
 



Path Dependence in Models with Fading
Memory or Adaptive Learning

Gian Italo Bischi, Laura Gardini and Ahmad Naimzada

Abstract We consider a learning mechanism where expected values of an eco-
nomic variable in discrete time are computed in the form of a weighted average that
exponentially discounts older data. Also adaptive expectations can be expressed as
weighted sums of infinitely many past states, with exponentially decreasing weights,
but these are not averages since the weights do not sum up to one for any given initial
time. These two different kinds of learning, which are often considered as equivalent
in the literature, are compared in this paper. The statistical learning dynamics with
exponentially decreasing weights can be reduced to the study of a two-dimensional
autonomous dynamical system, whose limiting sets are the same as those obtained
with adaptive expectations. However, starting from a given initial condition, dif-
ferent transient dynamics are obtained, and consequently convergence to different
attracting sets may occur. In other words, even if the two different kinds of learning
dynamics have the same attracting sets, they may have different basins of attraction.
This implies that local stability results are not sufficient to select the kind of long-run
dynamics since this may crucially depend on the initial conditions. We show that the
two-dimensional discrete dynamical system equivalent to the statistical learningwith
fading memory is represented by a triangular map with denominator which vanishes
along a line, and this gives rise to particular structures of their basins of attraction,
whose study requires a global analysis of the map. We discuss some examples moti-
vated by the economic literature.
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1 Introduction

Many dynamic models involve memory of past states to determine the future time
evolution of systems in physics, engineering, natural sciences and economics. The
inclusion of past history in the time evolution adds nontrivial complexities, balancing
the advantage of dealing with more realistic models. In economics the inclusion of
memory in modeling human decisions may be considered as a method to represent
learning processes (see e.g. Hommes et al. 2012). The effects of memory in continu-
ous time models of oligopoly markets has recently been analyzed byMatsumoto and
Szidarovszky in a series of papers dealing with problems of stability of equilibrium
points as time lags are varied, as well as bifurcations leading to dynamic complexities
whose consequences are studied both by analytical and numerical methods, see e.g.
Matsumoto and Szidarovszky (2018), and Matsumoto and Szidarovszky (2015), as
well asMatsumoto (2017). Dynamic models involving delays often generate dynam-
ical systems of infinite dimension. However, some particular kinds of distributed
delays have been introduced, expressed by integral terms with kernels (denoted as
gamma functions) characterized by an exponential decay going back in the past, that
allow to transform an integrodifferential equation into an expanded set of ordinary
differential equations of finite dimension (see e.g. Cushing 1978; MacDonald 1978;
Chiarella 1991).

In this paper we consider discrete time dynamic models, often used to describe
social and economic systems characterized by event-driven time, simulate to describe
agents that take decisions by considering past information with exponentially dis-
tributed weights, i.e. an exponentially fadingmemory. In particular, we consider eco-
nomic models that involve agents’ expectations about the future states of the system,

and are formulated as mappings from beliefs to realizations, such as xt = F
(
x (e)
t

)

or xt = F
(
x (e)
t+1

)
, where x (e)

t and x (e)
t+1 represent agents’ expectations about current

or future states respectively. In order to close the model one must introduce a learn-
ing mechanism by which agents make forecastings on the basis of the past history
of the system. In this paper we consider one-dimensional models with expectations
endowed with two kinds of learning: The first is known as adaptive learning (see e.g.
Hommes 2013 and references therein) where expectations are obtained by assuming
that at each time the expected value is a weighted average of the previous forecast
and the previous observed value; the second, obtained by assuming that at each time
period the agents compute the expected value as an average of the past realized val-
ues, starting from a given initial time t = 0, is sometimes called statistical learning
(see e.g. Guesnerie and Woodford 1992).

Both learning mechanisms share the same equilibrium points of the correspond-
ing model with rational expectations (or perfect foresight) x (e)

t = xt for each t ,
that is, assuming that agents are able to anticipate the future outcomes, so that
expectations are fulfilled at each time. So, it is interesting to consider the prob-
lem of stability of such “rational equilibria” under these learning mechanisms. The
Rational Expectations (RE) hypothesis, based on the assumptions that agents have
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complete knowledge of the economic model and fully exploit all the available pieces
of information, has been criticized from many points of view, mainly because the
assumptions behind the RE paradigm seem to require too much agents’ rational-
ity. So, models with boundedly rational agents that converge in the long run to a
rational equilibrium may be seen as an evolutionary interpretation of rationality, and
some authors say that in this case the boundedly rational agents are able to learn, in
the long run, what rational agents already know under very pretentious rationality
assumptions (see e.g. Fudenberg and Levine 1998). However, it may happen that
under different starting conditions (or as a consequence of exogenous perturbations)
the same adaptive process leads to non-rational equilibria as well, i.e. equilibrium
situations which are different from the ones forecasted under the assumption of full
rationality, as well as to dynamic attractors characterized by endless asymptotic fluc-
tuations or unfeasible evolutions. The coexistence of several attracting sets, eachwith
its own basin of attraction, gives rise to path dependence, irreversibility, hysteresis
and other nonlinear and complex phenomena commonly observed in real systems
as well as in laboratory experiments. So, stability arguments under some learning
dynamics are often used as equilibrium selection criteria.

In this paper we consider a particular statistical learning in which the agents
discount older data by making weighted averages with exponentially decreasing
weights (see Bischi and Gardini 1996; Bischi and Naimzada 1997), so it is the
analogous of an exponentially decreasing gamma kernel often used in continuous
time dynamic models with distributed delays. Moreover, the discrete fading memory
analyzed in this paper includes, as a limiting case, the learning process proposed
by Bray (1983). Even adaptive expectations can be expressed as weighted sums of
infinitely many past states, with exponentially decreasing weights, but these are not
averages since the weights do not sum up to one for any finite initial time. These two
different kinds of learning are often considered as equivalent in the literature, because
they assume the same form as t → +∞. Indeed, statistical learning dynamics with
exponentially decreasing weights can be reduced to the study of a two-dimensional
autonomous dynamical system, whose limiting sets are the same as those obtained
with adaptive expectations. However, starting from a given initial condition, different
transient dynamics are obtained, and consequently convergence to different attracting
sets may occur. In other words, even if the two different kinds of learning dynamics
have the same attracting sets, theymayhave different basins of attraction. In situations
of multistability, i.e. when several coexisting attractors are present, local stability
results are not sufficient to provide selection criteria since this may crucially depend
on the initial conditions. Hence, adaptive and statistical learning may give different
results when the problem of equilibrium selection arises. Moreover, we show that the
two-dimensional discrete dynamical system equivalent to the statistical learningwith
fading memory is represented by an iterated two-dimensional triangular map with
denominator which vanishes along a line, and this gives rise to particular structures of
their basins of attraction, whose study requires a global analysis of themap following
a stream of literature dealing with maps which are not defined in the whole phase
space due to the presence of vanishing denominators, see Bischi et al. (1999), Bischi
et al. (2003), and Bischi et al. (2005). In particular, we show that the structure of the
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basins is strongly influenced by the presence of particular points, called focal points
in Bischi and Gardini (1997) and Bischi et al. (1999), whose existence, in the case
of models with expectations, is related to the presence of fixed points of the map
F , which are rational expectations equilibria. These global properties are specific to
discrete time models, in the sense that they cannot be observed in continuous time
models with delays.

The plan of the paper is the following. In Sect. 2 we compare the mathematical
form of models with adaptive expectations and those with statistical learning. In
Sect. 3 their dynamical properties are studied, in particular those of statistical learning
with fading memory analyzed through the study of an equivalent two-dimensional
iteratedmap,with particular emphasis on the study of the basins of attraction and their
global bifurcations specific to maps with a vanishing denominator. In Sect. 4 some
examples are discussed, Sect. 5 concludes and suggests some possible extensions.

2 From Beliefs to Realizations: Rational Expectations
and Learning Dynamics

Let us consider one-dimensional discrete time economicmodels represented bymap-
pings from expected values to realized values of the same period, i.e. the outcome
of the state variable xt at time t is a function of the value x (e)

t which agents expect,
at the same time t , for the state variable, computed by the agents on the basis of the
information held at the previous time (t − 1)

xt = F
(
x (e)
t

)
(1)

If the agents have Rational Expectations (RE), which in a deterministic framework
means that they are endowed by Perfect Foresight (PF), the expected values coincide
with the realized values at each time

x (e)
t = xt ∀t (2)

If (2) is inserted into (1) we get
xt = F (xt )

which means that only a Rational Expectations Equilibrium (REE) is a fixed point
of the map F . It is often argued that the assumption of rational expectations is too
strong, since economic models should take into account human limited ability to
make forecastings. This leads to the weaker assumption of Bounded Rationality
(BR) which assumes that agents compute the expected values x (e)

t by some learning
mechanism based on past experience, i.e.

x (e)
t = �

(
xt−1, xt−2, ..., x

(e)
t−1, x

(e)
t−2, ...

