
Chapter 2

NONINVERTIBLE MAPS

L. Gardini and C. Mira*

Department of Economics and Quantitative Methods, University of

Urbino, Via Saffi 42, 61029 Urbino, Italy

Department of Economics and Quantitative Methods, University of

Urbino and 19 rue dOccitanie, Fonsegrives, 31130 QUINT

Abstract

In this chapter we briefly reconsider some of the main properties of noninvert-

ible maps which characterize the related dynamics. We shall recall how the effects

of noninvertibility may be important in understanding global bifurcations both in the

structure of the invariant attracting sets and in the structure of the basins of attraction.

2.1 Introduction

The object of the present chapter is to describe some properties on nonlinear dynamics in

discrete systems, associated with noninvertible functions. Let us consider a dynamic model

which is described by an iterative process, i.e. a map: The state of the system changes under

the action of some function T . The state x may be a scalar or a vector of state variables.

The state (or phase) space is a set X ⊆ Rm where m is an integer denoting the dimension

of the vector state variable x, m ∈ {1, 2, 3...} , and T : X → X. A discrete dynamical

system (DDS for short) is represented by the standard notation

xn+1 = T (xn) or x′ = T (x) (2.1)

The object of the theory of DDS is that to understand which kind of values will be obtained

asymptotically, and this depending on the initial value (or initial condition) x0 in the phase
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space. Also important will be the bifurcations, which are responsible of the changes in the

qualitative behaviors of the trajectories of the iterative process. To this scope we recall that

the bifurcations are studied in the parameter space, which includes all the parameters which

are considered in a model under study. Whenever the parameters have a fixed value we

have a dynamic system whose invariant sets in the phase space of interest are our object of

investigation, as well as the description of the dynamic behavior associated with the points

in the phase space (are the trajectories converging to the same set ? are some of them

uninteresting for us because associated to divergent dynamics ? and so on). Then, as the

parameters are varied, things may change smoothly (as under a deformation, we shall say

“via an homeomorphism”, which is a continuous invertible function) or not smoothly (and

often some drastic change may occur), in which case we say that a bifurcation takes place.

Roughly speaking, we say that a bifurcation takes place at some specific parameters setting

when the dynamics occurring “before” and “after” (when the condition is not fulfilled)

cannot be obtained one from the other by a smooth change (via an homeomorphism).

To study DDS it is important to introduce first a few definitions and terms. Let us

consider a map x′ = T (x), T is defined from X into itself. The point x′ is called the rank-1

image of x. A point x such that T (x) = x′ is called a rank-1 preimage of x′. The point

x(n) = Tn(x), n ∈ N, is called image of rank-n of the point x, where T 0 is identified with

the identity map and Tn (·) = T ◦Tn−1 (·) = T (Tn−1 (·)). A point x such that Tn(x) = y
is called rank-n preimage of y.

Let A ⊂ X be a such that T (A) ⊆ A, then A is called trapping set. We have two kinds

of trapping set: either (a) T (A) = A, then A is called invariant set, or (b) T (A) ⊂ A than

A is strictly mapped into itself, and in this case Tn+1(A) ⊆ Tn(A) for any n > 0. When

A is a compact set then the intersection of the nested sequence of sets is a closed nonempty

invariant set, say B = ∩n>0T
n(A), then T (B) = B (note that the number of iterations

necessary to get the invariant set B may be finite or infinite). It is important to stress the

properties of an invariant set A ⊆ X . As by definition any point of T (A) is the image of

at least one point of A, we have that for an invariant set A ⊆ X, for which T (A) = A, this

properly holds for any point in A, that is:

Property 1. If T is invariant on A then any point of A has at least one rank-1 preimage

in A, and iteratively: any point of A has an infinite sequence of preimages in A.

The behavior of points in a neighborhood of an invariant set A depends on the local

dynamics (A may be attracting, repelling, or neither of the two).

An attracting set is a closed invariant set A which possess a trapping neighborhood,

that is, a neighborhood U , with A ⊂ Int(U), such that A = ∩n≥0T
n(U) (as in the case

of the set B constructed above). In other words, if A is an attracting set for T , then a

neighborhood U of A exists such that the iterates Tn(x) tend to A for any x ∈ U (and not

necessarily enter A). An attractor is an attracting set with a dense orbit.

The basin of attraction of an attracting set A, D(A), it the set of all the points whose

trajectory has the limit set in A (roughly speaking, whose trajectory tends to A).

D (A) = {x|Tn(x)→ A as n → +∞} . (2.2)

As the attracting set possesses a neighborhood U of points having this property, then the

basin is made up of all the possible preimages of U : D(A) = ∪n≥0T
−n(U). Sometimes it
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is useful to consider as neighborhood U the immediate basin, which is the largest connected

component of the basin which contains the attracting set A.

A repelling set is a compact invariant set K which possesses a neighborhood U such

that for any point x0 ∈ U\K, the trajectory x0 → x1 → ... must satisfy xn /∈ U for at least

one value of n ≥ 0 (but such a trajectory may also come back again in U, as it occurs when

homoclinic trajectories exist). A repellor is a repelling set with a dense orbit.

It is worth noticing that this definition is a very strict one (as we shall see below, by using

this definition a saddle cycle cannot be called repelling, but only unstable). Some authors

use “expanding” in its place, keeping a more soft definition for a repelling set saying that

a closed invariant set K which is not attracting is called repelling if however close to K
there are points whose trajectories goes away from K. In this chapter we adopt this second

(more soft) definition.

