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11.1 Introduction

The present chapter is in the Goodwin (1951) tradition, with all bounds in-
corporated in the investment function, even the ceiling, which means that it is
the investors who abstain from investing more once available resources put a
limit on further expansion (in real terms). Goodwin modelled a continuous-
time process, as described in Chapter 10, whereas the present model is cast
in discrete time.

Goodwin further advocated a smooth investment function with asymp-
totes, such as a hyperbolic tangent shape. One of the present authors, Puu
(1989) suggested a combination of linear-cubic terms in the investment func-
tion. The back-bending, caused by the cubic, needed to be given a factual
explanation in terms of economics. Even if the complete model could be
tuned so as to limit motion so that the cubic never hit the axes, which would
be absurd, the existence of a maximum and a minimum were still responsible
for some of the more exotic phenomena, and so needed an explanation.

This was not difficult. If one considers the hyperbolic tangent shape
of the investment function as relevant for private investments, one could in
addition consider public investments. In particular long-term budgets for
infrastructure investments tend to be countercyclically distributed. This is
partly due to an active wish to fight excessive changes in the cycle causing
unemployment or inflation, and partly due to the advantage of using idle
resources and low costs in the slump rather than in the boom.

A slightly different model was studied in Puu and Sushko (2004). The
setup was as follows: Consumption was defined as C; = (1 — s)Y;—1 +
esY;_g, where 0 < s < 1 was the complementary proportion saved (or, in
terms of other chapters of this book, 1 — s = ¢), and a fraction 0 < ¢ < 1 of
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savings was assumed to be spent after being saved for one period. Investment
was defined as I; = v((Y;_1 — Y;_2) — (Yi_1 — Y;_2)?). To this we add the
income identity Y; = C; + I;. As we see, the consumption and investment
variables can be eliminated, and the model cast as a second order recurrence
equation in income alone, though containing a cubic nonlinearity.

The setup of the model just described obviously is non-generic, as the
investment function is symmetric with respect to the origin. The aim of the
present study is to also include an even order quadratic term to the investment
function: I; = a((Y;—1 — Yi—2) +b6(Y;_1 — Y 2)2 — (Y;_1 — Y;_2)3),s0 as
to break the symmetry, and produce a more generic model. The consumption
function is defined as C; = ¢Y;_1, thus skipping the two-period lagged setup
of Puu and Sushko (2004). As before, substituting to the income identity, we
get a second order difference equation in income variable:

Vi=cYi 14 a((Yii1 — Yiio) +b(Yii1 — Yi2)? — (Vi1 — Yi_2)3). (1)

11.2 Description of the Map

Let ; := Y;, y := Y;_1. Then to describe the dynamics of the model
introduced above we have to study the behavior of trajectories of a two-
dimensional map F' : R? — R? given by

I < x)H ( cx + a(x — y) + ab(z — y)? — a(z — y)? ) 2

Y x
where a, b and c are real parameters such that
a>0,0<c<]1. 3)

The parameter b is responsible for the symmetry of the investment function,
namely, for b = 0 the *floor’ and ’ceiling’ are located at equal distance from
the origin, while the case b # 0 is more general.

In this chapter we shall illustrate some local and global bifurcation mech-
anisms related to the Neimark-Sacker bifurcation in a smooth map (already
introduced in Chapter 1). We shall see how the stability loss of the fixed
point with a pair of complex-conjugate eigenvalues on the unit circle results
in the appearance (in the neighborhood of the fixed point) of an attracting
closed invariant curve homeomorphic to a circle!, and how this curve can be
destroyed leading to complex dynamics.

'In invertible maps it is also called a two-dimensional torus, being associated with the
Poincaré section of a three dimensional flow.
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To begin, let us derive some simple properties of the map F. First note that
F' is a noninvertible map: In the phase space there exist two straight lines
denoted LC_; and LC" 1, which are related to the vanishing determinant of
the Jacobian matrix of F':

LCy = {(z,y):y=2—k},
LC, = {(z,y):y=x—ka},

where k1 = (b — V0% + 3)/3, ka = (b+ Vb? + 3)/3. Images of these lines
by F are also straight lines, called crifical lines and denoted LC and LC',
respectively:

LC = {(:z:,y):y:x/c—akl(k%—bkl—l)},
LC" = {(z,y):y=ax/c— aky(kj —bky —1)}.