)
(3)
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This assumption is not only introduced by claiming that BR ismore realistic than RE,
but it is often used as a REE justification or as a dynamic mechanism for equilibrium
selection when several RE equilibria exist (see e.g. Marimon 1997). Of course, this
requires that a REE must also be an equilibrium for the model with learning. In
this context, the local stability of a REE with respect to the dynamics induced by
bounded rationality learning is commonly referred to as an evolutive explanation of
the RE solution, see Guesnerie and Woodford (1992). Moreover, some REEs may
be more likely to be reached than other ones when some learning mechanism is
introduced (some may be not reached at all if they are unstable under the chosen
learning process). Even more interesting situations of equilibrium selection arise
when there are attractors of the dynamics with learning which do not exist with RE.
This leads, for the dynamics with bounded rationality, to situations of coexistence of
attractors which are rational, i.e. also exist for the model with RE assumption, with
attractors which are non rational, i.e. asymptotic evolutions which do not exist under
the assumption of RE, so that the long-run behavior is characterized by agents which
continue to make wrong forecastings.

The selection of the attractor, in particular the convergence to a rational or a
non rational attractor, may depend on the initial condition, i.e. from the boundaries
among the different basins of attraction. This aspect has been rather neglected in the
literature because it requires a global analysis of the dynamics with learning.

2.1 Adaptive Learning and Reduction to One-Dimensional
Dynamics

A simple and frequently used learning mechanism is given by the adaptive expecta-
tions, expressed by

x (e)
t+1 = x (e)

t + α
(
xt − x (e)

t

)
0 ≤ α ≤ 1. (4)

i.e. for each time t = 0, 1, .... the value x (e)
t+1 expected for the next period (t + 1)

is obtained by “adapting” the previous forecasting x (e)
t in the direction of the cor-

responding observed value xt , with a speed of adjustment α. Rearranging (4) the
new expected value x (e)

t+1 can be expressed as a convex combination (i.e. a weighted

average) of the previous expected value x (e)
t and the currently observed value xt

x (e)
t+1 = (1 − α) x (e)

t + αxt 0 < α < 1 (5)

We can observe that the limiting case α = 1 corresponds to static (or naive) expec-
tations

x (e)
t+1 = xt (6)



38 G. I. Bischi et al.

and decreasing values of α correspond to higher inertia in updating the previously
expected value according to the more recent observation.

Using (5) repeatedly, the adaptively expected value can be expressed as

x (e)
t+1 = α

∞∑
k=0

(1 − α)k xt−k (7)

i.e. infinitely many past realizations are considered, with weights exponentially
decreasing as more remote past values are considered (decreasing as the terms of
a geometric sequence of ratio (1 − α)). Some authors call (7) a weighted average
of the values observed in the past, but it is important to remark that (7) cannot be
considered as an average, since the weights do not sum up to one for any finite
initial time. Indeed, the weighted sum (7) involves infinitely many “realized” values
xt , even with t < 0. The model (1), endowed with adaptive learning, can be reduced
to a one-dimensional dynamical system in the space of expected values by inserting
(1) inside (5)

x (e)
t+1 = (1 − α) x (e)

t + αF
(
x (e)
t

)
(8)

This means that, given an initial expectation x (e)
0 , the whole time evolution (or tra-

jectory) of expected values is obtained by the iteration of the one dimensional map

gα (z) = (1 − α) z + αF (z) . (9)

Of course, the corresponding time evolution (or trajectory) of realized values
xt , t ≥ 0, is simply obtained by (1), i.e. by taking the images by F of the expected
values, xt = F(x (e)

t ), t ≥ 0.
The properties of the map (9) are well known (see e.g. Hommes 1994; Chiarella

1988). It is a convex combination of the map F and the identity map, so its graph
is included inside the region between the graph of F and the diagonal. This implies
that the map gα and the map F have the same fixed points, i.e. the REEs are fixed
points of gα as well. It is immediate to realize that adaptive expectations are fulfilled
for each t , i.e. x (e)

t = xt ∀t , if and only if xt = F (xt ), i.e. at the REE. Instead, the
cycles of gα are in general different from those of F , and the adaptive forecastings
are always wrong along invariant sets that are not fixed points of F(x).

Let us assume that the functions are smooth enough on a compact interval of
interest, i.e. F : I → I , F of class C(1). It is worth to note that the graph of gα

approaches the graph of F as α → 1, i.e. in the limiting case of naive expectations,
whereas the graph of the map gα approaches the diagonal as α → 0. This implies
that for each F a value α ∈ (0, 1) exists such that gα is an increasing function for any
α ∈ (0,α) and, as it is well known, an increasing map cannot have cycles of period
k > 1. In otherwords, an adaptive learning,with sufficiently lowvalues ofα, rules out
any dynamic behavior which is more complex than convergence to a REE. However,
not all the REEs are stable under adaptive learning. From the properties of the map
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gα, the following well known results follow, which are immediate consequences of
the fact that the first derivative of gα (z) is a convex combination of 1 and F

′
(z).

(i) If α is sufficiently small

(
i.e. α < min

{
1

1−F ′(x) , x ∈ I, F ′(x) 	= 1
} )

then gα

is increasing, so that only REEs exist.
(ii) If a REE x∗ is unstable with F

′
(x∗) > 1 then it is also unstable for gα being

g
′
α(x∗) > 1.

(iii) If a REE x∗ is unstablewith F ′
(x∗) < −1 then it is stable for gα for a sufficiently

small value of α.

The properties listed above suggest a stabilizing role of adaptive expectations with
respect to naive expectations. However, cases in which, for intermediate values of α,
dynamic behaviors of the map gα can be obtained which are more complex than the
dynamics of the map F , have been given in the literature (Chiarella 1988; Hommes
1991; Hommes 1994). This happens, for example, with decreasing functions F . In
these cases the iteration of F can only exhibit convergence to a fixed point or to cycles
of period 2, whereas the corresponding map gα which governs the time evolution of
adaptive expectations, may be noninvertible (a bimodal map) for intermediate values
of α, so that cycles of any period and chaotic dynamics can be observed, and even
distinct coexisting attractors.

2.2 Statistical Learning and Reduction to Two Dimensional
Dynamics

Another frequently used learning mechanism is obtained by assuming that, at any
time period t = 0, 1, ... the agents compute the expected value at the next time period
(t + 1) as a weighted arithmetic mean of past realized values

x (e)
t+1 =

t∑
k=0

atk xk (10)

with weights

atk ≥ 0, k = 0, ..., t, normalized to 1, i.e.
t∑

k=0

atk = 1 (11)

Some authors call statistical learning this method to obtain expected values (see
e.g. Guesnerie and Woodford 1992). The learning mechanism as suggested by Bray
(1983) in the form of a simple arithmetic mean

x (e)
t+1 = 1

t + 1

t∑
k=0

xk (12)
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is a particular case. More general distributions of weights can be proposed, which
reflect the different methods that the agents use to exploit information contained
in the past observations. These can be obtained by defining, for each time t ≥ 0, a
(t + 1)-dimensional vector of relative weights

ω(t) =
{
ω(t)
0 ,ω(t)

1 , ...,ω(t)
t

}
(13)

with ω(t)
k ≥ 0, from which the weights (11) are computed as

atk = ω(t)
k

Wt
, k = 0, ..., t with Wt =

t∑
k=0

ω(t)
k (14)

A reasonable assumption for the computation of the relative weights is that old
observations are less considered by economic agents, i.e. they use decreasingweights
which discount older data (see e.g. Friedman 1979; Radner 1983; Lucas 1986). A
simplemethod to obtain this consist in assigning a fixed value to the weight of the last
observed value, say ω(t)

t = 1, t ≥ 0, and then the other weights are computed so that
the ratio between two successive weights is fixed, that is, ω(t)

k−1/ω
(t)
k = ρ, ρ ∈ [0, 1].

With this assumption (13) becomes

ω(t) = {
ρt , ρt−1, ..., ρ, 1

}
(15)

i.e. ω(t)
k = ρt−k , and consequently

atk = ρt−k

Wt
(16)

where Wt is the (t-th) partial sum of a geometric series

Wt =
t∑

k=0

ρt−k =
{

1−ρt+1

1−ρ
i f 0 ≤ ρ < 1

t + 1 i f ρ = 1
(17)

