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2.1 Introduction

It is already well known that the main bifurcation scenario which can be re-
alized considering a business cycle model in dynamic context, is related to
a �xed point losing stability with a pair of complex-conjugate eigenvalues.
In the case in which such a model is discrete and de�ned by some smooth
nonlinear functions, the Neimark-Sacker bifurcation theorem can be used,
described in the previous Chapter. While for piecewise linear, or piecewise
smooth, functions which are also quite often used for business cycle mod-
eling, the bifurcation theory is much less developed. The purpose of this
Chapter is to describe a so-called center bifurcation occurring in a family
of two-dimensional piecewise linear maps whose dynamic properties are, to
our knowledge, not well known. Namely, we shall see that in some similarity
to the Neimark-Sacker bifurcation occurring for smooth maps, for piecewise
linear maps the bifurcation of stability loss of a �xed point with a pair of
complex-conjugate eigenvalues on the unit circle can also result in the ap-
pearance of a closed invariant attracting curve homeomorphic to a circle.
However, differently from what occurs in the smooth case, the closed in-
variant curve is not a smooth, but a piecewise linear set, appearing not in a
neighborhood of the �xed point, as it may be very far from it. In fact, we
shall see that the position of the closed invariant curve depends on the dis-
tance of the �xed point from the boundary of the region in which the linear
map is de�ned (i.e., from what we shall call critical line LC�1).
We shall describe the global dynamics of a piecewise linear map at the

moment of the center bifurcation and after it, comparing the cases in which
the map is invertible and noninvertible. For this study we consider a family
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of two-dimensional piecewise linear maps F : R2 ! R2 given by

F : (x; y) 7!
�
F1(x; y); (x; y) 2 R1;
F2(x; y); (x; y) 2 R2;

(1)

where

F1 :

�
x
y

�
7!
�
(c+ a)x� ay
x

�
;

R1 = f(x; y) : y � x+ d=ag ;

F2 :

�
x
y

�
7!
�
cx� d+ b(x+ d=a� y)
x

�
;

R2 = f(x; y) : y > x+ d=ag :

For convenience, as it will be explained below, we shall assume that the real
parameters a; b; c and d satisfy the following conditions:

a > 0; �(c+ 1)=2 < b < 1; 0 < c < 1; d > 0: (2)

Our choice of the map F is due to the fact that for b = 0 it is a piecewise
linear Hicksian multiplier-accelerator model with a lower constraint d, called
`�oor', introduced in Chapter 3 and described also in Chapter 6 (the case in
which an upper constraint, called `ceiling', is not involved in asymptotic
dynamics). As we shall see, in such a case we have a particular kind of
noninvertibility in which a whole half-plane R2 is mapped into one straight
line, so that the map is of so-called (Z0 � Z1 � Z1) type. While for b 6= 0
the map F can be either invertible (for b > 0), or noninvertible (for b < 0) of
(Z0 � Z2) type, so that we can compare the results of the center bifurcation
in these cases.
The map F is given by two linear maps F1 and F2 de�ned, respectively,

below and above the straight line

LC�1 = f(x; y) : y = x+ d=ag :

The image of this line by F is called critical line LC or LC0:

LC0 = F (LC�1) = f(x; y) : y = (x+ d)=cg ;

and its image LCi = F i(LC0); i = 1; :::; which is a curve made up by a
�nite number of linear segments, is also called critical line (of higher rank).



2 Center Bifurcation for a Piecewise Linear Map 3

Although this notation is more properly used when the map is noninvertible,
we keep it in any case. As stated above, invertibility is controlled by the
parameter b. For b > 0 a point on the right of LC has a unique rank-1
preimage by F�11 (giving a point in R1), while a point on the left of LC has
a unique rank-1 preimage by F�12 (giving a point in R2). Instead, for b < 0
a point on the left of LC has no rank-1 preimage, while a point on the right
of LC has two distinct rank-1 preimages: One preimage by F�11 (giving a
point in R1), and the other by F�12 (giving a point in R2).
The map F has a unique �xed point (x�; y�) = (0; 0) which is the �xed

point of the map F1; while the �xed point of the map F2 belongs to the main
diagonal of the phase plane, which is in R1; so that it is not a �xed point of
F . Using eigenvalues �1;2 of the Jacobian matrix of the map F1; given by

�1;2 = (a+ c�
p
(a+ c)2 � 4a)=2; (3)

we get that for the parameter range given in (2) the �xed point (x�; y�) is
attracting for a < 1 and repelling for a > 1; being a node for (c+ a)2 > 4a
and a focus for (c+ a)2 < 4a:
Thus, in the range (2) the �xed point loses stability at a = 1 with a pair

of complex-conjugate eigenvalues crossing the unit circle, so that a center bi-
furcation occurs, which is the main interest of the present Chapter. It is clear
that in a piecewise linear map the local bifurcation of a �xed point depends
only on a corresponding linear map (here F1), while the global behavior in
the phase space depends on the interaction between the other linear maps
(which may give rise to any kind of dynamics). In our case, in the region R2
the map F2 is de�ned, so that although the map F has no �xed points in that
region, the eigenvalues of F2, say �1;2; are important in the global behavior
of F . We have

�1;2 = (b+ c�
p
(b+ c)2 � 4b)=2;

so that for 0 < c < 1 the �xed point of the linear map F2 is:

� a repelling node for (c+ b)2 > 4b and b > 1;

� an attracting node for (c+ b)2 > 4b and �(c+ 1)=2 < b < 1;

� a �ip saddle for b < �(c+ 1)=2;