The role of the critical curves LC and LC’ is related to the foliation of the
Riemann phase plane: Any point between these two lines has three different
preimages, while any point outside this strip has only one preimage. Thus,
the map F' has a noninvertibility of so-called (Z; — Zs — Z1) type. Other
examples of maps with such a kind of noninvertibility can be seen in Mira
et al. (1996), Dieci et al. (2001), Chiarella et al. (2002), Puu and Sushko
(2004), Bischi et al. (2005).

It is known that the critical lines and their images play an important role
for the dynamics of a noninvertible map (for a survey see Mira et al. (1996)).
As we shall see, these images may define the boundary of an absorbing area
to which the attractors of the map, as well as other invariant sets, necessarily
belong. A contact of the boundary of some basin of attraction with the criti-
cal lines usually results in a global bifurcation causing the appearance of new
isolated islands of the basin (Mira et al. (1994)). Regarding to an invariant
attracting closed curve, which is the main interest of the present chapter, we
shall see that the intersection of this curve with LC'_; or LC”_; can give rise
to the appearance of infinitely many loops, which are impossible in invertible
maps (as already emphasized in Mira et al. (1996), Frouzakis et al. (1997)).
We shall also see other features of closed invariant curves, related, in partic-
ular, to the homoclinic bifurcation, described in Chapter 1 and Chapter 8 for
a fixed point, while here it will be related to a cycle of period 7.

Let us first describe the simplest kind of attractor of the map F', that
is, its fixed point. It can be easily seen that F' has a unique fixed point
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(z*,y*) = (0,0). The eigenvalues of the Jacobian matrix of F' at (z*, y*)
depend on the parameters a and c:

M2 =(a+ct/(a+c)? —4a)/2, 4)

from which we deduce that for the parameter range given in (3) the fixed
point (z*,y*) is anode if (c+ a)? > 4a, and a focus if (¢ +a)? < 4a, being
attracting for a < 1 and repelling for a > 1.

So, for a < 1 the fixed point of F' is attracting, but it obviously cannot
be a global attractor: Due to the cubic shape of the function defining our
map, there are initial points whose trajectories are divergent. Indeed, the
basin of attraction of the fixed point is bounded by the closure of the stable
manifold of a saddle cycle of period 2, denoted {p1, p2}, where p1(zo, yo) =
(bk/(1 —¢) +/k/a/2,bk/(1 —¢) — \/k/a/2), k = (¢ + 2a + 1)/2 and
p2 = F(p1).

It can be verified that for the parameter range here considered the saddle
cycle {p1, p2} always exists (as an example, see Fig.2), and its stable mani-
fold separates the basin of divergent trajectories from the set of points of the
phase plane having bounded trajectories (which may include several disjoint
basins and invariant sets). Running ahead we can say that the contact of an
attractor with the stable manifold of this saddle results in a boundary crises
which causes an explosion of the basin of divergent trajectories. Often, after
such a contact, almost all the trajectories of F' go to infinity and the surviv-
ing set is a chaotic repellor with a Cantor like structure (although a surviving
attractor may also exist, with a basin of attraction so small that it is numeri-
cally unobservable).

11.3 Neimark-Sacker Bifurcation and Arnol’d Tongues

At a = 1 the fixed point (z*, y*) has complex-conjugate eigenvalues on the
unit circle. It is known that if there is no so-called strong resonance, that
is Re A1 2 # cos 27m/n, where n < 4, and m/n is an irreducible fraction,
then a Neimark-Sacker bifurcation occurs resulting, when supercritical, in an
attracting invariant closed curve C homeomorphic to a circle, which appears
in the neighborhood of the fixed point. Note that other generic transversality
conditions have to be also fulfilled, see Guckenheimer and Holmes (1985),
Kuznetsov (1998). It can be verified that these conditions are satisfied for
the parameter range here considered.
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The dynamics of the map F' on the curve C are either periodic or quasiperi-
odic, depending on the parameters. Namely, if at a = 1 also the condition

€= Cm/n = 2cos(2rm/n) — 1, ®)

holds, then after the bifurcation, that is for a = 1 + ¢ for a sufficiently small
€ > 0, a pair of cycles of period n, an attracting node and a saddle, with
rotation number m /n exist on the curve C (also called a phase-locked torus),
so that this curve is made up by the closure of the unstable manifold of the
saddle cycle. Note that for ¢ > 0 we have m/n < 1/6. While if

c=cp =) cos(2mp) — 1, (6)

where p is an irrational number, then after the bifurcation there are quasi-
periodic trajectories on the curve C (also called quasiperiodic torus).