Statistical learning with “geometrically” distributed weights (16) have been used in
Bischi and Naimzada (1997) as a generalization of that proposed by Bray: in fact, for
ρ = 1 it gives the Bray’s average (12). In the other limiting case ρ = 0 it reduces to
naive expectations x (e)

t+1 = xt , whereas for intermediate values of the memory ratio
ρ this learning rule describes agents which, at each time period t , compute their
expectations according to a weighted estimation procedure which “exponentially
discounts older observations” (see Friedman 1979), that is, an exponentially fading
memory, see also Foroni et al. (2003), Naimzada and Tramontana (2009), Pecora and
Tramontana (2016), Tramontana (2016), and Cavalli and Naimzada (2015), as well
as a further generalization with power means in Bischi et al. (2015).
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The learning rule (10) with “geometric weights” (16)

x (e)
t+1 =

t∑
k=0

ρt−k

Wt
xk (18)

can be written as a generalized “adaptive rule” with nonautonomous (i.e. “time-
dependent”) adjustment speed. In fact,

x (e)
t+1 = ρWt−1

Wt

t−1∑
k=0

ρt−1−k

Wt−1
xk + 1

Wt
xt = Wt − 1

Wt
x (e)
t + 1

Wt
xt

where the recursive relation

Wt+1 = 1 + ρWt , W0 = 1. (19)

has been used. So, if we define

αt = 1

Wt
. (20)

we get

x (e)
t+1 = (1 − αt ) x

(e)
t + αt xt = (1 − αt ) x

(e)
t + αt F

(
x (e)
t

)
(21)

which is very similar to an “adaptive rule” (4) except for the fact that the constant
speed α is replaced by a time-dependent speed of adjustment given by a decreasing
sequence {αt }with αt ∈ (0, 1) for each t and αt → (1 − ρ) as t → +∞. Hence, for
t → +∞, the nonautonomous recurrence (21) tends to the limiting form

x (e)
t+1 = g1−ρ(x

(e)
t ) = ρx (e)

t + (1 − ρ)F(x (e)
t ). (22)

i.e., in the long run it behaves like a model with a standard adaptive rule, with speed
of adjustment α = 1 − ρ. This fact led many authors to consider the two learning
rules, the adaptive rule (4) and the statistical rule (18), as practically equivalent, and
justify this equivalence statement by the property that the dynamics of the expected
values under both the learning rules are governed, in the long run, by the a one-
dimensional map which has the same form g1−ρ(z), given by (9). However, even if
the limiting sets are the same, their time evolutions are different, because starting from
the same initial conditions, the two learning mechanisms exhibit different transient
dynamics due to the fact that during the early iterates the dynamics with statistical
learning (18), governed by (21), is different from the one governed by (22), and in
the presence of several attractors this may be crucial to decide which one will be
reached in the long run. In particular, if several attractors are present, convergence to
different attractors under the two learningmechanismsmay be observed even starting
from the same initial condition, thus giving different equilibrium selection results.
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This can be equivalently stated by saying that even if the two different kinds of
learning dynamics have the same attracting sets, their basins of attraction may be
different. This is also true in the particular case of Bray learning (12), corresponding
to the limiting case ρ = 1, as we shall see in the following through some examples.

Some remarks on the crucial role of initial conditions in models with Bray’s
learning can be found in the literature. For example, in Holmes and Manning (1988)
the learning rule (12) is used in a nonlinear cobweb model with decreasing F , and it
is stressed that such type of learning has a stabilizing effect on the long run dynamics.
However, the authors remark that the short and intermediate run dynamics can be
rather complex and of considerable interest. A similar argument is given in Dimitri
(1988) where a quadratic map F is proposed as a modification of a linear model of
price dynamics with p(e)

t computed according to (12) as proposed in Bray (1983).
On the basis of numerical results Dimitri writes “...the evolution of the model is
indeed very much dependent upon the starting position...” as a comment to the fact
that even if a REE is locally stable, divergent price sequences are obtained even if
initial conditions are taken rather close to the REE. These considerations lead us to
face the problem of the basins of attraction. This is not, in general, an easy task for
nonautonomous recurrences like (21), because for nonautonomous recurrences the
ω-limit sets are not invariant sets, due to the fact that the iterated map changes as t
varies. However, a global characterization of the basins is possible for (21) since it
can be reduced to an autonomous two-dimensional map. This is easily obtained by
noticing that, from (19), the sequence {αt } defined in (20) can be defined recursively
as

αt+1 = αt

αt + ρ
, α0 = 1

So, the model (1) endowed with learning (18) can be written as

⎧⎪⎪⎨
⎪⎪⎩

xt = F
(
x (e)
t

)

x (e)
t+1 = (1 − αt ) x

(e)
t + αt xt

αt+1 = αt
αt+ρ

with initial conditions x0 (the initial realized value) and α0 = 1. This recursive
relation is already known in the literature, at least for the limiting case of Bray
learning, i.e. for ρ = 1 (see e.g. Marimon 1997). Following the same procedure as
in the case of adaptive expectations, we can use (1) to obtain a mapping (which
is two-dimensional in this case) which defines the time evolution of the expected
values. However, it is important to remark that in this case the iteration procedure
starts with the value observed in t = 0, given by x0, and this implies that the first
expected value used to start (23) is given, according to (10), by x (e)

1 = x0. So, the
sequences of expected values generated by (21) can be obtained from the iteration of
(23) starting from α0 = 1 and x (e)

1 = x0. This means that the difference equation by
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which x (e)
t is recursively computed is shifted of one period with respect to the other

one: ⎧⎨
⎩
x (e)
t+2 = (1 − αt+1) x

(e)
t+1 + αt+1F

(
x (e)
t+1

)

αt+1 = αt
αt+ρ

(23)

Following Bischi and Naimzada (1997) and Bischi and Gardini (1997), in order to
study the general properties of the two-dimensional map (23) we rewrite it in the
equivalent form

T :
{
zt+1 = ρWt

1+ρWt
zt + 1

1+ρWt
F(zt )

Wt+1 = 1 + ρWt

(24)

where zt = x (e)
t+1 and Wt is defined in (17). The sequence of expected values of the

model (1)with learning (18) are obtained from the trajectories of the two-dimensional
recurrence (24) provided that the conditions are chosen as:

z0 = x (e)
1 = x0 and W0 = 1 (25)

Starting from a given (z0,W0) the iterations of the map T uniquely defines the
trajectory τ = {

(zt ,Wt ) = T t (z0,W0) , t ≥ 0
}
and if (z0,W0) = (x0, 1) then the

sequence {zt , t ≥ 0} represents the time evolution of the expected variables{
x (e)
t , t ≥ 1

}
from which the sequence of realized values {xt } starting with the given

x0 is simply obtained as the images under the function F :

xt = F (x (e)
t ) t ≥ 1 (26)

In other words, if {(z0,W0), (z1,W1), ... , (zt ,Wt ), ...} is the sequence generated by
the map T starting from the initial condition (z0,W0) = (x0, 1), then

{
x (e)
1 = z0,

x (e)
2 = z1, ... , x (e)

t+1 = zt , . ..
}
is the sequence of expected values, and {x0, x1 =

F(z0), ..., xt = F(zt−1), ... } is the corresponding sequence of realized values. Thus
the study of the general model (1) with learning rule (18) is reduced to that of a two-
dimensional map with initial conditions constrained on the lineW = 1 (line of initial
conditions). The class of maps (24) has been initially studied in Bischi and Gardini
(1997), which inspired a stream of literature on maps with vanishing denominator,
see Bischi et al. (1999), Bischi et al. (2003), and Bischi et al. (2005), from which
several applications followed, e.g. Tramontana (2016) and Gu and Hao (2007).
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3 Limit Sets and Basins of Attraction for Statistical
Learning With fading Memory

Any trajectory of (24) starting from initial conditions on the line W = 1 is confined
in the strip 0 < W < 1

1−ρ
. In fact, this strip is mapped into itself by T because the

second difference equation in (24), which gives the dynamics of the variable W , is
independent of z and gives a monotonically increasing sequence (the partial sums of
a geometric series of ratio ρ) and if 0 ≤ ρ < 1 such sequence {Wt} converges to the
sum of the geometric series

W ∗ = 1

1 − ρ
. (27)

For 0 ≤ ρ < 1 the line W = W ∗ is an invariant and globally attracting line for the
map T , on which the ω-limit sets of all its trajectories are located. For this reason
we shall call it line of ω-limit sets . The restriction of T to this line is given by the
one-dimensional map

g(z) = ρz + (1 − ρ)F(z) , (28)

already obtained in (22) as the limiting form of the nonautonomous recurrence (21).
The map (28) will be called limiting map, since it governs the asymptotic behavior
of the map T . This implies, as proved in Bischi and Gardini (1996), that any k-cycle
A = {

z∗
1, . . ., z

∗
k

}
of the map gρ(z) is in one-to-one correspondence with a k-cycle

A = A × {W ∗}={(z∗
1,W

∗), . . . , (z∗
k ,W

∗)} of the map T , located on the line of ω-
limit sets.Moreover, the attractors of themodel (1) with learning scheme (18), as well
as their basins of attraction, can be studied on the basis of the following proposition,
given in Bischi and Gardini (1996) (see also Bischi and Naimzada 1997):

Proposition 1 Let A be a k-cycle, k ≥ 1, of the map g1−ρ(z), 0 ≤ ρ < 1. Then
(i) if A is attracting for the limiting map gρ(z), then the set A=A × {W ∗} is an

attracting cycle of the map T , and F(A) is an attracting cycle of the model (1) with
learning scheme (18);

(ii) the basin of attraction D1 of the attractor F(A) of the model (1) with learning
scheme (18) is given by the intersection of the two-dimensional basin B of the cycle
A of the map T with the line of initial conditions W = 1.

We recall that the case k = 1 corresponds to a fixed point z∗ of g(z), and F(A) =
F(z∗) = z∗ is a REE, since the fixed points of g(z) are also fixed points of F(z).