� a focus for (c + b)2 < 4b; attracting for 0 < b < 1 and repelling for
b > 1:
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Here we are interested in the study of the dynamics after the center bifurca-
tion of (x�; y�); when the �xed point is an unstable focus and the dynamics
are bounded. To this purpose we restrict our analysis to the range of b for
which the �xed point of the map F2 is stable, that is �(c + 1)=2 < b < 1.
Indeed, when the �xed point of the map F2 is unstable we may have diver-
gent trajectories: If, for example, b > 1; then for a > 1 (when the �xed point
of F is unstable), we have only divergent dynamics, because the two linear
maps are both expanding, so that any combination of the two maps is also
expanding and no stable cycle can exist. Also for b < �(c+ 1)=2; when the
�xed point of the map F2 is a �ip saddle (i.e., with one negative eigenvalue),
we may have both bounded and unbounded trajectories. This explains our
choice of the parameter range given in (2).
It is clear that when the �xed point (x�; y�) of F is stable then it is

globally stable (because for the range (2) the two linear maps are both con-
tracting, so that any combination of the two maps is also contracting and a
repelling cycle cannot exist). While when the �xed point (x�; y�) of F is
unstable (a > 1) we can have bounded dynamics only as long as it is a fo-
cus, i.e. for (c + a)2 < 4a (because when it is a repelling node then all the
trajectories are divergent, except for the �xed point).
As remarked above, at a = 1 the �xed point (x�; y�) undergoes the cen-

ter bifurcaiton, and the dynamic behavior occurring at this particular bifur-
cation value is described in the next section. We shall see that independently
on the sign of b (invertible or non invertible map) and independently on the
type of eigenvalues of the linear map F2; the map F admits an invariant re-
gion, whose size depends on the distance of the �xed point from the critical
lines. We shall also comment the global behavior of F (i.e. the dynamics
of points outside the invariant region). Then, in the next sections, we shall
describe the global behavior of F after the center bifurcation, showing that
only the boundary of the region remains invariant, being an attracting closed
curve C, and the dynamics of F on C are either periodic, or quasiperiodic,
depending on parameters.

3.2 Dynamics at the bifurcation value (a = 1)

In this section we �rst describe the phase portrait of the map F exactly at
the bifurcation value a = 1. In such a case the �xed point (x�; y�) is locally
a center: The map F1 is de�ned by a rotation matrix (whose determinant
equals 1), and it is characterized by a rotation number which may be rational,
say m=n; or irrational, say �. It is clear that locally, in some neighborhood
the �xed point, the behavior of F is that of the linear map F1, thus we have
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a region �lled with invariant ellipses, each point of which is either periodic
of period n (in case of a rational rotation numberm=n) or quasiperiodic (in
case of an irrational rotation number �). Now the problem we are faced on
is to answer the following questions: How big is this region? What is its
boundary? What occurs to points outside it? We answer distinguishing the
two different cases on the kind of rotation number (rational or irrational).
The invariant region we are looking for clearly is completely included in

the regionR1 (i.e., the region of de�nition for F1), and it is given by the set of
points of R1 whose trajectories entirely belong to R1: Thus it must include
all the ellipses (invariant for F1) which are completely included in R1; so
that such a region must necessarily include a region bounded by an invariant
ellipse which is tangent to the straight line LC�1: So we can immediately
answer to some of the previous questions in the case of an irrational rotation
number.
If F1 is de�ned by a rotation matrix with an irrational rotation number �,

which holds for a = 1; and

c = c�
def
= 2 cos(2��)� 1; (4)

then any point from some neighborhood of the �xed point is quasiperiodic,
and all the points of the same quasiperiodic orbit are dense on the invariant
ellipse to which they belong. (Note that for c > 0 we have � < 1=6). In
such a case an invariant region Q exists in the phase space, bounded by an
invariant ellipse E of the map F1; tangent to LC�1; and, thus, also tangent
to LCi; i = 0; 1; :::. We can state the following

Proposition 1. Let a = 1; c = c� given in (4). Then in the phase space
of the map F there exists an invariant region Q; bounded by an invariant
ellipse E of the map F1 tangent to LC�1. Any initial point (x0; y0) 2 Q
belongs to a quasiperiodic orbit dense in the corresponding invariant ellipse
of F1.

Fig.1 shows the invariant region Q of the map F at a = 1, c = 0:4,
d = 10: (Indeed, because of numerical precision, we cannot show a true
quasiperiodic case, but only its approximation by a periodic case of some
high period).
It is clear that such a region also exists (i.e., the region Q de�ned above)

and is invariant, when the map F1 is de�ned by a rotation matrix with a
rational rotation number, but in such a case Q is not the largest invariant
area. In fact, there are also other points outside the tangent ellipse E which
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are periodic with an orbit completely included in the region R1: For the sake
of clarity we shall show this via an example.
So let F1 be de�ned by a rotation matrix with a rational rotation number,
which holds for a = 1; and

c = cm=n
def
= 2 cos(2�m=n)� 1; (5)

obtained fromRe�1;2 = cos(2�m=n), then any point in some neighborhood
of the �xed point is periodic with rotation numberm=n and all the points of
the same periodic orbit are located on an invariant ellipse1.

Figure 1: The invariant region Q of the map F at a = 1, c = 0:4, d = 10:
F1 is associated with an irrational rotation number.

