KF

are as follows:





b̂k+1/k+1

Pbk+1/k+1

Kbk+1

=
=
=

b̂k+1/k +Kbk+1

(
yk+1 − ŷk+1/k

)

Pbk+1/k
−K2

bk+1
Pyk+1/k

Pbk+1/kyk+1/k

Pyk+1/k

(28)

where

b̂k+1/k = E

[
bk +υb

k+1

]
= b̂k/k (29)

ŷk+1/k = E [bk+1 f (ŝk)+ηk+1] = f (ŝk) b̂k+1/k (30)

Pbk+1/k
= E

[(
bk+1 − b̂k+1/k

)2
]
= Pbk/k

+Qb (31)

Pbk+1/kyk+1/k
= E

[(
bk+1 − b̂k+1/k

)(
yk+1 − ŷk+1/k

)]

= f (ŝk)E

[(
bk+1 − b̂k+1/k

)2
]
= f (ŝk)Pbk+1/k

(32)

Pyk+1/k
= E

[(
yk+1 − ŷk+1/k

)2
]
= ( f (ŝk))

2
Pbk+1/k

+R

(33)

In the algebraic manipulations we have used the prop-

erty E [ηk+1bk+1] = 0.

3.2. Numerical simulations

In this section we describe the numerical simulations

we used for evaluating the proposed approach based on

CPKF when applied to a CD3S system. We compared

the CPKF demodulation algorithm with the UKF-based

solution under different values of the Eb/N0 ratio, taking

the BER as a comparison metric. This benchmarking is

commonly adopted in order to evaluate the performance

of a communication system.
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Fig 3: BER (bit-error-rate) performances for Unscented

Kalman Filter (UKF) and Chebyshev Polynomial

Kalman Filter (CPKF).

In particular, we generated a pseudo-random sequence

of N bits, representing the symbols to be transmitted. This

message was then multiplied with a chaotic carrier gener-

ated by means of the piecewise linear map with a given

spreading factor S f . After adding system noise N (0,Qs)
and measurement noise N (0,Qb), the resulting signal was
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properly demodulated and the number of correctly recov-

ered bits counted. The whole process has been repeated

for values of Eb/N0 ranging from −2dB to 9dB, with in-

creasing unitary step. Figure 3 reports the obtained BER

curves for both the compared approaches. Each point is

the average of 5 independent runs. Experiments have been

done with the following parameters: N = 105, Qb = 10−2,

Qs = 10−1, S f = 31. The lower error level of the proposed

CPKF method is apparent over the whole range of Eb/N0.

In particular, CPKF shows higher accuracy for low Eb/N0

levels, while the different between the two methods be-

comes less marked for Eb/N0 ≥ 6dB.

4. CONCLUSION

In this paper, we used the Chebyshev Polynomial Kalman

Filter method proposed in [5] and [6] in the dual Kalman

filtering scheme to achieve pseudo blind demodulation of

the signal generated through a CD3S communication sys-

tem. The performance of this new method in terms of BER

has been compared to traditional and popular Unscented

Kalman Filter for different values of Eb/N0. The Monte

Carlo simulations show a significant reduction in the BER

when we retrieve the signal generated by a CD3S com-

munication systems using a dual Kalman filter based on

the Chebyshev Polynomial Kalman Filter method. In par-

ticular, the numerical analysis reveals that the Chebyshev

Polynomial Kalman Filter is particular efficient in reduc-

ing the BER when the Eb/N0 ratio is relatively small, i.e.

when the noise is preponderant respect to the signal. This

gives a clear indication of the suitability of the method for

demodulating signals in CD3S applications.
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