The dynamics of F' locally, in the neighborhood of the fixed point, de-
pend only on the parameters a and ¢, while the parameter b influences, obvi-
ously, the global dynamics. Due to the symmetry with respect to the origin of
the map F' for negative and positive values of b, we can restrict our analysis
only to the case b > 0 (the case b < 0 is analogous, with trajectories symmet-
ric with respect to the origin in the phase space, and symmetric structure of
the parameter space). We don’t consider in this chapter the particular value
b = 0, however in such a case F' has dynamics qualitatively similar to those
described in Puu and Sushko (2004).

Fig.1 presents a two-dimensional bifurcation diagram of the map F' in
the (a, c)-parameter plane at b = 0.2, where the parameter regions corre-
sponding to the attracting cycles of different periods n < 32, are shown by
different gray tonalities. The periodicity regions starting from the bifurca-
tion line @ = 1 are called Arnol’d tongues. It is known that the boundaries
of the Arnol’d tongue are two curves corresponding to saddle-node bifur-
cation of the related cycles (the lower and upper boundaries of the period-
icity tongues in Fig.1), while other boundaries (to the right) are related to
either period-doubling or Neimark-Sacker bifurcation of the related attract-
ing cycle. The periodicity tongue associated with the rotation number m /n
starts from the parameter point (a, ¢) = (1, ¢;,,/5, ), While the parameter point
(a,c) = (1,¢,) is the starting point for the curve corresponding to a closed
curve with quasiperiodic trajectories, related to the irrational rotation num-
ber p. Such a structure of the parameter plane reflects the Neimark-Sacker
bifurcation theorem mentioned above, according to which for the parameter
values taken near the bifurcation line @ = 1, that is for a = 1 + ¢ for some
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sufficiently small € > 0, in the neighborhood of the fixed point there exists
an attracting invariant closed curve C on which the map F' is reduced to a
rotation with rational or irrational rotation number. Examples of the curve
C in case of rotation numbers 1/6 and 1/7 can be seen in Fig.2 and Fig.8,
respectively.

Figure 1: Two-dimensional bifurcation diagram of the map F in the (a, c)-
parameter plane for b = 0.2. Parameter regions related to attracting cycles
of different periods n < 32 are shown by different gray tonalities.

At fixed value of ¢, on increasing the value of a the curve C is destroyed
and the dynamics of F' become more complicated. Let us first recall in short
possible scenarios leading to the destruction of a closed invariant attracting
curve:

(1) The related attracting cycle, being a node at its birth, becomes a fo-
cus. We can say that the closed invariant curve still exists but it is no longer
homeomorphic to a circle (an example can be seen in Fig.8). In such a case it
is quite common that when the parameter point leaves the periodicity tongue
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then the attracting focus undergoes a Neimark-Sacker bifurcation, and cycli-
cal closed invariant curves appear;

(2) The related attracting cycle can undergo period-doubling bifurcation;

(3) The curve C can lose its smoothness and becomes nondifferentiable
(due to infinitely many oscillations of one branch of the unstable manifold
of the saddle, approaching the node);

(4) The related saddle cycle undergoes homoclinic bifurcation;

(5) Intersection of the curve C with a critical line can lead to the cre-
ation of infinitely many loops, that is, to the selfintersections of the unstable
manifold of the saddle (see Fig.3).

If the parameter point leaves the periodicity tongue crossing the saddle-
node bifurcation curve when C is still smooth, then we have transition from
the phase-locked torus to the quasiperiodic one. In the two cases (3) and
(4), if the parameter point leaves the periodicity tongue crossing the saddle-
node bifurcation curve, then the curve C is transformed into a set with fractal
structure.