For short we call m=n-cycle a periodic orbit of period n with the rota-
tion numberm=n. We can construct the invariant region, say P; existing for
a = 1 in the phase space by using as an example the case m=n = 2=13
(see Fig.2). As noticed above, the region P must include all the invariant
ellipses of the map F1 which are entirely located in the regionR1: That is, P
includes a region bounded by an invariant ellipse, say E1; tangent to LC�1.
However there are other periodic orbits belonging to R1 : Note that there
exists a segment S1 � LC�1; which we call generating segment, such that
its end points belong to the same m=n-cycle p = fp1; :::; png located on
an invariant ellipse of F1 which crosses LC�1, denoted E2 (note that E2 is

1Note that for c > 0 we havem=n < 1=6:
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not invariant for the map F ). In our example S1 = [p1; p7] � LC�1; and
p = fp1; :::; p13g is the corresponding 2=13-cycle. Obviously, the generat-
ing segment S1 and its images by F1; that is the segments Si+1 = F1(Si),
Si+1 � LCi�1 = F1(LCi�2); i = 1; :::; 12, form an invariant polygon P
with 13 edges completely included in the region R1, inscribed in E2 and
whose boundary is tangent to E1.

Figure 2: The invariant polygon P of the map F at a = 1; c =
2 cos(2�m=n) � 1; d = 10 and m=n = 2=13; so that F1 is de�ned by a
rotation matrix with the rotation number 2=13:

Such a polygon P can be constructed for any rotation number m=n.
Summarizing we can state the following
Proposition 2. Let a = 1; c = cm=n given in (5). Then in the phase

space of the map F there exists an invariant polygon P with n edges whose
boundary is made up by a `generating segment' S1 � LC�1 and its n �
1 images Si+1 = F1(Si) � LCi�1; i = 1; :::; n � 1: Any initial point
(x0; y0) 2 P is periodic with rotation number m=n.
To end our description of the dynamics at the bifurcation value a = 1,

we have to clarify the behavior of a trajectory with an initial point (x0; y0)
which does not belong to the invariant region (either P or Q). It is easy to
see that there are the following possibilities:

� If b = 0 then the eigenvalues of the Jacobian matrix of F2 are �1 = c;
�2 = 0; so that any initial point (x0; y0) 2 R2 is mapped by F2 in one
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step into a point of the straight line LC0: Then in the case of a rational
rotation number it is mapped in a �nite number of steps exactly to the
boundary of the invariant region P , and ultimately it will be periodic,
while in case of an irrational rotation number the generic trajectory
tends to the boundary of the invariant region Q.

� For 0 < b < 1 the �xed point of the map F2 is an attracting node, the
map F is invertible and, thus, the trajectory of any point (x0; y0) 2 R2
is attracted to the boundary of the invariant region.

� If�(c+1)=2 < b < 0 then F2 is a noninvertible map with an attracting
�xed point in R1. It can be shown that (x0; y0) 2 R2 is mapped in a
�nite number of steps to the interior of the invariant region.

We already remarked that in the case b > 1 the �xed point of the map
F2 is either a repelling focus (for (c + b)2 < 4b), or a repelling node (for
(c + b)2 > 4b), and a trajectory of the map F with initial point (x0; y0) not
belonging to the invariant region is divergent. While for b < �(c + 1)=2;
the �xed point of F2 is a �ip saddle, and in such a case there may be initial
points having divergent trajectories as well as points mapped to the interior
of the invariant region. However, as already noticed above, the following
consideration is restricted to the range �(c+1)=2 < b < 1; so that the �xed
point of F2 is attracting.
The dynamics of the map F at the bifurcation value considered in this

section give the name to the center bifurcation, and we notice again that the
magnitude of the invariant area (P orQ) depends on the distance of the �xed
point from the critical line. But we are mainly interested in the description
of what occurs `after', for a > 1 : We shall see that an invariant region
survives after the bifurcation, that is for a = 1+" for some suf�ciently small
" > 0. However, among all the in�nitely many invariant curves existing at
the bifurcation only one survives, modi�ed, after the bifurcation: The one
which is farthest from the �xed point and gives the boundary of the invariant
region. That is, the boundary of the `old' invariant region is transformed into
an attracting closed invariant curve on which the dynamics of F is reduced
to a rotation with rational or irrational rotation number.

3.3 Noninvertibility of (Z0 � Z1 � Z1) type (a > 1; b = 0)

In order to investigate what occurs after the center bifurcation, for a > 1;
we consider �rst the map F given in (1) at b = 0: It was already mentioned
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that in such a case any initial point (x0; y0) 2 R2 is mapped by F2 in one
step into a point of the critical line LC0: All consequent iterations by F2
give points on this straight line approaching the attracting �xed point of F2
(which belongs to R1), until the trajectory enters R1 where the map F1 is
applied. Then the trajectory begins to rotate in the couterclockwise direction,
moving away from the unstable focus (x�; y�); and in a �nite number of
iterations it enters the region R2 where the map F2 is applied again. Thus,
for an orbit the map F2 plays the role of a return mechanism to the region
R1; and the dynamics are bounded, as longs as the �xed point of F is a
focus. Moreover, due to the zero eigenvalue of the map F2; the dynamics
of F are reduced to a one-dimensional subset C of the phase space which is
obtained iterating a suitable segment of LC�1. It is easy to see that after a
�nite number of iterations of LC�1 we necessarily get a closed area whose
boundary is a closed invariant curve. An example is shown in Fig.3: The
closed invariant curve C is obtained by 7 iterations of the segment [a0; b0] of
LC�1 : C = [7i=1F i([a0; b0])).

Figure 3: The attracting closed invariant curve C of the map F at a = 1:5;
b = 0; c = 0:15; d = 10: Points of the attracting and saddle cycles of period
7 are shown by black and white circles, respectively.

