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6.1 Introduction

As we saw in Chapter 3, Hicks (1950) modi�ed the Samuelson (1939) linear
multiplier-accelerator model through introducing two constraints. The lin-
ear multiplier-accelerator model itself only has two options: Exponentially
explosive or damped motion. According to Hicks, only the explosive case is
interesting, as only this produces persistent motion endogenously, but it had
to be limited through two (linear) constraints for which Hicks gave factual
explanations.
When the cycle is in its depression phase it may happen that income de-

creases so fast that more capital can be dispensed with than what disappears
through depreciation, i.e., natural wear and aging. As a result, the linear ac-
celerator would predict not only negative investments (disinvestments), but
to an extent that implies active destruction of capital. To avoid this, Hicks
introduced his �oor to disinvestment at the natural depreciation level.
When the cycle is in its prosperity phase, then it may happen that income

would grow at a pace which does not �t available resources. Hicks has a
discussion about what then happens, in terms of in�ation, but he contended
himself with stating that (real) income could not grow faster than available
resources which put a ceiling on the income variable.
Hicks never formulated his �nal model with �oor and ceiling mathe-

matically, it seems that this was eventually done by Rau (1974), where the
accelerator-generated investments were limited downwards through the nat-
ural depreciation �oor, and where the income is limited upwards through the
ceiling, determined by available resources. Formally:

It = max(a(Yt�1 � Yt�2);�If );
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Ct = cYt�1;

Yt = min(Ct + It; Y
c):

Eliminating Ct and It, one has the single recurrence equation:

Yt = min(cYt�1 +max(a(Yt�1 � Yt�2);�If ); Y c): (1)
It remains to say that Hicks's original discussion included an exponential

growth in autonomous expenditures, combined with the bounds If and Y c
growing at the same pace, but taking the bounds as constant and deleting
the autonomous expenditures, gives a more clear-cut version. It was this
that was originally analyzed in detail by Hommes (1991), and the notation
above comes from Hommes. However, there were some pieces missing in
his discussion, such as two-dimensional bifurcation diagrams, which makes
it motivated to make a new attack on this model.

6.2 Description of the map

Let xt := Yt; yt := Yt�1; d := If and r := Y c: Then the model given in
(1) can be rewritten as a two-dimensional piecewise linear continuous map
F : R2 ! R2 :

F :

�
x
y

�
7!
�
min(cx+max(a(x� y);�d); r)
x

�
; (2)

which depends on four real parameters: a > 0; 0 < c < 1; d > 0; r > 0:
The map F is given by three linear maps Fi, i = 1; 2; 3; de�ned, respec-

tively, in three regions Ri of the phase plane:

F1 :

�
x
y

�
7!
�
(c+ a)x� ay
x

�
; (3)

R1 = f(x; y) : (1 + c=a)x� r=a � y � x+ d=ag ;

F2 :

�
x
y

�
7!
�
cx� d
x

�
; (4)

R2 = f(x; y) : y > x+ d=a; x � (d+ r)=cg ;

F3 :

�
x
y

�
7!
�
r
x

�
; (5)

R3 = R2=R1=R2:
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Three half lines denoted LC�1; LC 0�1 and LC 00�1 are boundaries of the re-
gions Ri:

LC�1 : y = x+ d=a; x � (r + d)=c;
LC 0�1 : y = (1 + c=a)x� r=a; x < (r + d)=c;
LC 00�1 : x = (r + d)=c; y > (r + d)=c+ d=a:

Their images by F are called critical lines:

LC0 : y = (x+ d)=c; x � r;
LC 00 : x = r; y < (r + d)=c:

The image of LC 00�1 by F is a point (r; (r + d)=c). A qualitative view of the
phase plane of the map F for a > 1; d < r and a > c2=(1 � c) is shown
in Fig.1 (the last inequality indicates that the intersection point of LC 0�1 and
LC0 is in the negative quadrant).