The destruction of a two-dimensional torus in the case of diffeomor-
phisms was first described in Afraimovich and Shil’nikov (1983). In Aron-
son et. al. (1982) it was in particular shown that torus can be destroyed
also due to the contact with its basin boundary. See also Anishchenko et
al. (1994), Arnol’d et al. (1991) for further details and examples. The first
four scenarios can occur both in invertible and noninvertible maps (for the
examples related to noninvertible maps see Gumowski and Mira, (1980a,b)),
while the case (5) obviously can occur only for a noninvertible map (several
examples are given in Mira ef al. (1996), Frouzakis et al. (1997), Maistrenko
et al. (2003)), and one example will be given also in the next section.

In the last section we shall describe a sequence of transformations occur-
ring at fixed c and increasing a, associated with a 7-node, which becomes at
first a 7-focus (i.e. case (1) above), then it becomes a 7-node again (with one
negative eigenvalue), which undergoes the flip bifurcation. Futher increase
of a leads to appearance of two 7-cyclical closed invariant curves, attracting
and repelling, via global bifurcations as described in Chapters 1 and 8.

To close this section we mention an important feature of nonlinear maps
for parameter values taken far from the Neimark-Sacker bifurcation curve,
which is that the periodicity regions can be overlapped (as it can be seen in
Fig.1 or Fig.7). This means that coexistence of attracting cycles of different
periods is not a rare phenomenon, and usually this situation leads to several
kinds of global bifurcations in the invariant sets and/or in the basins of at-
traction of the coexisting attracting sets.
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11.4 First example of bifurcation sequence: Creation of loops and
period-doubling cascade

In this section we present a bifurcation scenario of transition to complex dy-
namics, related to the destruction of the closed invariant curve C via creation
of infinitely many loops (an effect of the noninvertibility, leading to the self-
intersections of the unstable set of the saddle cycle), and the period-doubling
cascade of the attracting cycle existing on C.

Let v,, denote an attracting cycle of period n, and ;" ~y,-, denote saddle
cycles of period n with, respectively, positive and negative eigenvalue related
to the unstable eigendirection.

For the first example we fix b = 0.2 and ¢ = 0.02 and will increase a
starting from ¢ = 1.3, as shown in Fig.1 by the straight line with an arrow.
The phase portrait of the map F' at @ = 1.3 is presented in Fig.2: There
exists an attracting invariant closed curve C made up the unstable manifold
of the saddle cycle yz{ approaching points of the attracting cycle 4. The

-1 -0.5 0 0.5 1 X

Figure 2: Phase portrait of the map F at a = 1.3, b = 0.2, ¢ = 0.02. The
attracting closed invariant curve is formed by the closure of the unstable
manifold of the saddle 6-cycle (shown by white circles), approaching the
points of the attracting 6-cycle ( the black circles).
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basins of attraction of C and that of infinity (i.e., of divergent trajectories)
are separated by the stable manifold of the saddle cycle {p1, p2} . It can be
seen that the curve C intersects the critical line LC_1 and is folded on LC
(i.e., tangent to LC' and bent to the right) without creation of loops, which in
particular means that the map F' is invertible on C, and C is homeomorphic
to a circle. However, it is worth noticing that the area bounded by C is not
invariant under application of F": In fact it is invariant only as long as the
closed curve C has no intersections with the lines LC'_; and LC” {, and this
is no longer true in the case shown in Fig.2. According to the results stated
in Frouzakis et al. (1997) (see also Maistrenko et al. (2003)), the cusp points
and then the loops are created on C if the slope of the tangent of the curve C
at the point of intersection with LC_; (or LC" ;) at first is the same and then
becomes larger then the slope of the eigenvector associated with the zero
eigenvalue of the Jacobian matrix of the map F' at that point. Fig.3 shows
the curve C at a = 1.45 when the loops are already created, thus the map F
is noninvertible on the curve C, which obviously is no longer homeomorphic
to a circle.

0.6

0.4r

-0.21

0.4

0.6

-0.6 -0.4 -0.2 1] 0.2 0.4 0.6 X

Figure 3: The attracting closed invariant curve C with infinitely many loops
ata=1.45,06=0.2,c=0.02.