It is clear that any point with initial condition in R1; except for the �xed
point, has a trajectory which spirals away from the �xed point and enters the
region R2 in a �nite number of steps, then application of F2 gives a point
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of LC0, which in a �nite number of iterations is mapped into a point of
the segment [a1; b1] of LC0: This proves that the closed curve C is globally
attracting for F; except for the �xed point.
We are now interested in the dynamics of F on C. First note that the

map F is orientation preserving on C: It can be easily shown that for any
three ordered points u; v; w 2 C, their images by F are ordered in the same
way on C. It follows that we cannot have any folding which means that the
restriction of F on C is invertible and, thus, chaotic dynamics are impossible
(indeed, it becomes possible in the case c < 0 when there are segments of
C which are folded, but we don't consider this case here). Therefore, we
conclude that the dynamics of F on C are either periodic, or quasiperiodic.
If F has an attracting cycle of period n; it has also a saddle cycle of the same
period. Fig.3 shows an attracting cycle (node) and a saddle cycle of period
7, and we remark the double meaning of the closed invariant curve: It is the
saddle-connection made up of the closure of the unstable set of the saddle
(approaching the points of the node), and also the union of a �nite number
of critical segments. However, in a certain sense the phase portrait of the
map F at a > 1 is similar to that of a smooth map after the Neimark-Sacker
bifurcation: Namely, there exists a closed invariant attracting curve C on
which the map F is reduced to a rotation with rational or irrational rotation
number. In contrast to the smooth case, for the map F such a curve is not
smooth, but piecewise linear, and it appears not in the neighborhood of the
�xed point, but far enough from it: Its location depends on the position of
the critical line LC0.
The considerations given above can be summarized as follows:

Proposition 3. Let a > 1; b = 0; (c+a)2 < 4a: Then in the phase space
of the map F there exists a globally attracting invariant closed curve C which
is a broken line made up by a �nite number of images of a segment belonging
to LC�1: The dynamics of F on C are either periodic, or quasiperiodic.

Fig.4 shows a two-dimensional bifurcation diagram in the (a; c) - para-
meter plane in which the regions corresponding to different attracting cycles
of period n � 32 are shown by different gray tonalities. If the (a; c) - pa-
rameter point belongs to an n-periodicity region, then the map F has an
attracting and saddle cycles of period n, located on an attracting closed in-
variant curve, as stated in proposition 3.
Let us give some comments on the structure of the bifurcation diagram

shown in Fig.4. Similar bifurcation diagrams for piecewise linear and piece-
wise smooth dynamical systems were described in Gallegati et al., 2003,
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Hao Bai-Lin, 1998, Sushko et al., 2003, Zhusubaliyev and Mosekilde, 2003.
We can note that locally, near the bifurcation line a = 1; the periodicity
regions look like the Arnol'd tongues described for smooth maps when the
Neimark-Sacker bifurcation occurs (although the dynamics are different in
the phase space).

Figure 4: Two-dimensional bifurcation diagram of the map F in the (a; c)-
parameter plane at b = 0; d = 10: Regions corresponding to attracting
cycles of different periods n � 32 are shown by various gray tonalities.

It is worth to note that the summation rule which holds for the rotation
numbers in the general case with smooth maps, also holds in the piecewise
linear case. That is, if m1=n1 and m2=n2 are two rotation numbers asso-
ciated with the parameter c1 and c2; respectively, at a = 1; then also the
rotation number (m1 +m2)=(n1 + n2) exists in between. The white region
in Fig.4 is related either to attracting cycles of higher period n > 32; or to
quasiperiodic trajectories. Indeed, similar to the smooth case, the parameter
values corresponding to quasiperiodic trajectories form curves located be-
tween the two nearest periodicity regions and issuing from the bifurcation
line a = 1 at points corresponding to irrational rotation numbers. The so-
called `sausage' structure of the periodicity regions with several subregions
is typical for piecewise smooth and piecewise linear systems (see, e.g., Hao
Bai-Lin, 1998, Sushko et al., 2003, Zhusubaliyev and Mosekilde, 2003). In
fact, different subregions of the same periodicity region of the map F are
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related to different compositions of the maps F1 and F2 which are applied to
get the corresponding cycle (attracting or saddle).
The difference between two-dimensional bifurcation diagrams for a piece-

wise linear and a smooth map in the case of a center bifurcation or Neimark-
Sacker bifurcation, respectively, consists not only in the qualitative shape of
the periodicity regions (the `sausage' structure mentioned above), but also
in the kind of bifurcations associated with the boundaries of these regions.
It is known that in the smooth case the Arnol'd tongues are bounded by
curves corresponding to saddle-node bifurcation and either period-doubling,
or Neimark-Sacker bifurcation occurring for the related cycle. While for
piecewise linear maps such boundaries are related to border-collision bifur-
cations (see Nusse and Yorke, 1992). In the next section we describe the spe-
cial case associated with the bifurcation value a = 1; while here we describe
those associated with the boundaries of the regions for a > 1: The border-
collision bifurcation, related to the boundary of a periodicity region, involves
the merging of the corresponding attracting and saddle cycles, similar to the
smooth saddle-node bifurcation, but it is not related to one eigenvalue which
become in modulus equal to 1. Instead, it is related to a collision of points
of these cycles with the critical line LC�1; i.e. the border separating the re-
gions of different de�nitions of the map. The waist points of the `sausage'
structure correspond to particular border-collision bifurcations.
The effects of a border-collision bifurcation can be better seen from the

dynamics occurring in the phase space (and some times they cannot be un-
derstood from a bifurcation diagram). For example, let us add some obser-
vations related to the number of the segments of critical lines which form an
attracting invariant closed curve C at a > 1; which also may change when
a periodic point crosses though LC�1: If we take the (a; c)-parameter point
inside the leftmost subregion of a periodicity region shown in Fig.4, related
to an attracting m=n-cycle, then the invariant attracting closed curve C is
made up by exactly n segments of the critical lines LCi; i = 0; 1; :::; n� 1:
It can be shown that in such a case 2 points of the corresponding attracting
cycle belong to the region R2 and n � 2 points are in R1: Fig.5 presents
an example in the case m=n = 2=13; when the curve C is made up by 13
segments of critical lines. While if the (a; c)-parameter point moves to the
next subregions, the number of periodic points in R2 �rst increases, and the
number of segments of C decreases (see Fig.6 which shows an example of C
made up by 7 segments in case m=n = 5=36); but then, if the (a; c)-point
continues to move to the right inside the periodicity region, some periodic
points enter R1 again, so that the numbers of segments of C increases again.
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Figure 5: The attracting closed invariant curve C of the map F made up
by 13 segments, in the case m=n = 2=13; at a = 1:015, c = 0:13613,
d = 10; b = 0: Points of the attracting and saddle cycles are shown by black
and white circles, respectively.