The part (i) of the Proposition 1 confirms that the asymptotic behavior, i.e. the
kinds of attractors and their stability properties, are the same as those of a standard
adaptive learning rule with adaptive coefficient α = 1 − ρ. For example, a sufficient
condition for the attractivity of a REE z∗, under learning (18) with ρ < 1, is given
by

∣∣g′
(z∗)

∣∣ < 1, that is,

− ρ + 1

1 − ρ
< F

′
(z∗) < 1 . (29)
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However, the most important implications of Proposition 1 are due to part (ii), since
it suggests a general procedure to obtain the boundaries of the basins of attraction
when two or more coexisting attractors are present, as often occurs in the case of
nonlinear models. This is an important issue that cannot be studied on the basis of
the limiting map gρ, because the initial conditions are to be taken on the lineW = 1,
whereas gρ only governs the dynamics near the line of ω-limit sets W = W ∗. This
means that only a global knowledge of the two-dimensional map T allows one to
follow the short-run behavior, during which the dynamics is not governed by the
limiting map g.

Moreover, as outlined in the Proposition 1, the basins of attraction of the two-
dimensional map T , whose intersection with the line of initial conditions W = 1
gives the basins of the model with statistical learning, are obtained by considering
the preimages of proper neighborhoods of the attracting sets located along the line
of ω-limit sets. We recall that the two dimensional basin of attraction of an attractor
A of the map T is the open set of points which generate trajectories converging to A:

B (A) = {
(z,W ) |T t (z,W ) → A as t → +∞}

. (30)

A closed invariant set A ⊂ {W = W ∗} is called asymptotically stable (or attracting)
if a neighborhood U of A exists such that T (U ) ⊆ U and T n(x) → A as n → +∞
for each x ∈ U . Then, the basin of A is obtained by taking all the preimages of the
points of U

B (A) =
∞⋃
n=0

T−n(U )

where T−n(x) denotes the set of all the preimages of x of rank n, i.e. the set of
all the points which are mapped into x after n iterations of T . So, the study of the
two-dimensional basin is based on the study of the inverses of T . In the case of the
map (24) we have that the properties and the qualitative changes of its basins are
strongly influenced by the presence of the denominator which can vanish along the
line W = − 1

ρ
and, in particular, by the points in which the first component of T

assumes the form 0/0, see Bischi et al. (1999, 2003, 2005), Gardini et al. (2007), and
Bischi and Gardini (1997) for the particular class of triangular maps (24). In these
papers it is proved that the presence of points where a component of the map assumes
the form 0/0, called focal points, may have important consequences on the structure
of the basins and their global bifurcations, because fans of basins boundaries arise
from them giving peculiar finger-shaped structures called lobes. The existence of
lobes, originating from the focal points, may have important consequences on the
structure of the basins of attraction of the model with learning (18) whenever they
intersect the line of initial conditions W = 1. This occurrence causes the creation
of basins with a complicated topological structure, such as basins formed by many
disjoint intervals, as we shall see in the next section.
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3.1 Global Properties and Structure of the Basins of The
two-Dimensional Triangular Map

In the following we briefly recall some definitions and properties specific to maps
with vanishing denominator (see Bischi et al. 1999, 2003, 2005 for a more complete
treatment). Let us consider a map (x, y) → (

x ′, y′) = T (x, y) of the form

T :
{
x ′ = F(x, y)
y′ = G(x, y)

(31)

where x and y are real variables and at least one of the components has the form of
a fractional rational function, i.e.

F(x, y) = N1(x, y)

D1(x, y)
and/or G(x, y) = N2(x, y)

D2(x, y)
(32)

The functions Ni (x, y) and Di (x, y), i = 1, 2, are defined in the whole plane R2, so
that the set with no definition δs of the map T coincides with the locus of points in
which at least one denominator vanishes:

δs = {
(x, y) ∈ R

2|D1(x, y) = 0 or D2(x, y) = 0
}

(33)

The two dimensional recurrence obtained by the iteration of T is well defined, i.e. it
generates not terminating trajectories, provided that the initial condition belongs to
the set E given by

E = R
2 \

∞⋃
k=0

T−k (δs) (34)

so that T : E → E . We recall here the following definition

Definition Apoint Q = (xQ,yQ ) is a focal point if at least one component of themap
T takes the form 0/0 in Q and there exist smooth simple arcs γ(τ ), with γ(0) = Q,
such that limτ→0 T (γ (τ )) is finite. The set of all such finite values, obtained by
taking all the arcs γ(τ ) through Q, is the prefocal set δQ.

Roughly speaking, a prefocal curve is a set of points for which at least one inverse
exists which maps (or “focalizes”) the whole set into a single point, called focal
point. For maps with a vanishing denominator, new kinds of contact bifurcations
have been evidenced which involve the singularities defined above. In particular,
contacts between basin boundaries and prefocal curves may cause the creation of
particular structures of the basin boundaries, denoted as lobes and crescents. These
particular structures have been observed in the study of discrete dynamical systems of
the plane which arise in some different contexts, see e.g. Billings and Curry (1996),
Billings et al. (1997), Foroni et al. (2003), Gardini et al. (1999), Tramontana (2016),
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Pecora and Tramontana (2016), Cavalli and Naimzada (2015), and Yee and Sweby
(1994). As already mentioned, the existence of lobes, originating from the focal
points, has important consequences on the structure of the basins of attraction of the
model with statistical learning whenever they intersect the line of initial conditions
W = 1, causing the creation of one dimensional basins, of themodel (1)with learning
(18) with a complicated topological structure.

We now briefly describe the basic mechanism leading to the formation of lobes
and crescents. In order to do this, let us consider the map T given in (24), which we
rewrite as T : (z,W ) → (

z′,W ′), i.e.

T :
⎧⎨
⎩
z′ = ρW

1+ρW z + 1
1+ρW F(z)

W ′ = 1 + ρW
(35)

and we consider the image of an arc crossing through a focal point. We shall see
that, according to the general results given in Bischi et al. (1999), a one-to-one
correspondence is obtained between the slopes of the arcs through a focal point and
the points in which their images cross the corresponding prefocal curve.

We first notice that the map (35) is not defined in the whole plane, because the
denominator of the first component vanishes on the points of the line δs of equation
W = − 1

ρ
. So, in order to have a well defined recurrence we must exclude from the

phase plane of T the singular line as well as all its preimages of any rank δ−n
s for

each n ≥ 1, belonging to a sequence of lines located below the singular line obtained
by backward iteration of the second component of T , i.e.

W = W ′ − 1

ρ
. (36)

So, δ−1
s has equation W = − 1+ρ

ρ2
and is located below δs , and analogously δ−n

s , the
set of points which are mapped in the singular line after n iterations of T , are located
on the line of equation

W = −
∑n

k=0 ρk

ρn+1
= − 1 − ρn+1

ρn+1 − ρn+2
. (37)

and the phase space of the recurrence defined by the map T is given by

E = R
2 \ ∞∪

n=0
δ−n
s . (38)

where δ−(n+1)
s is below δ−n

s for each n ≥ 1. In the map (35) only the first component
has denominator, which vanishes in the points of the singular line y = − 1

ρ
, where the

numerator becomes F(x) − x , hence it vanishes at every fixed point of the function F
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(and thus also of the limiting map (22)). It follows that the a focal point is necessarily

of type
(
x∗,− 1

ρ

)
, where x∗ is a fixed point of F(x).

In order to explain the role of a focal point and the related prefocal set in the
geometric and dynamic properties of the map T , following the arguments given in
Bischi et al. (1999) we consider a smooth simple arc γ transverse to δs and how it
is transformed by T . Let (z0,−1/ρ) be the point where γ intersects δs and assume
that the arc γ is deprived of (z0,−1/ρ). If z0 	= x∗, i.e. F(z0) 	= z0, then the image
T (γ) is made up of two disjoint unbounded arcs asymptotic to the line of equation
y = 0, as qualitatively shown in Fig. 1. A different situationmay occur if z0 = x∗, i.e.
F(z0) = z0, because in this case the numerator of the first component also vanishes,

and the limit of T (γ) may take finite values as (z,W ) →
(
x∗,− 1

ρ

)
, so that T (γ) is

a bounded arc (as qualitatively sketched in Fig. 1 for the arc γ2). If m is the slope of

the tangent to the smooth arc γ in the focal point Q =
(
x∗,− 1

ρ

)
then in Bischi et al.

(1999) it is proved that the image T (γ) crosses the line W = 0 in the point (um, 0)
with

um(x∗) = x∗ + F ′(x∗) − 1

ρm
. (39)

This means that the images of the arcs crossing through
(
x∗,− 1

ρ

)
with slopem 	= 0

are bounded arcs (as qualitatively shown in the right panel of Fig. 1), and asm varies
inR all the points of the lineW = 0 are obtained, provided that F ′(x∗) 	= 1. Thus the
line of equationW = 0 represents the prefocal set δQ for the map (35). The situation
in which F ′(x∗) = 1 can be considered as a bifurcation case (see Bischi et al. 2005).

This suggests some consequences when we consider the preimages. The map (35)
may be a noninvertible map, because the number of distinct inverses of T depends
on the function F(x). In fact, even if a point (z,W ) has a unique image under the

Fig. 1 Schematic picture of the action of a two-dimensional map on an arc crossing a singular
curve δS along wich a denominator vanishes. Left: The arcs γ1 and γ3 cross the singular curve in a
generic point of δS whereas γ2 crosses it through a focal point. Right: Two arcs crossing δS through
a focal point with different slopes are mapped into finite arcs crossing the prefocal curve δQ in
different points
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application of T , given by
(
z′,W ′) = T (z,W ), the backward iteration of T may not

be uniquely defined, since given a point
(
z′,W ′) its preimages (z,W ) are obtained by

solving, with respect to the unknowns z andW , a systemwhichmay have several real
solutions, i.e. several inverses. If n is the number of distinct inverses we denote them
by T−1

i

(
z′,W ′) for i = 1, ..., n and T−1

(
z′,W ′) = ⋃n

i=1 T
−1
i

(
z′,W ′). Moreover,

if F(x) has N fixed points (hence also T has N fixed points) then the prefocal line
must belong to a region, say ZN , whose points have N distinct rank-1 preimages.