Figure 1: Critical lines of the map F for a > 1; d < r; a > c2=(1� c):

As it was mentioned in the introduction, an analogous model has been
studied by Hommes (1991). Main conclusions of this paper hold also for the
map F , namely, for a > 1 the map F has an attracting set C homeomorphic
to a circle and all the trajectories ofF (except for the �xed point) are attracted
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to this set. It was also proved that the dynamics of the map F on C are
either periodic or quasiperiodic. In our consideration we show how the set C
appears relating this to the center bifurcation described in detail in Chapter
2. We also discuss the structure of the two-dimensional bifurcation diagram
in the (a; c)-parameter plane.
First note that the maps F2 and F3 have simple dynamics: The eigen-

values of F2 are �1 = c, 0 < c < 1; �2 = 0; so that any initial point
(x0; y0) 2 R2 is mapped into a point of LC0; while the map F3 has two zero
eigenvalues, and any (x0; y0) 2 R3 is mapped into a point of the straight line
x = r. In such a way the whole phase plane is mapped in one step to the
straight line x = r and a cone D = f(x; y) : y � (x+ d)=c; x � rg (see
Fig.1). Thus, the map F is a noninvertible map of so-called (Z1�Z1�Z0)
type: Any point belonging to the critical lines or to the half line x = r;
y > (r + d)=c; has in�nitely many preimages, any inner point of D has one
preimage and any other point of the plane has no preimages.
The map F has a unique �xed point (x�; y�) = (0; 0) which is the �xed

point of the map F1 (while the �xed points of the maps F2 and F3 belong to
R1; thus, they are not �xed points for the map F ). The eigenvalues of the
Jacobian matrix of F1 are

�1;2 = (a+ c�
p
(a+ c)2 � 4a)=2; (6)

so that for the parameter range considered the �xed point (x�; y�) is a node
if (c+a)2 > 4a; and a focus if (c+a)2 < 4a, being attracting for a < 1 and
repelling for a > 1. Thus, for a < 1 the �xed point (x�; y�) is the unique
global attractor of the map F (given that F2 and F3 are contractions).

6.3 Center bifurcation (a = 1)

At a = 1 the �xed point (x�; y�) loses stability with a pair of complex-
conjugate eigenvalues crossing the unit circle, that is the center bifurcation
occurs. First we describe the phase portrait of the map F exactly at the
bifurcation value a = 1. Analogous description is presented in Section 2.2
of Chapter 2 for a two-dimensional piecewise linear map de�ned by two
linear maps, which for the particular parameter value b = 0 are the maps
F1 and F2 given in (3) and (4). It is proved that for the parameter values
corresponding to the center bifurcation there exists an invariant region in the
phase plane, which either is a polygon bounded by a �nite number of images
of a proper segment of the critical line, or the invariant region is bounded
by an ellipse and all the images of the critical line are tangent to this ellipse
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(see Propositions 1 and 2 of Chapter 2). In the following we use these results
for the considered map F specifying which critical lines are involved in the
construction of the invariant region.
The map F1 at a = 1 is de�ned by a rotation matrix. Moreover, if

c = cm=n
def
= 2 cos(2�m=n)� 1; (7)

then the �xed point (x�; y�) is locally a center with rotation number m=n,
so that any point in some neighborhood of (x�; y�) is periodic with rotation
number m=n; and all points of the same periodic orbit are located on an
invariant ellipse of the map F1. Note that from c > 0 it follows thatm=n <
1=6: Denote

c = c�
def
= 1� (d=r)2: (8)

Proposition 1. Let a = 1; c = cm=n; then in the phase space of the map
F there exists an invariant polygon P such that

� if cm=n < c� then P has n edges which are the generating segment
S1 � LC�1 and its n � 1 images Si+1 = F1(Si) � LCi�1; i =
1; :::; n� 1;

� if cm=n > c� then P has n edges which are the generating segment
S01 � LC 0�1 and its n� 1 images S0i+1 = F1(S0i) � LC 0i�1;

� if cm=n = c� then P has 2n edges which are the segments Si and S0i;
i = 1; :::; n:

Any initial point (x0; y0) 2 P is periodic with rotation number m=n,
while any (x0; y0) =2 P is mapped in a �nite number of steps into the bound-
ary of P:

The proof of the proposition is similar to the one presented in Section
2.2 of Chapter 2. The value c� is obtained from the condition of an invariant
ellipse of F1 to be tangent to both critical lines LC�1 and LC 0�1. It can be
shown that for cm=n < c� only the upper boundary LC�1 is involved in the
construction of the invariant region, while if cm=n > c� we have to iterate
the generating segment of the lower boundary LC 0�1 to get the boundary
of the invariant region. An example of the invariant polygon P in the case
cm=n = c

� is presented in Fig.2, where a = 1; d = 10; r = 10=
p
2�

p
2;

c = c1=8 = c
� =

p
2 � 1: For such parameter values the polygon P has 16

edges, which are the segments Si � LCi�2 and S0i � LC 0i�2; i = 1; :::; 8:
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Any point of P is periodic with rotation number 1=8 (in Fig.2 the points of
two such cycles belonging to the boundary of P are shown by black and gray
circles), while any point (x0; y0) =2 P is mapped to the boundary of P .

Figure 2: The invariant polygon P with 16 edges at a = 1; c = c1=8 =p
2� 1 = c�; d = 10; r = 10=

p
2�

p
2:

Consider now the case in which the map F1 is de�ned by the rotation
matrix with an irrational rotation number �, which holds if

c = c�
def
= 2 cos(2��)� 1; (9)

where � < 1=6. Then any point in some neighborhood of the �xed point
(x�; y�) is quasiperiodic, and all points of the same quasiperiodic orbit are
dense on the corresponding invariant ellipse of the map F1. Using the Propo-
sition 2 of Chapter 2 and the values c� given in (8) we can state the following

Proposition 2. Let a = 1; c = c�. Then in the phase space of the
map F there exists an invariant region Q; bounded by an invariant ellipse E
of the map F1 which is tangent to LC�1 (and to all its images) if c < c�;
to LC 0�1 if c > c�; and to both critical lines LC�1 and LC 0�1 if c = c�:
Any initial point (x0; y0) 2 Q belongs to a quasiperiodic orbit dense in the
corresponding invariant ellipse of F1, while any initial point (x0; y0) =2 Q
is mapped to E .
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Note that from (8) it follows that if d > r then the inequality c� < 0 holds,
thus, given c > 0; for d > r only the lower boundary LC 0�1 is involved in
the construction of the invariant region of the map F at a = 1:

6.4 Bifurcation structure of the (a; c)-parameter plane

In this section we describe the dynamics of the map F after the center bi-
furcation, that is for a > 1: In short, an initial point (x0; y0) from some
neighborhood of the unstable �xed point (x�; y�) moves away from it under
the map F1 and in a �nite number k of iterations it necessarily enters either
the region R2, or R3 (in the case in which (x�; y�) is a focus the statement
is obvious, while if (x�; y�) is a repelling node this can be easy veri�ed us-
ing the eigenvalues �1;2 given in (6) and the corresponding eigenvectors). If
(xk; yk) 2 R2; then the map F2 is applied: F2(xk; yk) = (xk+1; yk+1) 2
LC0. All consequent iterations by F2 give points on LC0 approaching the
attracting �xed point of F2 (which belongs to R1), until the trajectory en-
ters R1 where the map F1 is applied again. If (xk; yk) 2 R3; then the
map F3 is applied: F3(xk; yk) = (xk+1; yk+1) 2 LC 00: We have that ei-
ther (xk+1; yk+1) 2 R1; or (xk+1; yk+1) 2 R3 and one more application of
F3 gives its �xed point (r; r) 2 R1, so, the map F1 is applied to this point.
In such a way the dynamics appear to be bounded.
Indeed, it was proved in Hommes (1991), that for a > 1 any trajectory of