Figure 6: The attracting closed invariant curve C made up by 7 segments, in
the casem=n = 5=36; at a = 1:68, c = 0:15, d = 10; b = 0:
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3.4 Border collision bifurcations

In the previous section we have presented the bifurcation diagram in the case
b = 0 (Fig.4) and in the next two sections we shall consider those related with
b 6= 0. We shall see that when the parameter a belongs to a neighborhood of
a = 1, i.e., for a = 1 + " for some suf�ciently small " > 0, the structure
of the periodicity regions is similar for all the range �(c + 1)=2 < b < 1,
and we have a qualitatively similar behavior. That is, the effect of a center
bifurcation is the appearance of an attracting closed invariant curve C which
is a broken line made up by a �nite number of segments when b = 0, or
by in�nitely many segments when b 6= 0: Here we describe the effect of the
special kind of border collision bifurcation related to a center bifurcation. In
Section 3.2 we have described the dynamics at the bifurcation value a = 1;
which holds for any value of b. Starting from a = 1 let us increase a little bit
the value of a, entering a periodicity tongue.

Figure 7: Qualitative �gure of the border-collision bifurcations with few
points of the saddles and the attracting nodes shown by white and black
circles, respectively.

To �x the ideas let us consider the casem=n = 2=13 used also in Section
3.3. Then the position of the periodic points of the node and the saddle of
period 13 at a point A = (a; c) of the tongue shown in Fig.7 is qualitatively
the same as the one shown in Fig.5 (also the qualitative shape of the closed
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curve C is similar, even if the segments constituting C become in�nitely many
when b 6= 0). Thus, among the in�nitely many periodic points existing
at the bifurcation value on a segment of LC�1; only two cycles survive,
a saddle and a node, having points which are not close to each other. As
already remarked in the previous section, only 2 points of the corresponding
attracting cycle belong to the region R2 and n� 2 points are in R1; and only
1 point of the corresponding saddle cycle belongs to the region R2; as it is
qualitatively shown in Fig.7 for the parameter point A. Then the effects of
the border collisions occurring at the boundaries of the tongue can be easily
shown moving the parameter point from A to B and from A to C. As the
point A moves towards B, then the points of the saddle cycle moves toward
those of the node giving the merging of only one pair of points, as shown
in the qualitative picture, which is exactly what occurs in a standard border-
collision bifurcation. Thus, periodic points merge and disappear (even if
no eigenvalue is equal to 1) when two of them merge on LC�1. A similar
behavior, but with the merging of a different pair of periodic points onLC�1,
occurs when we move the parameter point from A to C:

3.5 Center bifurcation for b > 0: invertible case

In this section we describe the center bifurcation which occurs for the �xed
point of the map F given in (1) when the map is invertible, that is for b > 0:
As already mentioned in the previous sections we assume a > 1; 0 < c < 1
and (c + a)2 < 4a; so that the �xed point of F is an unstable focus. The
�xed point of the map F2; belonging to R1; is unstable for b > 1 (focus for
(c+b)2 < 4b or node for (c+b)2 > 4b) and in these cases all the trajectories
of the map F (except for the �xed point) are diverging. Thus, we consider
the range 0 < b < 1:
Let a = 1+", " > 0. The dynamics of F in such a case can be described

as follows: A trajectory with an initial point in some neighborhood of the
unstable focus (x�; y�) rotates under the map F1 in the couterclockwise di-
rection, moving away from (x�; y�); and in a �nite number of iterations it
necessarily enters the region R2 where the map F2 is applied. Then the tra-
jectory under the map F2 moves back to the region R1 (given that F2 has the
attracting �xed point in R1).
For some suf�ciently small " > 0 the dynamics of F are bounded. To

see this �rst note that for b close to 0 the above statement is obvious. For the
values of b close to 1; note that at a = 1, b = 1 we have F1 = F2; so that
if b! 1� and a! 1+ then the distance between the �xed points of F1 and
F2 tends to 0; so that choosing " small enough we get a bounded invariant
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region. In other words, we can say that the invariant region (Q or P , as
described in propositions 1 and 2), existing in the phase space for a = 1,
exists also after the center bifurcation, but now an inner point of this region,
being no longer periodic or quasiperiodic, is attracted from the boundary,
as well as an initial point outside the invariant region. Note that due to the
invertibility of F a trajectory cannot jump from inside the invariant region to
outside and vice versa. For a suf�ciently small " the boundary is an attracting
closed invariant curve C, to which the dynamics of F are reduced. It can be
shown that for the parameter range considered, the restriction of F to C is
invertible, so, as in the previous case (b = 0), the trajectory on C is regular.

Figure 8: The attracting closed invariant curve C at a = 1:1; b = 0:1;
c = 0:25; d = 10: Points of the attracting and saddle cycles of period 7 are
shown by black and white circles, respectively.