To sum up, for each focal point Qi =
(
x∗
i ,− 1

ρ

)
the map T in (35) defines a one-

to-one correspondence between the slope m of an arc γ through Qi and the point
(u, 0) in which the image T (γ) crosses the prefocal curve δQ , given by

m → (u, 0) : u = x∗
i + F ′(x∗

i )−1
ρm

(u, 0) → m : m = F ′(x∗
i )−1

ρ(u−x∗
i )

(40)

Some consequences of this correspondence, important for the characterization of the
basins’ boundaries and their bifurcations, are deduced by considering a smooth arc
ω that intersects the prefocal line in two points. In this case, the N rank-1 preimages
of ω, say T−1

i (ω), i = 1, ..., N , are arcs such that each T−1
i (ω) has a loop with knot

in the focal point Qi = (x∗
i ,− 1

ρ
). This implies that a remarkable contact bifurcation

occurs when a smooth curve segment ω moves towards the prefocal curve δQ until
it has a contact and then crosses δQ (as qualitatively shown in Fig. 2). As ω moves
toward δQ , its preimages move towards Qi , and when ω becomes tangent to δQ then
each preimage ωi

−1 = T−1
i (ω) has a cusp point at Qi . The slope of the common

tangent line to the two arcs that join in Qi is given by mi (uc), according to (40). If
the curve segment ω moves further, so that it crosses δQ in two points, say (u1, 0)
and (u2, 0), then its preimages form loops with double points at the focal points Qi .

Fig. 2 Qualitative picture of a preimage of an arc moving towards a prefocal line until crossing it
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This kind of contact bifurcation is important in the study of the boundaries of the
basins of attraction, because if ω is a portion of a basin boundary, a contact between
ω and δQ implies that a loop is created along the basin boundary, because a basin
boundary is backward invariant, i.e. it includes all the preimages of any portion of
it, and the portion of the basin inside the loop is a lobe, as we shall discuss in the
next sections. Moreover, in the case of noninvertible maps the creation of crescents
can be obtained as well, obtained from the merging of lobes as qualitatively shown
in Fig. 3. It is caused by contacts of a critical curve LC with a basin boundary which
already includes lobes which merge along LC−1 after the contact (see e.g. Mira et al.
1996 for a definition of critical curves).

Now, let us consider the forward iteration of T . It is easy to see that the image of
rank-n of the prefocal line W = 0 belongs to the line of equation W = Wn where

Wn = 1 − ρn+1

1 − ρ
(41)

i.e. a sequence of lines parallel to the prefocal line δQ and convergent to the line of
the ω-limit sets W = W ∗. This implies that any cycle belonging to the ω-limit set
W = W ∗ is transversely attracting. This property is important in order to study the
boundaries of the basins. In fact, recall that, in general, the boundaries of a basin are
obtained by taking the stable sets of some cycles on it. In the case of maps (35) such
cycles can only be located on the line of ω-limit sets. To get the stable set Ws of a

Fig. 3 Qualitative sketch to describe the formation of a crescent obtained by the merging of two
lobes when a portion of a basin of attraction crossing the prefocal line δQ has a contact with a
critical curve LC
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saddle it is enough to take the preimages of any rank of a local stable set Ws
loc, that

is Ws = ∞∪
n=0

T−n(Ws
loc), where Ws

loc is transverse to the line W = W ∗. Due to the

expansive character of T−1 along theW direction, as defined in (36), such preimages
must necessarily reach, in a finite number of steps, the prefocal line W = 0. So,
all these preimages must necessarily cross the singular line W = − 1

ρ
through focal

points Qi .
From this observation it follows that the stable set of any saddle cycle of T ,

obtained by taking the preimages of a local stable set, is made up of branches issuing
from the focal points. In fact, the preimages of any local stable set, transverse to
the line of ω-limit sets W = W ∗, necessarily go back to the prefocal line W = 0 in
a finite number of steps. Thus any stable set must be made up of branches which
“cross” the singular line in the focal points, i.e. are “focalized” through the focal
points. This argument, applied to the stable set of some saddle cycle belonging to the
line of ω-limit sets, constitutes the global mechanism which causes the formation of
the particular structures of the basins which will be shown in the examples.

3.2 Increasing Maps

Wehave seen that even if the law ofmotion (1)with the two different kinds of learning
(4) and (18) has the same attracting sets, the corresponding basins of attraction are
generally different. This is related to the fact that the asymptotic dynamics obtained
with both the learning mechanisms are governed by the map gρ = g1−α, whereas the
basins are obtained by different procedures.

However, things are simpler when F is an increasing map. In this case the limiting
map g is also increasing. As it is well known, for a continuous and increasing map
the only invariant sets are the fixed points, and when several fixed points exist,
say x∗

1 < x∗
2 < ... < x∗

k they are alternatingly stable and unstable: the unstable fixed
points are the boundaries that separate the basins of the stable ones. Indeed, in this
case the same situation also holds for the basins of the stable fixed points under the
statistical learning.

Proposition If F is increasing then the basins with adaptive learning and speed
α are the same as those for the statistical learning with fading memory and ratio
ρ = 1 − α.

Proof Let F be a continuous and increasing function and let x∗ be an unstable fixed
point of F . The stable set of the saddle S = (x∗, 1/(1 − ρ)) is obtained by taking
the preimages of any rank of the local stable set of S, which is included in the line
z = x∗. The rank-1 preimages of a point

(
x ′,W ′) are obtained by

{
F(z) + z

(
W ′ − 1

) = x ′W ′

W = W ′−1
ρ
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and for any W ′ ≥ 1 this has only one solution, because the left hand side of the first
equation is increasing if F is increasing and W ′ ≥ 1. In particular, the only rank-1
preimage of a point

(
x∗,W ′) belongs to the line z = x∗, so that the projections of the

unstable fixed points on the line of initial conditions W = 1 are the only boundaries
which separate the basins, like in the one-dimensional map g �.

We remark that two dimensional basins of the attracting fixed points of the map
T , located on the line W = W ∗, may include portions which do no belong to the
vertical lines through the saddle points, but these are necessarily confined in the
region W < 1, so that they have no influence on the basins of the model (1) with
learning (18). An example will be shown below.

3.3 The Particular Case of Bray Learning

We have seen that the case of the statistical learning (12) proposed by Bray (1983)
can be obtained from the statistical learning with fading memory (18) in the limiting
case ρ → 1−. It can be noticed that in this case any REE x∗ with F ′ (x∗) < 1 is
stable, i.e. it can be “learned” by the agents, because the stability condition (29) is
always satisfied as ρ → 1−. In other words, for the general model (1) with Bray’s
learning (12), the steady states x∗ characterized by F

′
(x∗) < 1 are locally attracting

equilibria, whereas those with F
′
(x∗) > 1 are unstable saddles. This confirms, and

extends, the stability results obtained, for particular models, by Bray (1983), Dimitri
(1988), and Holmes andManning (1988). That is: in the case of Bray’s learning (12)
any complexity is lost, and any trajectory is either divergent or convergent to a stable
REE x∗.

However, besides divergent trajectories there may be two or more coexisting
stable REEs, and the arguments given above about the complexity in the basins also
hold in this case. In fact, even if W ∗ = 1/(1 − ρ) → +∞, for each REE x∗ with
F

′
(z∗) < 1 the invariant lines z = x∗ are attracting sets whose basins can be obtained

following the same procedure outlined in the previous sections. The triangular map
(35) becomes

T :
⎧⎨
⎩
z′ = z + F(z)−z

1+W

W ′ = 1 + W

with initial condition taken on the lineW = 1. The linewith no definition isW = −1,
on it a focal point is associated with each REE and the prefocal line is W = 0.

Except for the uninteresting case in which a unique unstable REE exists (and
all the trajectories are divergent), or the simple case in which only one globally
attractingREEexists, there are both attracting lines z = x∗

i and repelling lines z = z∗
j ,

associated with stable REE x∗
i and unstable REE z∗

j respectively. Then, any repelling
invariant line z = z∗

j has a stable set (made up of all the preimages of any rank of
the line z = z∗

j ) which separates different basins. Such preimages may intersect the
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prefocal line of T . Thus, depending on the topological structure of these preimages,
associated with the inverses of T , the basins on the line W = 1 may have a simple
or complex geometrical structure.