F rotates with the same rotation number around the unstable �xed point, and
it is attracted to a closed invariant curve C homeomorphic to a circle. It was
also proved that the dynamics of F on C, depending on the parameters, are
either periodic or quasiperiodic. We can state that such a curve C is born due
to the center bifurcation of the �xed point, described in the previous section:
Namely, the bounded region P (or Q), which is invariant for a = 1; exists
also for a > 1; but only its boundary remains invariant, and this boundary is
the curve C.
We refer as well to Chapter 2 in which it is shown that also in a more

generic case of a two-dimensional piecewise linear map, de�ned by two lin-
ear maps, the center bifurcation can give rise to the appearance of a closed
invariant attracting curve C, on which the map is reduced to a rotation with
rational or irrational rotation number. Recall that in the case of a rational
rotation number m=n the map has an attracting and a saddle m=n-cycle on
C, so that the curve C is formed by the unstable set of the saddle cycle, ap-
proaching the points of the attracting cycle. While in the case of an irrational
rotation number the map has quasiperiodic orbits on C. In Section 2.3 of
Chapter 2 the curve C is described in detail for the map de�ned by the linear
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maps F1 and F2 given in (3) and (4). So, we can use these results for the
considered map F if the curve C belongs to the regions R1, R2 and has no
intersection with the region R3; thus, only the maps F1 and F2 are involved
in the asymptotic dynamics. Obviously, we have a qualitatively similar case
if the curve C has no intersection with the regionR2 and, thus, only the maps
F1 and F3 are applied to the points on C. One more possibility is the case
in which the curve C belongs to all the three regions Ri; i = 1; 2; 3:We can
state that in the �rst and second cases the curve C can be obtained by iter-
ating the generating segment of LC�1 and LC 0�1; respectively, while in the
third case both generating segments can be used to get the curve C.
To see which parameter values correspond to the cases described above

we present in Fig.3 a two-dimensional bifurcation diagram in the (a; c)-
parameter plane for �xed values d = 10; r = 30: Different gray tonali-
ties indicate regions corresponding to attracting cycles of different periods
n � 41 (note that regions related to the attracting cycles of the same period
n; but with different rotation numbers are shown by the same gray tonality).
The white region in Fig.3 is related either to periodic orbits of period n > 41;
or to quasiperiodic orbits.

Figure 3: Two-dimensional bifurcation diagram of the map F in the (a; c)-
parameter plane at d = 10; r = 30: Regions corresponding to attracting
cycles of different periods n � 41 are shown by various gray tonalities.
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Let us �rst comment on some particular parameter values of the bifurcation
line a = 1: As described in the previous section, at a = 1; c = cm=n given in
(7), in the phase plane of F there exists an invariant polygon P such that any
point of P is periodic with the rotation number m=n. So, the points a = 1;
c = cm=n; for differentm=n < 1=6; are starting points for the corresponding
periodicity tongues. For example, a = 1; c = c1=8 =

p
2 � 1 is the point

from which the 8-periodicity tongue starts, corresponding to the attracting
cycle with the rotation number 1=8. Recall that according to the summation
rule (see Hao and Zheng (1998)), between any two rotation numbersm1=n1
andm2=n2 there is also the rotation numberm0=n0 = (m1+m2)=(n1+n2);
so that a = 1; c = cm0=n0 is the starting point for the corresponding peri-
odicity region. If the (a; c)-parameter point is taken inside the periodicity
region, then the map F has the attracting and saddle cycles with correspond-
ing rotation number, and the unstable set of the saddle cycle form the closed
invariant attracting curve C. Note, that in the case in which both constrains
are involved in the asymptotic dynamics, the map F may have two attract-
ing cycles and two saddles of the same period coexisting on the invariant
curve (as it occurs, for example, inside the 7-periodicity tongue at a = 2:9;
c = 0:136; d = 10; r = 30). While if the (a; c)-parameter point belongs to
the boundary of the periodicity region, then the border-collision bifurcation
occurs (see Nusse and Yorke (1995)) for the attracting and saddle cycles,
giving rise to their merging and disappearance (see Chapter 2).
The parameter points a = 1; c = c� given in (9), for different irrational

numbers � < 1=6 correspond to the case in which any point of the invariant
region Q is quasiperiodic. Such parameter points are starting points for the
curves related to quasiperiodic orbits of the map F .
At a = 1; c = c� = 8=9; (which is the value c� given in (8) at d = 10 and