Fig.8 presents an example of attracting closed invariant curve C on which
the map F is reduced to a rotation with the rotation number 1=7: That is,
there exist an attracting and a saddle cycle of period 7, so that the curve C is
formed by the closure of the unstable set of the saddle 7-cycle, approaching
the points of the attracting 7-cycle (i.e. a saddle-connection). Differently
from the case b = 0 in which the curve is made up by a �nite number of
segments (belonging to the images of LC�1), now it can be shown that there
are in�nitely many corner points on C, so that it consists of in�nitely many
linear segments approaching the periodic points of the attracting node.
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A typical two-dimensional bifurcation diagram of the map F in the (a; c)-
parameter plane for a �xed values of b is shown in Fig.9 where b = 0:1. We
notice that as long as the �xed point of the map F2 is an attracting node, that
is for c > c� = 2

p
b � b; which at b = 0:1 becomes c > c� � 0:5325;

the (a; c)-bifurcation diagram looks similar to that of the case b = 0 (see
Fig.4), and we conjecture that complex dynamics can not occur. While for
c < c� the periodicity regions are stopped on the right by the gray region
denoting divergence to in�nity, and, as we shall see below, chaotic dynamics
may occur, as well as multistability.

Figure 9: Two-dimensional bifurcation diagram of the map F in the (a; c)-
parameter plane at b = 0:1; d = 10: Regions corresponding to attracting
cycles of different periods n � 32 are shown by various gray tonalities.

It is worth to notice that the periodicity tongues shown in the two - di-
mensional bifurcation diagram correspond to attracting cycles, but they are
not necessarily related to closed invariant curves, made up by the saddle-
connection. Indeed, we know that for values of a close to 1 the closed in-
variant curve C exists but increasing a it may be destroyed. Thus let us �rst
give here the possible mechanisms leading to the destruction of a closed in-
variant curve C which, in a certain sense, are similar to those occurring in the
smooth case (to compare, see Aronson et al., 1982):

� A border-collision bifurcation occurring when a point of the attracting
cycle and a point of the saddle cycle collide and merge on LC�1 and,
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as a result, these cycles disappear (Nusse, Yorke, 1992, Banerjee et al.,
2000). This bifurcation often occurs on the boundary of a periodicity
tongue, as already described in the previous section.

� The attracting n-cycle existing on C may lose stability via �ip bifurca-
tion. The result of the �ip bifurcation in the piecewise linear case (see
Maistrenko et al., 1998) in general is the appearance of a 2n-cycle of
chaotic attractors (i.e., cyclic chaotic attractors made up of 2n disjoint
pieces), which becomes a one-piece chaotic attractor via a sequence
of pairwise merging of the pieces.

� The attracting n-cycle (node) existing on C may become a focus. In-
deed, in such a case we can say that a closed invariant curve still exists
but is no longer homeomorphic to a circle. Thus this bifurcation de-
notes a qualitative change of the structure of the invariant curve, but
not its disappearance. However, we list it here, as some other authors
do, denoting the change of saddle-node connection into saddle-focus
one. The saddle-focus connection may be destroyed by a center bifur-
cation of the n-focus, giving rise to n cyclical closed invariant curves.
That is, the closed curve may be destroyed by a center bifurcation oc-
curring in the map Fn.

� The saddle n-cycle may undergo a homoclinic bifurcation. That is,
the closed invariant curve is destroyed and replaced by a homoclinic
tangle with in�nitely many points homoclinic to the saddle (so that
also a chaotic repellor exists, made up of in�nitely many repelling
cycles). As we shall see in the example given below, such a homoclinic
tangle may occur inside a periodicity tongue.

In the bifurcation diagram shown in Fig.9 it can also be seen that near
the line a = 1 the bifurcation structure is similar to the case b = 0, but for
larger values of a the dynamics become more complicated: As the numerical
simulation shows, the periodicity regions can be overlapped, so that the map
F can have two coexisting attracting cycles, as well as an attracting cycle
coexisting with a chaotic attractor. To give an example, let us enlarge a part
of the bifurcation diagram where we have bistability (see Fig.10 with an
enlargement of the window indicated in Fig.9, where one of the bistability
regions is dashed).
To see which kind of bifurcation occurs when the (a; c)-parameter point

crosses the bistability region, let us �x a = 2:07, b = 0:1 and increase the
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value of c (the corresponding parameter path is indicated by the straight line
with an arrow in Fig.10). The phase portrait of the map F at c = 0:07; and its

Figure 10: The enlarged window of Fig.9; A dashed region corresponds to
an attracting 7-cycle coexisting with another attractor (regular or chaotic).

Figure 11: An attracting closed invariant curve C at a = 2:07; b = 0:1;
c = 0:07; d = 10: Points of the attracting and saddle cycles of period 7 are
shown by black and white circles, respectively.

enlarged part are shown in Figs.11 and 12(a): An attracting closed invariant
curve is formed by the unstable set of the saddle 7-cycle, approaching the
points of the attracting 7-cycle, which is the only attractor of the map F .
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Fig.12(a) shows also some branches of the unstable set of the saddle, so that
it can be seen that stable and unstable sets have no intersection.

Figure 12: The enlarged window of the phase portrait of F shown in Fig.11
at a = 2:07; b = 0:1; d = 10 and (a) c = 0:07 (before the intersection
of the stable and unstable sets of the 7-saddle) (b) c = 0:074 in (after the
homoclinic bifurcation of the saddle).