4 Examples

4.1 Unimodal Maps: A Cobweb Model

One of the simplest models expressed by a law of motion of the form xt = F
(
x (e)
t

)

is the cobweb model (see e.g. Nerlove 1958, Hommes 1991, Chiarella 1988, Jensen
and Urban 1984). In the market of a given good, let qD = D(p) and qS = S(p)
be the demand and supply functions respectively. At the time t , qD depends on the
current price pt , whereas qS depends of the price p(e)

t expected by producers at
the previous time in which they decided their production. If the production delay is

taken as the time unit, themarket clearing condition becomes D (pt ) = S
(
p(e)
t

)
, and

assuming that D(p) is a continuous and decreasing function (hence invertible) the
law of motion of the market clearing price is pt = D−1S(p(e)

t ) at which the adaptive
learning (4) or the statistical learning (18) can be applied. As an exercise to illustrate
the results of the previous sections, and to compare the two kinds of expectations, we
consider a cobweb model where F(x) = D−1S(x) is a quadratic map, like in Jensen
and Urban (1984) or Dimitri (1988), where a linear demand function is considered
together with a backward bending supply curve, expressed by a quadratic function,
so that F(x) is conjugate to the standard logistic map

f (x) = μx (1 − x) , μ > 1 (42)

So, in the following we consider a model xt = f
(
x (e)
t

)
with f given by (42). In

this case, the dynamics of the expected prices under the assumption of adaptive
expectations (4) is governed by a quadratic map as well, given by

z′ = gα(z) = (1 − α) z + αμz (1 − z) (43)

whereas under the assumption of statistical learning (18) the dynamics of the expected
prices is obtained by the two-dimensional map (24)

T :
{
zt+1 = ρWt zt+μzt (1−zt )

1+ρWt

Wt+1 = 1 + ρWt

(44)
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and the limiting map which governs the asymptotic behavior is:

z′ = g1−ρ (z) = ρz + (1 − ρ) μz (1 − z) (45)

For each μ > 1 there are two non negative REEs, given by

s∗ = 0 and p∗ = μ − 1

μ

where s∗ is an unstable fixed point of f , with f ′ (s∗) > 1, hence it is also an unsta-
ble fixed point of g for each ρ ∈ [0, 1), whereas p∗ is stable for 1 < μ ≤ 3, and
unstable for μ > 3 with f ′ (p∗) < −1. This means that the REE p∗ is stable under
the assumption of adaptive expectations provided that α is sufficiently small (and
the same is true for the statistical learning with ρ sufficiently close to 1). In the fol-
lowing we shall consider values of α or ρ such that the REE p∗ is stable, however
even in this case, p∗ is not globally stable since for each α ≥ 0 (ρ ≤ 1) diverging
sequences of expected values can be obtained as well. This raises the question of
the study of the basins of attraction, i.e. the delimitation of the boundary which sep-
arates the set of initial conditions that generate trajectories converging to the REE
(i.e. the basin of attraction of p∗) from the set of initial conditions that generate
unbounded trajectories (i.e. the basin of attraction of infinity). This question is very
easily solved for the case of adaptive learning, whose study requires a simple analysis
of the one-dimensional quadratic map (43), for which the basin of p∗ is given by
the interval ]0, g−1

α (0)[=]0, 1[. Instead, for the statistical learning a global analysis
of the two dimensional map (44) requires more advanced methods. In fact, (44) is a
noninvertible map with two focal points,

Q1 =
(
0,−1

ρ

)
and Q2 =

(
μ − 1

μ
,−1

ρ

)
. (46)

In Fig. 4a, obtained with ρ = 0.75 and μ = 6, the basins of the two-dimensional
map (44) are shown: The white region represents the set of points converging to

the fixed point P = (p∗,W ∗) =
(

μ−1
μ

, 1
1−ρ

)
, and the grey region represents the set

of points which generate diverging trajectories. The intersections with the line of
initial conditionsW = 1 represent the respective one-dimensional basins of the cob-
web model with statistical learning (18) given by the interval (0, z) with z = 1.125.
Instead, if we consider the adaptive learning (4) with α = 0.25, so that the dynamics
of expected prices are governed by the same one-dimensional map, the basin of the
REE p∗, is

(
0, g−1

0.25(0)
) = (0, 1.5), where g−1

0.25(0) is the preimage of the unstable
fixed point s∗ different from itself. This basin coincides with the portion of the line
of ω-limit sets W = W ∗ included in the white region of Fig. 4. A trajectory starting
from x (e)

0 = 1.2 converges to p∗ under adaptive expectations, whereas for the model
with statistical learning (18) with ρ = 0.75, for which the asymptotic dynamics of
the expected prices are governed by he same limiting map, the trajectory starting
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Fig. 4 Numerically generated basins of attraction of the two-dimensional map (44): The white
region represents the set of points converging to the fixed point P∗ and the grey region represents
the set of points which generate diverging trajectories. a ρ = 0.75 and μ = 6; b ρ = 0.75 and μ = 7

from z0 = p(e)
1 = 1.2 diverges. So, with the same starting condition, the trajectory

obtained with the standard adaptive learning converges to the REE p∗, whereas the
model with statistical learning (18) with ρ = 1 − α does not converge.

An even more evident difference is obtained in the situation shown in Fig. 4b,
obtained with ρ = 0.75 and μ = 7. Now the basin B (p∗) is formed by two disjoint
intervals, because a “hole” formed by points which generate diverging trajectories is
nested inside B (p∗).

It can be noticed that the size, in the z direction, of B(P), increases for higher
values of W , so that stronger shocks are necessary to bring the phase point inside
B(∞), i.e. the system is less vulnerable with respect to exogenous perturbations as
time goes on. Loosely speakingwemay say that as the amount of information (i.e. the
number of observed realized values) increases the system has a greater probability
to converge, because agents learn to behave more and more rationally as time goes
on.

The above considerations are even more evident when applied to situations like
the one shown in Fig. 5, obtained for ρ = 0.75 and μ = 9. In this case the basin of p∗
is formed by 4 disjoint intervals, due to the presence of lobes of B(∞) intersecting
the line of initial conditions W = 1.

We now describe a procedure to obtain the exact delimitation of the boundary F
that separates the two basins. In fact, the complementary set of B(∞) is the set of
bounded trajectories which converge to invariant sets of the limiting map g, on the
lineW = W ∗. As remarked above, the attractor always coincides with the REE if the
memory ratio ρ is sufficiently close to 1, whereas for lower values of ρ the bounded
attractor of the map gρ(z) may be a cycle or even a chaotic set. Here we are only
interested in parameters’ values for which the REE p∗ is locally stable, but it is clear
that arguments similar to those used below hold independently of the topological
structure of the attracting set of gρ(z). Thus P = (p∗,W ∗) denotes the attractor of
T located on the line W = W ∗, whose basin will be denoted by B(P). The frontier
F behaves as a repelling set for the points near it, since it acts as a watershed for
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Fig. 5 The same as Fig. 4,
with ρ = 0.75 and μ = 9

the trajectories of the map T . Points belonging to F are mapped into F both under
forward and backward iteration of T : more exactly T (F) ⊆ F , T−1 (F) = F (see
Mira et al. 1996 Chap. 5). This implies that if a saddle-point belongs to F , then F
must also contain the whole stable manifold (see Gumowski and Mira 1980; Mira
et al. 1996). In our case, for eachμ > 1 and 0 ≤ ρ < 1 the point S = (0,W ∗), located
on the line of ω-limit sets W = W ∗ = 1/(1 − ρ), is a saddle point for the map T ,
with local stable manifold along the invariant line z = 0 and unstable set along the
invariant line W = W ∗. The local stable set of S belongs to F because the unstable
manifold, along the lineW = W ∗, has a branch pointing toward the attractor P , and
the opposite branch going to infinity (see Fig. 6). Then F includes the whole stable
set of S, i.e.

F ⊇ Ws(S) =
⋃
n≥0

T−n(Ws
loc(S)) (47)

where Ws
loc(S) is given by the portion of the W axis with W ∈ (0,W ∗), denoted by

ω0 in Fig. 6, and T−n(z,W ) denotes the set of all the rank-n preimages of the point
(z,W ), i.e. the set of points which are mapped into (z,W ) after n applications of T .
In our case, the map (44) is a noninvertible map of Z0 − Z2 type, i.e. a point

(
z′,W ′)

has no rank-1 preimages or two preimages, given by T−1
(
z′,W ′) = T−1

1

(
z′,W ′) ∪

T−1
2

(
z′,W ′), where

T−1
1 :

⎧⎪⎪⎨
⎪⎪⎩
z = (

(
W ′+μ−1

)−
√

(W ′+μ−1)2−4μz′W ′
2μ

W = W ′−1
ρ

T−1
2 :

⎧⎪⎪⎨
⎪⎪⎩

z = (
(
W ′+μ−1

)+
√

(W ′+μ−1)2−4μz′W ′
2μ

W = W ′−1
ρ

(48)
if �(z,W ) = (

W ′ + μ − 1
)2 − 4μz′W ′ > 0.
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We say that a point (z,W ) has two preimages, given by (48), if �(z,W ) > 0,
and that no inverses are defined in the points (z,W ) when �(z,W ) < 0. The curve
defined by the equation

�(z,W ) = (W + μ − 1)2 − 4μzW = 0, (49)

is called critical curve LC (from the french “Ligne Critique”). Its points have two
coincident preimages located on the line LC−1 given by

LC−1 = {(x, y) |ρW − 2μz + μ = 0} (50)

obtained from T−1
i with � = 0. It can also be obtained as the locus of points at

which the determinant of the Jacobian matrix of T vanishes, and LC = T (LC−1)