If we continue to increase the values of a, the cycle 4 undergoes a cas-
cade of the period-doubling bifurcations: At a ~ 1.4952 the first period-
doubling bifurcation occurs resulting in a saddle v4 and attracting cycle
v19- Fig.4 presents the phase portrait of the map F' at a = 1.5, where the
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attracting cycle ;5 and two saddle cycles ’yg and -4 are shown, together
with the unstable manifold of fyg , which has infinitely many loops. The
value a = a* =~ 1.548481 is a limit for the values related to the period-
doubling cascade of the cycle 4. Approaching the value a* from the oppo-
site side we have a cascade of homoclinic bifurcations for the saddle cycles
Yers k¥ = 1, ..., born during the period-doubling cascade of 4. Each of these
homoclinic bifurcations gives rise to the pairwise merging of pieces of cyclic
chaotic attractors. As an example, Fig.5 shows the 12-piece chaotic attractor
at a = 1.56, near the first homoclinic bifurcation of the cycle v (shown
by the gray circles). The result of this homoclinic bifurcation is a 6-piece
chaotic attractor.

Figure 4: The phase portrait of the map F and its enlarged part at a = 1.5,
b= 0.2, c = 0.02 : The points of the saddle cycles ’yg and g , are shown
by white and gray circles, respectively, Black circles indicate points of the
attracting cycle 7.

The basin of attraction of each of the 6 pieces of the chaotic attractor is
separated by the stable manifold of the saddle cycle of period 6, while the
unstable branches tend to the attractor (indeed, the closure of the unstable set
of the saddle includes the chaotic pieces). Thus, if we consider the map F,
a contact of the chaotic pieces with the boundary of their immediate basins
results in the first homoclinic bifurcation of the 6-saddle. Such a bifurcation
gives rise to the merging of these 6 pieces into a one piece chaotic attractor.
Fig.6(a) presents a one-piece chaotic attractor soon after this contact bifurca-
tion. In general such a transition is accompanied by a so-called “rare points”
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phenomenon, reflecting the difference in density of the points along the at-
tractor, as explained in detail in Mira et al. (1996), Gardini et al. (1996),
Maistrenko et al. (1998).
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Figure 5: The 12-piece cyclic chaotic attractor of the map F' at a = 1.56,
b=02,c=0.02.
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Figure 6: (a) One-piece chaotic attractor of the map F at a = 1.5802,
b=0.2, c=0.02; (b) Its absorbing area.

All the attracting sets of the map F’ existing in the considered parame-
ter range, after the bifurcation of the fixed point (see Fig.2 up to Fig.6(a))
belong to an absorbing area which is obtained by taking the images of a
few segments of LC_; and LC” ;, which are exactly those pieces inside the
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area. An example is shown in Fig.6(b): The area is bounded by six images
of the indicated segments of LC_; and LC” ;. The simply connected area
is invariant, while the annular area, shown in gray in Fig.6(b), which more
strictly includes all the existing invariant sets (except for the repelling fixed
point), is absorbing but not invariant: A thinner annular invariant area can be
obtained by using further images of the critical segments.

11.5 Second example: focus, bistability and global bifurcations of
closed invariant curves

In this section we present one more example of bifurcation sequence which
includes the destruction of the closed invariant curve C followed by a par-
ticular type of global bifurcation. This transition to complex dynamics is
more complicated with respect to the one described in the previous section,
as it includes bistability and one more Neimark-Sacker bifurcation. A global
bifurcation related to this “secondary” Neimark-Sacker bifurcation will be
emphasized, which gives rise to a pair of cyclical closed invariant curves,
one attracting and one repelling.

Figure 7: Two-dimensional bifurcation diagram of the map F in the (a,c)-
parameter plane at b = 0.5.

We present a sequence of bifurcations related to the attracting cycle v,
fixing the parameters b = 0.5, ¢ = 0.21 and increasing the value a starting
from a = 1.24. The corresponding parameter path is shown in Fig.7 by the
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straight line with an arrow. The phase portrait of the map F' at a = 1.24
is qualitatively similar to the one shown in Fig.2: Namely, there exists a
closed attracting invariant curve C, homeomorphic to a circle, made up by
the unstable manifold of the saddle cycle fy;r , approaching the points of the
attracting node <y,. Increasing a the cycle vy, becomes a focus (see Fig.8
where a = 1.31), so that the curve C is no longer homeomorphic to a circle.
The basins of attraction of each point of the attracting cycle -y, (considering
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Figure 8: The phase portrait and its enlarged part of the map F at a = 1.31,
b=0.5,c=0.21.