Increasing the value of c, at c � 0:0715 the �rst homoclinic bifurcation
(or homoclinic contact, the analogue of a homoclinic tangency in smooth
maps) occurs for the saddle cycle. After the tangency, the attractor of the
map F is still the 7-cycle node, but the closed invariant curve no longer
exists: It has been destroyed by the homoclinic tangency and it has been re-
placed by the homoclinic tangle, with a chaotic repellor. Fig.12(b) presents
the enlarged part of the phase space of the map F at c = 0:074 during the
homoclinic tangle. In order to remark the role of the chaotic repellor and
the complex structure of the stable set of the saddle, we show the basins
of attraction of the 7 �xed points for the map F 7. For the parameter val-
ues used in Fig.12(a), when the unstable set of the saddle gives rise to the
closed invariant curve, the stable set of the saddle has a simple structure, and
separates the basins (the 7 invariant regions) in a simple way, as shown in
Fig.13(a). While for the parameter values used in Fig.12(b), when the unsta-
ble set of the saddle intersects the stable one and the closed invariant curve
no longer exists, the stable set of the saddle has a complex structure, and sep-
arates the basin in a complex way, as shown in Fig.13(b). It is worth to note
that the map here is invertible, so that the 7 basins, although with complex
structure, must be simply connected (in the next section we shall see instead
disconnected basins in the noninvertible case).
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On further increasing of the parameter, at c � 0:0777 the last homoclinic bi-
furcation (or homoclinic tangency) occurs for the saddle 7-cycle (the related
phase portrait is shown in Fig.14(a)). This value of c approximately corre-

Figure 13: Baisns of attraction of the 7 �xed points of the map F 7 (i.e. the
7-cycle of F ) at a = 2:07; b = 0:1; d = 10 and c = 0:07 in (a); c = 0:074
in (b):

sponds to the crossing of the lower boundary of the bistability region, so that
after this bifurcation the map F has the attracting 7-cycle coexisting with a
chaotic attractor: Fig.14(b) presents an enlarged part of the phase portrait of
F at c = 0:0778; where the basins of two attractors are shown by different
gray tonalities. The whole phase portrait is shown in Fig.15(a). Note that
after the last homoclinic tangency the unstable set of the saddle is not related
to a closed invariant curve: One branch tends to the 7-cycle and the other
branch tends to the chaotic attractor. While the stable set of the 7-saddle
gives the boundary of the two basins of attraction.If we continue to increase
the value of c then at c � 0:082595 a 'saddle-node' border-collision bifurca-
tion occurs when the attracting cycle and the saddle merge and disappear (see
Fig.15(b)). This value of c is related to the crossing the upper boundary of
the bistability region, so that after the bifurcation the chaotic attractor is the
unique attractor of F . We can get the same attractor as a result of a sequence
of other bifurcations if the (a; c)-parameter point moves starting from a point
inside the 29-periodicity region, for example, a = 2:025, c = 0:0925. These
values corresponds to the attracting and saddle 29-cycles of the map F: If,
for example, the parameters change as shown by the thick line with an arrow
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Figure 14: The enlarged part of the phase portrait of the map F at a = 2:07;
b = 0:1, d = 10; and (a) c = 0:0777 (near the last homoclinic bifurcation
of the saddle 7-cycle); (b) c = 0:0778 (after the homoclinic bifurcation; The
basins of the coexisting attracting 7-cycle and chaotic attractor are shown
in different gray tonalities).

Figure 15: In (a) phase portrait of the map F at a = 2:07; b = 0:1, c =
0:0778; d = 10 with basins of attraction of coexisting attracting 7-cycle and
chaotic attractor. In (b) two attractors of the map F at a = 2:07; b = 0:1;
c = 0:082595; d = 10; near the 'saddle-node' border-collision bifurcation
when the attracting and saddle 7-cycles merge and disappear due to the
collision with LC�1.
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in Fig.10, then at a � 2:05, c � 0:0872, the attracting 29-cycle undergoes a
�ip bifurcation (i.e. the invariant closed curve is destroyed via a �ip bifurca-
tion) resulting in a 2 � 29-cyclic chaotic attractor. Then, after the pairwise
merging of the cyclical pieces of the chaotic attractor, the map F has a 29-
cyclic chaotic attractor (for example, at a = 2:056; c = 0:0859), which after
further merging of pieces becomes a one-piece chaotic attractor, an example
is shown in Fig.15(b).

3.6 Center bifurcation for b < 0: noninvertible case

In this last section we describe the center bifurcation occurring in the map F
given in (1) when it is noninvertible, for �(c+1)=2 < b < 0:We recall that
we assume a > 1; 0 < c < 1 and (c+ a)2 < 4a; so that the �xed point of F
is an unstable focus, while in the given range for b the �xed point of the map
F2; belonging to R1; is a stable node (with one positive and one negative
eigenvalue).
For values of the parameter a in a right neighborhood of 1 the dynamics

are qualitatively similar to those occurring in the invertible case, as already
remarked in section 3.2 of this chapter. Let us only emphasize the main dif-
ference, due to the fact that no point of the phase plane can be mapped in the
so called region Z0, above the critical line LC (as those points are without
preimages). For the parameter values taken inside a periodicity tongue the
map F still has a pair of cycles, a saddle and a node, and the unstable set of
the saddle gives rise to a saddle-node connection, which is a closed invariant
curve C made up by in�nitely many linear pieces (with corner points). But
the area bounded by such a closed curve is not invariant. This is due to the
fact that arcs which cross the critical curve LC�1 are folded on the criti-
cal line LC creating corner points, whose forward images give again corner
points. An example is shown in Fig.16, for parameter values inside a peri-
odicity tongue with rotation number 1=7: In that �gure, the arrows indicate
the points of intersection between the invariant curve C and LC�1 and two
more arrows indicate their images on LC: The non invariance of the area
bounded by C is immediately clear from that �gure: All the points between
the line LC�1 and the invariant curve C are mapped outside the area bounded
by the curve, between the curve and the critical line LC: That points from
outside can be mapped inside the area bounded by C is immediately evident:
All the points on the right of LC, belonging to Z2, have two distinct rank-1
preimages, one on the right and one on the left of LC�1:
Another important difference between the invertible and noninvertible

case is related with the unstable set of the saddle cycles: Self intersection
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may occur, while it is impossible in invertible maps. This is one more mech-
anism which causes the destruction of the closed invariant curve C which for
noninvertible maps is to be added to the list already given in the previous
section. Summarizing in short we can list such mechanisms as follows:

� border-collision bifurcation (which may occur at the boundary of a
periodicity tongue);

� �ip bifurcation of the attracting cycle on C;

� transition of the node existing on C into a focus (followed by a center
bifurcation);

� the saddle may undergo a homoclinic bifurcation (transverse intersec-
tions between stable and unstable sets of the saddle);

� the unstable set of the saddle may develop sel�ntersections, giving
in�nitely many loops on the invariant curve.