(see Gumowski and Mira 1980; Mira et al. 1996; Abraham et al. 1997). As LC−1

crosses the singular line δs out of the focal points, LC = T (LC−1) is formed by two
unbounded branches asymptotic to the prefocal line δQ (see Fig. 6). The knowledge
of the curves LC and LC−1 is important in the computation of the preimages of the
local stable set of S from which F is obtained according to (47). Indeed, from (48)
the rank-1 preimages of Ws

loc(S) can be easily computed. The two rank-1 preimages
of ω0, which is entirely included inside Z2, are one on the same (invariant) W -axis
and the other one on the line of equation

W = μ

ρ
(z − 1) (51)

denoted by ω−1 in Fig. 6. This line intersects the line of initial conditions W = 1 in
the point

z = 1 + ρ

μ
(52)

According to (47), also the line (51) belongs toF . It can be noticed that (51) “crosses”
the singular line through the focal point Q2. The portion of this line located below
the critical curve LC belongs to the region Z2, hence it has two preimages, say ω1−2
and ω2−2, whose equation can be obtained from (48) with W ′ = μ

ρ

(
z′ − 1

)
. These

two preimages are located at opposite sides with respect to the line LC−1 and merge
in the point H , given by the merging preimages of the point H1 = ω−1 ∩ LC (see
Fig. 6). After some algebraic manipulation it is possible to see that such preimages
belong to the curve of equation:

x =
μ + ρW ±

√
(μ + ρW )2 − 4 (1 + ρW )

(
μ + ρ + ρ2W

)

2μ
. (53)

The locus (53) represents an hyperbola if ρ < 1
4 , a parabola if ρ = 1

4 , an ellipse if
ρ > 1

4 (as in Fig. 6, obtained with ρ = 2
3 ) and crosses the line with no definition
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Fig. 6 An extended view of the numerically generated basins of attraction of the two-dimensional
map (44): The white region represents the set of points converging to the fixed point P∗ and the
grey region represents the set of points which generate diverging trajectories. a ρ = 2

3 and μ = 4;
b μ = 5.4

W = −1/ρ at the focal points. According to (47) also the curve (53) belongs to the
frontier F , as well as the preimages of ω0 of any rank.

The union of all these preimages gives the boundary separating the basin B (∞)

from the basin of the stable fixed point P, represented in Fig. 6, by the grey and the
white regions respectively.

With the set of parameters used in Fig. 6a the two merging preimages of the point
H1, represented by the point H in which ω−2 intersects LC−1, are below the prefocal
line δQ . This implies that the two rank-1 preimages of H , denoted by H (1)

−1 and H (2)
−1

in Fig. 6a, are below the line δs .
As long as the point of intersection H1 between LC and the line ω−1 is below the

line W = W1 = 1, the whole curve ω−2 lies below the z axis, so that the preimages
of ω−2 are located below the singular line, as can be easily deduced from the second
component of (48).

As μ increases the critical curve LC moves upwards, and when it reaches the
lineW = W1 = 1 the curve ω−2 reaches the z axis, so that its preimages ω−3 appear,
issuing from the two focal points Q1 and Q2. For example, in Fig. 6b the point H1 is
above the line W = 1, and consequently its preimage H , which is on the top of the
arc ω−2, is above the lineW = 0. The two preimages of the portion of ω−2 above the
z axis are the lobes issuing from the focal points Q1 and Q2, and the same happens
at all the preimages of any rank of the focal points.

However, in order to understand the structure of the basins, we can limit our
analysis to the portion of the plane above the line W = −1/ρ (as in Fig. 7a)

For the set of parameters used in Fig. 7a the situation is similar to the one shown
in Fig. 6b: the arc ω−2 of F does not intersect the line of initial conditions W = 1,
thus it does not affect the basin of attraction D1(p∗) given by the intersection of
B (P) with the line W = 1, according to Proposition 1. This is due to the fact that
the point H1 = ω−1 ∩ LC is located below the line of equation W = W1 = 1 + ρ,
and this implies that its preimage H is located below the line of initial condition
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Fig. 7 Numerical computation of the preimages of the segment ω0 located along the line z = 0

W = W0 = 1. In fact, due to the particular structure of the second equation of themap
T , the preimages of any point of a line W = Wt are located on the line W = Wt−1,
as can be easily computed by the second equation of (48).

As μ is increased, a value will be reached, say μ = μ∗
0 , at which the point H1 is

on the lineW = W1 = 1 + ρ and, as a consequence, the curve ω−2 becomes tangent
to the line of initial conditions W = W0 = 1 in the point H = (zH , 1) (see Fig. 7b)
where

zH = 1

2
+ ρ

2μ
. (54)

Thevalueμ∗
0 = 2 + 2

√
1 + ρ (as can be easily computed from the tangency condition

between the curve of equation (53) and the line W = 1) represents a bifurcation of
the basin D1(p∗) of initial conditions which generate bounded price sequences. In
fact for μ < μ∗

0 the basin D1(p∗) is the interval (0, z), with z given by (52), whereas
for μ > μ∗

0 a hole is created around zH , whose points belong to B(∞), bounded by
the two intersections (h1, 1) and (h2, 1) between the curve (53) and the line W = 1.

The situation becomes even more complex as μ is further increased. The value

μ = μ∗
1 = 2 + ρ +

√
(1 + ρ)

(
1 + ρ + ρ2

)
is reached at which the point H1 is on the

lineW = W2 = 1 + ρ + ρ2. At this value of μ two lobes of B(∞), bounded by ω−3,
reach the line of initial conditions, the tangency points being the two preimages H 1−1
and H 2−1 of the point H . This gives a second bifurcation of the basin D1(p∗), at
which two new holes are created around the tangency points, and the basin of the
REE p∗ is given by the union of 4 disjoint intervals, separated by holes of B(∞).

Other similar bifurcations occur at μ = μ∗
n , where μ∗

n = 1 + Wn +
2
√
Wn (1 + ρWn) at which ω−n−1, belonging to the set T−n−1(ω0), become tan-

gent to the line of initial conditions. This implies that 2n new holes are created. The
result of this sequence of bifurcations is that the basin assumes a structure which is
typical of a Cantor set. In fact, at each bifurcation value μ = μ∗

n , n ∈ N, the num-
ber of lobes of B (∞) is doubled, and the whole sequence of bifurcations causes a
fractalization of the basin boundaries near the focal points (and their preimages) that
gives a “finger-shaped” structure of B (∞). When μ reaches the limiting value
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Fig. 8 The case of Bray’s
learnng ρ → 1− with
μ = 12. The dots represent a
trajectory starting from the
initial condition (z0, 1) with
z0 = 0.3

μ∗
∞ = lim

n→∞ μ∗
n = 4 − ρ

1 − ρ
,

the point H1, together with all of its infinite preimages located at the top of the lobes,
reach the line of the ω-limit sets W = W ∗. Thus at μ = μ∗∞ infinitely many lobes of
B (∞) have been created, and all have a contact with a chaotic attractor A located
on the line W = W ∗. This contact between ∂B (∞) and the chaotic set causes the
disappearance ofA and for μ > μ∗∞ only divergent trajectories of the map T can be
obtained.

The global analysis of the basin boundaries just described holds for any value
of the memory ratio ρ belonging to the interval (0, 1). In particular, it also holds in
the limiting case ρ → 1−. In this case the singular line, where the focal points are
located, has equationW = −1. The equations of the curves which form the boundary
F are obtained from those given above just substituting ρ = 1. So, also in the case
of Bray learning (12), the complexity in the structure of the basins is conserved, as
shown in Fig. 8, obtained with ρ = 1 and μ = 12.

Similar structures of the basins are obtained for other models represented by
unimodal maps, like the model proposed in Dimitri (1988), whose global analysis is
given in Bischi and Naimzada (1997).

4.2 Bimodal Maps: Coexisting Stable REEs and the Problem
Of equilibrium Selection

In the model analyzed above, one of the two “competing” equilibria is a rather
unrealistic attractor at infinity. However, similar results hold when two or more
bounded coexisting equilibria, or more complex bounded attractors of the limiting
map g exist, such as periodic cycles or chaotic sets. An interesting situation arises if
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a model with expectations is such that two REEs exist which are both stable under
a learning rule, i.e. two “competing” rational expectation equilibria whose selection
depends on the initial condition. In order to show an example where this happens,
we consider a bimodal function F defined as

F(x) = −ax3 + 3ax2 − 2ax + 1 (55)

This map has three fixed points, say x∗
1 < x∗

2 < x∗
3 , as shown in Fig. 9a, where the

graph of F is represented, for a = 3, together with the graph of g0.3 = 0.7x +
0.3F(x), the map which governs the one-dimensional dynamics of the expected
values when adaptive expectations (4) are introduced with α = 0.3, and also repre-
sents the limiting map for the two-dimensional dynamics describing the statistical
learning (18) with ρ = 0.7. From this graph it is evident that x∗

2 is always unstable,
both for F and for g, whereas for a given value of a the REEs x∗

1 and x
∗
3 are stable for

g provided that sufficiently low values of α (or sufficiently high values of ρ) are con-
sidered. So situations of two coexisting stable REEs x∗

1 and x∗
3 are easily obtained.