Figure 9: Individual basins of attraction of points of the attracting cycle v
(the black circles), bounded by the stable manifold of the saddle cycle ’y;r
(the white circles).
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the map F'7) is presented in Fig.9: The boundary, formed by the stable man-
ifold of the saddle cycle fy;r has a regular structure. The intersection of the
basin with the critical lines LC and LC’ creates disconnected components
of the basins, located on LC_; and LC" ;.

Increasing a a saddle-node bifurcation occurs giving rise to an attracting
and a saddle cycle of period 21, and, thus, to bistability: Fig.10 presents the
phase portrait of the map F' at a = 1.378, with the attracting cycles v, and
741 (shown by big and small black circles, respectively), the saddle cycle ’7;1
(the black squares) and the repelling cycle of period 7 (the white circles),
which is the former saddle cycle fy;“ after the period-doubling bifurcation
resulted in the saddle cycle 'yﬂ (white squares). The basin of attraction of
the cycle 75, is shown in white, while the basin of attraction of -y, is shown in
dark gray. These two basins are separated by the stable set of 'ygrl. The light
gray region corresponds to divergent trajectories. Further development of

.—0.6 —0.d 0.2 ) 0.2 0.4 0.6 0.8 X 1

Figure 10: The phase portrait of the map F at a = 1.378,b = 0.5, ¢ = 0.21
with coexisting attracting cycles o and ~y; whose basins of attraction are
shown in white and gray, respectively.
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the scenarios, increasing a, is related to the cascade of the period-doubling
bifurcations of the cycle 7y4;. Fig.11 shows an enlarged part of the phase
space with several pieces of a 21-piece cyclic chaotic attractor coexisting
with the attracting cycle v, at a = 1.381. This chaotic attractor disappears
due to a boundary crises, i.e., a contact with its basin boundary, which at the
same time is the first homoclinic bifurcation of the saddle cycle 4. Soon
after this contact there is only one attractor, the cycle v, surrounded by a
chaotic repellor created at the mentioned homoclinic bifurcation.

0.2

Figure 11: An enlarged part of the phase space of the map F at a = 1.381,
b=0.5,c=0.21.

The parameter path shown in Fig.7 is chosen in such a way that at the
exit of the 7-periodicity tongue the cycle v, undergoes a period-doubling
bifurcation resulting in a saddle cycle v, and an attracting cycle vq4. For
example, at a = 1.41335 the parameter point is inside the periodicity re-
gion corresponding to an attracting cycle v,4. However, as a increases, the
parameter point moves towards a region which is also close to the Neimark-
Sacker bifurcation of the 7-cycle, and the global bifurcation may occur, al-
ready described in Chapters 1 and 8 (related there with a fixed point of the
map). Indeed, such a global bifurcation has been detected, which gives rise
to the appearance of a pair of disjoint 7-cyclical closed invariant curves, one
attracting, denoted I'7, and one repelling, denoted I';, surrounding the points
of the saddle cycle v, and the attracting cycle ;4. After the first homoclinic
bifurcation of the cycle v, the curve I'; undergoes pairwise splitting and be-
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comes a 14-cyclical repelling closed invariant curve I} ;: The phase portrait
of the map F' at a = 1.4134 is shown in Fig.12 (a) and an enlargement is
given in Fig.12 (b), where it can be seen one curve of I'; and two curves of
I"} 4, which surround the points of the cycles v, and v , shown by black and
white circles, respectively. The 14-cyclical repelling closed invariant curve

|4 bounds the basin of attraction of 4, while the wider basin (among
the points having bounded trajectories) is that of points attracting to I'y. As
expected, on further increasing of a the cycle v;, becomes unstable via a
subcritical Neimark-Sacker bifurcation, leaving the 7-cyclical closed curve
I'7 as unique attracting set.

0.9 -0.15
d ¥

-0.5 0.2
0.5 {(a) X 09 0.252 (b) X 0264

Figure 12: In (a) the T-cyclical attracting closed invariant curve Iy is visible,
while in the enlargement (b), besides one curve of I'7, it can be also seen two
curves of the 14-cyclical repelling closed invariant curve I}, which bound
the basin of attraction of the cycle 4.
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