Figure 16: The attracting closed invariant curve C at a = 1:1; b = �0:05;
c = 0:25; d = 10:

Let us illustrate the last kinds of bifurcations by an example, taking the
parameter values in the periodicity tongue associated with the rotation num-
ber 1=6; shown in the bottom-left of the (a; c) parameter plane of Fig.17.
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Let us �x a = 1:1, b = �0:4 and increase the value of c (the corresponding
parameter path is indicated by the straight line with an arrow in Fig.17).

Figure 17: Bifurcation diagram in the (a; c) parameter plane at b = �0:4
and d = 10:

The phase portrait of the map F at c = 0:05 has a unique attractor: a
stable node of period 6, and in Fig.18 (a) we present the basins of attraction
of the 6 �xed points for the map F 6 (black points in the �gure). The stable
set of the saddle cycle (white points in the �gure) gives the basin boundary.
While the unstable set of the saddle is an invariant set which is no longer
homeomorphic to a circle, as self intersections already exist. This is shown
by an enlarged part of the phase space in Fig.18 (b).
In Fig.18 (a) one more peculiarity of noninvertible maps can be seen:

The basins are not simply connected. However the disjoint portion of the
basin shown there is entirely included in the region Z0 so that it has no other
preimages. While increasing the value of c, at c = 0:06 that portion of the
basin intersects the critical curve LC thus giving a portion in the region Z2
and this small portion has in�nitely many preimages, clearly visible in Fig.19
(a). The related unstable set of the saddle is still with self intersections, as
shown in the enlargement of the phase space in Fig.19 (b), but is it also
possible to see that it is now close to the stable set of the same saddle (basin
boundary in Fig.19 (a)), and this denotes that a homoclinic bifurcation is
going to occur.
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Figure 18: (a) Basins of attraction of the 6 �xed points of the map F 6 at
a = 1:1, b = �0:4; c = 0:05; (b) The enlarged part of (a) with some
branches of the stable and unstable sets of the saddle 6-cycle.

Figure 19: (a) Basins of attraction of the 6 �xed points of the map F 6 at
a = 1:1, b = �0:4; c = 0:06; (b) The enlarged part of (a) with some
branches of the stable and unstable sets of the saddle 6-cycle, near a homo-
clinic bifurcation.
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In fact, Fig.20 (a) (c = 0:0615) shows the homoclinic tangency and Fig.20
(b) (c = 0:064) shows the homoclinic transverse intersections between the
stable and unstable sets. It is clear that a strange repellor also exists in such a
regime, with the homoclinic tangle of the saddle cycle, and this can be seen
in the complex structure of the basins, with many disconnected component
in a fractal structure, as shown in Fig.21.

Figure 20: The enlarged part of the phase space with some branches of the
stable and unstable sets of the saddle 6-cycle at a = 1:1, b = �0:4; c =
0:0615 (a) and c = 0:064 (b).

It is worth noticing one more property of the noninvertible maps, which
is the existence of absorbing areas inside which all the asymptotic dynam-
ics occur. Consider for example the case shown at c = 0:064; for which
a strange repellor exists: We can say that all the unstable cycles constitut-
ing the strange repellor must belong to the annular absorbing area shown in
Fig.22 (a). This area can easily be constructed by taking the images of the
critical curves. In fact, an invariant area has necessarily the boundary given
by the images of the segment of LC�1 belonging to the area itself, which
is called generating segment2 (see, e.g., Mira et. al., 1996). In our case, by
taking 6 images of that segment we get the external boundary of a simply

2Given a noninvertible map F and an invariant area A (i.e., such that F (A) = A), the
generating arc is de�ned by A \ LC�1.
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connected invariant area, which includes also the unstable �xed point. But
as it is an unstable focus, we can also construct an annular absorbing area by
taking more images of the same segment. In fact, with 6 more iterations we
get the inner boundary of an area of annular shape shown in Fig.22 (a). It is
clear that any point of the phase space belonging the hole around the unsta-
ble focus is such that its trajectory enters the annular area and never escapes.
This means that all the limit set of the trajectories belongs to that annular
area, in particular all the cycles of F , except for the focus �xed point.

Figure 21: Basins of attraction of the 6 �xed points of the map F 6 at a = 1:1,
b = �0:4; c = 0:064.

As it can be seen from Fig.21, the points of the stable node (black points)
and those of the saddle (white points) are very close to each other, and on
further increase of c the parameter point reaches the boundary of the peri-
odicity tongue, where a saddle-node merging occurs via a border-collision
bifurcation. After such bifurcation the pair of 6-cycles disappear and the
map F is left with a chaotic attractor: That is, the chaotic repellor existing in
the annular area shown in Fig.22 (b), is transformed into a chaotic attractor
with knots and self intersection.
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Figure 22: The annular absorbing area of the map F at a = 1:1, b = �0:4;
c = 0:064 (a) and c = 0:071 (b).
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