r = 30) there exists an invariant ellipse of F1 tangent to both critical lines
LC�1 and LC 0�1; so that for c < c� the boundary of the invariant region
can be obtained by iterating the generating segment of LC�1, while for c >
c� we can iterate the segment of LC 0�1. Thus, after the center bifurcation
for c < c� at �rst only LC�1 is involved in the asymptotic dynamics, and
then increasing a there is a contact of the curve C with the lower boundary
LC 0�1. And vice versa for c > c�. For example, the curve denoted by L
inside the 7-periodicity region in Fig.3 indicates a collision of the curve C
with the lower boundary LC 0�1: The curves related to similar collision are
shown also inside some other periodicity regions. Before this collision the
dynamics of F on C is as described in Proposition 3 of Chapter 2, while after
both boundaries LC�1 and LC 0�1 are involved in the asymptotic dynamics.
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One more curve shown inside the periodicity regions (for example, the one
denoted byR inside the 7-periodicity region) indicates that the point (x; y) =
(r; r) becomes a point of the corresponding attracting cycle.
To clarify, let us present examples of the phase portrait of the map F

corresponding to three different parameter points inside the 7-periodicity re-
gion, indicated in Fig.3. Fig.4 shows the closed invariant attracting curve C
at a = 1:6; c = 0:125; when C has no intersection with the region R3; being
made up by 7 segments of the images of the generating segment of LC�1:

Figure 4: The attracting closed invariant curve C with the attracting and
saddle cycles of period 7 at a = 1:6; c = 0:125; d = 10; r = 30:

Figure 5: The attracting closed invariant curve C with the attracting and
saddle cycles of period 7 at a = 1:75; c = 0:125; d = 10; r = 30:
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The closed invariant curve C corresponding to the parameter values a =
1:75; c = 0:125, is shown in Fig.5. In such a case both boundaries LC�1
and LC 0�1 are involved in the dynamics. It can be easily seen that images
of the generating segments of LC�1 and LC 0�1 form the same set, so it does
not matter which segment is iterating to get the curve C.
Fig.6 presents an example of C at a = 1:85; c = 0:125; when two

consequent points of the attracting cycle belong to the region R3; so that
(x; y) = (r; r) is a point of the attracting cycle.

Figure 6: The attracting closed invariant curve C at a = 1:85; c = 0:125;
d = 10; r = 30:

In Fig.7 we show the enlarged window of the bifurcation diagram pre-
sented in Fig.3 in order to indicate the (a; c)-parameter region corresponding
to the case in which only the lower boundary is involved in the asymptotic
dynamics. The curve denoted by U indicates the contact of the trajectory
with the upper boundary LC�1, so that just after the center bifurcation, for
c > c� at �rst only the lower boundary LC 0�1 is involved in the asymptotic
dynamics (see Fig.8 with an example of the attracting closed invariant curve
C at a = 1:05; c = 0:94). Then, increasing a the trajectory has a contact also
with the upper boundary LC�1: Note that for the main periodicity tongues
(those related to the rotation number 1=n) just after the center bifurcation
the point (r; r) immediately becomes a point of the attracting cycle, because
after the bifurcation two points of the attracting cycle must be in the region
R3; but we know that two successive applications of F3 give the point (r; r).
In Hommes (1991) it was proved that if and only if the attracting set C con-
tains the point (r; r), then the restriction of the map F to C is topologically
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conjugate to a piecewise linear nondecreasing circle map f , and there exists
a unique circle arc I on which f is constant being strictly increasing on the
complement of I . From this statement it follows that in such a case the map
F cannot have quasiperiodic trajectory, but only periodic ones.

Figure 7: Enlarged window of the bifurcation diagram of the map F shown
in Fig.3.

Figure 8: The attracting closed invariant curve C with the attracting 23-cycle
on it at a = 1:05; c = 0:94; d = 10; r = 30:

Summarizing, we state that for c < c� (or c > c�) given in (7), increasing
the values of a from a = 1; the closed invariant attracting curve C at �rst is
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made up by a �nite number of images of LC�1 (or LC 0�1; respectively), then
a contact with LC 0�1 (or LC�1) occurs after which to get the curve C we can
iterate the generating segment either LC�1 or LC 0�1. As long as the curve C
does not contain the point (r; r); the dynamics of F on C are either periodic,
or quasiperiodic, while if (r; r) belongs to C then dynamics are only periodic.
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