In this case, the problem of equilibrium selection is related to the delimitation of the
basins. Such problem is simple as far as adaptive learning (4) is concerned. In fact,
the stable set of the unstable REE x∗

2 , given by the set of all of its preimages, consti-
tutes the boundary which separates the basin of x∗

1 from the basin of x∗
3 . These basins

are formed by the two immediate basins, which include x∗
1 and x∗

3 respectively, and
infinitely many disjoint portions, preimages of the immediate basins, which accu-
mulate at the two periodic points of a repelling cycle {s1, s2} which also constitutes
the boundary of the basin of infinity, i.e. s1 and s2 separate the points which generate
trajectories converging to bounded attractors from the ones generating unbounded
trajectories.

Instead, if the two-dimensional map equivalent to themodel with statistical learn-
ing (18) is considered, the basins appear to be more complex. In Fig. 9b the two-
dimensional basins of

(
x∗
1 ,W

∗) and
(
x∗
3 ,W

∗), located along the line W = W ∗ =
1/(1 − ρ), are represented by grey and light-grey regions respectively, whereas the
black region represents the basin of infinity. In this case the common boundary of the
dark-grey and white regions is given by the stable set of the saddle point

(
x∗
2 ,W

∗)
and the boundary of the basin of infinity is formed by the stable set of the saddle-cycle
S ={(s1,W ∗), (s2,W ∗)}. As usual, the structure of these boundaries is made up of
lobes and crescents originating from the three focal points Qi = (

x∗
i ,−1/ρ

)
, and

the complexity of the basins of the model with statistical learning is related to the
fact that the boundaries of such lobes and crescents intersect the line of initial con-
ditions W = 1 in several points, so that the basins of the two stable REEs are quite
different from those observed for the model with adaptive learning. For example,
the trajectory starting with the initial condition x (e)

1 = x0 = 0.3 < x∗
2 , converges to

x∗
3 , and the one starting from x (e)

1 = x0 = 1.7 > x∗
2 , converges to x∗

1 , whereas with
adaptive expectations any trajectory startingwith x0 < x∗

2 converges to x
∗
1 , so that the

equilibrium selection results obtained with adaptive expectations are now reversed.
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Fig. 9 a The graphs of the map F given in (55) for a = 3 together with the graph of g0.3 = 0.7x +
0.3F(x); b Basins of attraction of the map (35) with F in (55): the light-grey region represents the
basin of

(
x∗
3 ,W ∗), the grey region is the basin of (

x∗
1 ,W ∗), the black region is the basin of infinity

This different equilibrium selection happens when the initial conditions are taken
inside the “holes” given by the intersections of lobes and crescents with the line
of initial conditions W = 1, whereas other initial conditions converge to the same
equilibrium as in the model with adaptive expectations. This is true, for example, for
the two trajectories represented in the figure, obtainedwith x (e)

1 = 0.8 and x (e)
1 = 1.2.

4.3 An O.G. Forward Looking Model Represented by an
Increasing Map

A large class of economic problems are characterized by forward-looking expecta-
tions, i.e. are modeled by a discrete time law of motion of the form

xt = F(xet+1) (56)

Common examples in which such mappings are obtained by Overlapping Genera-
tions (O.G.) models, where agents typically living two periods (say young and old)
take the consumption and/or saving decision of their whole life in the first period
(when young) so that they must guess (i.e. foresee) which will be the status of the
economy (e.g. prices) one period ahead, when they will be old. As in the previous
sections, xt represents the current (or realized) state variable of the economic sys-
tem at time t and xet+1 is the expected state for time t + 1 according to the agents’
forecasting rule and their information set at time t .

Under the assumption of perfect foresight (2) the agents correctly anticipate the
future state, i.e. x (e)

t+1 = xt+1 for each t , and this defines the rational expectations
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equilibrium profiles through the iteration scheme

xt = F(xt+1), (57)

called backward PF dynamics. Indeed (57) has no dynamical meaning, but it must be
simply seen as a recursive scheme which defines an intertemporal equilibrium with
PF along which expectations are fulfilled, i.e. the equilibrium sequences generated
by the recurrence (57) represent the outcomes of the economic system under the
strong assumption that the agents are characterized by self-fulfilling RE.

In this case, we can have rational expectation time paths which are more complex
than a stationary state. In fact, a recurrence of the form (57) can generate periodic
sequences of any period or even aperiodic (i.e. chaotic) bounded sequences.

A fixed point of (57) defines a Rational Expectations Equilibrium (REE), a k-
periodic cycle Ck = {α1, . . . ,αk}, with αi 	= α j , ∀ i, j = 1, . . . , k, such that αi =
F(αi+1), i = 1, . . . , k − 1, and αk = F(α1), represents a Rational Expectations
Cycle (REC) and so on.

In the literature on forward looking models, learning mechanisms are often pro-
posed where the computation of xet+1 does not involve the current state xt . Such
assumption is usually motivated by saying that in modeling forward looking expec-
tations generally the “subjects are requested to make forecasts at the beginning of
period t , when xt is not in their information set” (from Marimon et al. (1993)).

Under this assumption, the presence of xt in both sides of the equation (56) is
avoided, and it is immediate to realize that the one-dimensional dynamics which
describe the time evolution of expected values of the model (56) under adaptive
learning as well as the two-dimensional dynamics which describes the time evolu-
tion of expected values of the model (56) under the statistical learning, are the same
as those described in the previous sections. So, the method and the results described
above can be applied to many models with forward looking expectations which have
been proposed in the literature. As an example, let us consider an Overlapping Gen-
erations model, proposed in Evans and Honkapohja (1995), where a representative
consumer is assumed to live for two periods: period t (when young) and period
t + 1 (when old), and its utility function is Ũ = U (ct+1) − V (nt ), where ct+1 is the
consumption when old, nt the labor supply when young. In Evans and Honkapohja
(1995) a concrete illustration is given, withU (c) = c1−σ

1−σ
, σ > 0, V (n) = n1−ε

1−ε
, ε > 0

and a production function f (nt , Knt ), where Knt is the aggregate labor supply of
K consumers, is considered in the separable form f (n, Kn) = nαψ (Kn), where
ψ (Kn) = A (I ∗)β . These assumptions allow to obtain, for the consumer optimiza-
tion problem with budget constraints

p(e)
t+1ct+1 = Mt and pt f (nt , Knt ) = Mt
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Fig. 10 a The graphs of themap F taken fromEvans andHonkapohja (1995); bBasins of attraction
of the map (35) with this map F : the light-grey region represents the basin of

(
n∗
3,W

∗), the grey
region is the basin of

(
n∗
1,W

∗), the black region is the basin of infinity

a law of motion in the forward looking form

nt = F(n(e)
t+1)

where F has a graph like the one shown in Fig. 10a, which is obtained with the same
set of parameters used in Evans and Honkapohja (1995). The function F has three
REEs denoted by n∗

i , i = 1, 2, 3, two of which are stable. In Evans and Honkapohja
(1995) the following learning scheme is introduced

n(e)
t+1 = (1 − αt )n

(e)
t + αt nt−1 = (1 − αt )n

(e)
t + αt F(n(e)

t )

with αt = 1/t , i.e. the Bray learning (12).
If we consider the most general statistical learning (18) we obtain the same basins

as the ones obtained for the limitingmap g1−ρ, i.e. bounded by the unstable REE. This
is shown in Fig. 10b, where the basins of the two-dimensional map equivalent to the
statistical learning (18) are represented by different grey regions. The intersection of
the line of the initial conditions W = 1 with the intermediate-grey region represents
the basin of the REE n∗

1 and the intersection with the light-grey region represents the
basin of the REE n∗

3. Since the portions of the stable set of the saddle point
(
n∗
2,W

∗)
which are not along the invariant line z = n∗

2 (i.e. the arcs originating from the focal
points Qi ) are confined below the line of initial conditions W = 1, the basins are
simply bounded by the unstable REE n∗

2, as in the case of adaptive expectations,
as shown in Fig. 10b. Of course, the same holds for ρ = 1, i.e. in the case of Bray
learning.
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5 Conclusions and Further Research

The inclusion of memory of past states in discrete dynamical systems that represent
economic models with expectations has been considered in the form of a weighted
average with exponentially decreasing weights. This scheme is then compared to
adaptive expectations. The two methods to compute expected values share the same
attractors but differ for the role played by initial conditions as in general they have dif-
ferent basins of attraction with several coexisting attractors. So, in cases of multista-
bility different equilibrium selections can be obtained. This result has been obtained
through the study of the basins of a two-dimensional map equivalent to the statis-
tical learning with fading memory, by using some methods for the study of global
bifurcations of plane maps with a denominator that vanishes in a one-dimensional
subset of the phase space. The results described in this paper have been illustrated
by some simple economic examples, such as cobweb models and an overlapping
generations framework. Following the path indicated by some recent works by Mat-
sumoto and Szidarovszky in continuous-time oligopoly models with exponentially
fading memory, also the methods described in this paper for discrete-time models
may be usefully applied in Cournot or Bertrand oligopoly games in discrete time,
see e.g. Deschamps (1975) or Thorlund-Petersen (1990). Such games, endowed with
fadingmemory, will be reduced to an equivalent autonomousmapswith denominator
of dimension greater than two, a quite challenging mathematical task.
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