Regarding the invariant sets, the simplest case is that of ”fixed point”. We say that x∗ is

a fixed point (or equilibrium point) of the DDS if it satisfies

x∗ = f(x∗)

That is: starting in that point the system never changes. Then, given that it is very difficult to

be exactly in a fixed point, it is important to understand when (i.e. under which conditions)

starting from a different state and iterating the process we are approaching the equilibrium,

and when this occurs for all the points in a suitable neighborhood, we call it attracting: The

definition given above is fulfilled. When for some points, also very close to an equilibrium,

the process will lead the state far away from it, then it is unstable.

A map T is said to be noninvertible (or “many-to-one”, see Fig. 2.1), if distinct points

x 6= y exist which have the same image, T (x) = T (y) = x′. This can be equivalently

stated by saying that points exist which have several rank-1 preimages, i.e. the inverse

relation x = T−1 (x′) may be multi-valued. Geometrically, the action of a noninvertible

map T can be described by saying that it “folds and pleats” the space, so that two distinct

points are mapped into the same point. Equivalently, we could also say that several inverses

are defined, and these inverses “unfold” the space.

For a continuous noninvertible map T , the space R
m can be subdivided into regions Zk,

k ≥ 0, whose points have k distinct rank-1 preimages. Generally, as the point x′ varies

in R
m, pairs of preimages appear or disappear as this point crosses the boundaries which

separate different regions. Hence, such boundaries are characterized by the presence of

at least two coincident (or merging) preimages. This leads to the definition of the critical

sets, one of the distinguishing features of noninvertible maps ( [1], [2], [3], [4], [5], [6]):

The critical set CS of a continuous map T is defined as the locus of points having at

least two coincident rank − 1 preimages, located on a set CS−1 called set of merging

preimages. The critical set CS is the n-dimensional generalization of the notion of critical

value (when it is a local minimum or maximum value) of a one-dimensional map1, and of

the notion of critical curve LC of a noninvertible two-dimensional map (from the French

“Ligne Critique”). The set CS−1 is the generalization of the notion of critical point (when

it is a local extremum point) of a one-dimensional map, and of the fold curve LC−1 of a

1This terminology, and notation, originates from the notion of critical points as it is used in the classical

works of Julia and Fatou.
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two-dimensional noninvertible map (for piecewise smooth continuous maps). The critical

set CS is generally formed by (n− 1)-dimensional hypersurfaces of R
m, and portions of

CS separate regions Zk of the phase space characterized by a different number of rank−1
preimages, for example Zk and Zk+2 (this is the standard occurrence).

2.2 One-dimensional maps

Let us consider first the case of a one-dimensional phase space, as all the main properties

of dynamical systems and chaotic behaviors can be well introduced in this space. As a very

simple example consider the Myrberg’s map (Myrberg was the first author who studied in

details the bifurcations of such non-invertible one-dimensional maps, still in 1963, and via

a linear homeomorphism this map is topologically conjugated with the standard logistic

map):

x′ = f(x) : f(x) = x2 + c (2.3)

For c ∈ [−2, 0] we have f : I → I, I = [q∗−1, q
∗] where q∗ is the repelling positive fixed

point. At c = 0 the slope at the stable fixed point p∗ is zero (also called superstable), and

then, decreasing c, the slope from positive becomes negative, reaching the value −1 and a

flip bifurcation takes place, leading to the appearance of a stable cycle of period 2.

Figure 2.1: Myrberg’s map.

We recall that for a nonlinear function the stability/instability of a fixed point x∗ is a

local property, which may be investigated by the first order approximation of the function in
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the fixed point, that is, by using the first derivative in the fixed point, also called eigenvalue,

λ = f ′(x∗). We can summarize as follows:

−1 < λ = f ′(x∗) < 1 : locally asymptotically stable fixed point

λ = +1 bifurcation (fold, transcritical or pitchfork)

λ = −1 flip bifurcation

In general, a k−cycle (k ≥ 1) is a sequence of k consecutive distinct points xi, i =
1, 2, ..., k visited iteratively by the map, and such that fk(xi) = xi for any point xi. That is,

stated in other words, each of the periodic points is a fixed point of the map fk = f◦f◦...◦f.
The stability/instability of a cycle is determined by the stability/instability condition of a

fixed point of the map fk and from the chain rule we have, for each point xi of the cycle,

λ =
d

dx
(fk(x))|xi

=

k
∏

j=1

f ′(xj) (2.4)

Summarizing, if we consider a one–dimensional map xn+1 = f(xn) and a k−cycle of

points {x1, ..., xk} , k ≥ 1 (for k = 1 we have a fixed point), the condition |λ| < 1 (resp.

> 1) is a sufficient condition to conclude that the k−cycle is an attractor (resp. repellor), as

λ is the slope, or eigenvalue, in any point xi of the map fk.

We have not considered the bifurcation cases in which |λ| = 1, because the behavior

depends on the kind of bifurcation. This can be found in several textbooks ( [7], [8], [9],

[10], [11]), and we simply recall that the bifurcations associated with λ = −1 are related

to the period-doubling of the cycle, and it is frequently called flip bifurcation. That is,

crossing this bifurcation value, when suitable transversality conditions are satisfied, then a

stable k−cycle becomes unstable and a stable 2k−cycle (of double period) appears around

it. While the bifurcations associated with λ = +1 may be of three different kinds: (i) ei-

ther related to a fold bifurcation, giving rise to a pair of k−cycles, one attracting and one

repelling, (ii) or to a change of stability (also called transcritical), a pair of stable/unstable

cycles merge after which they exchange their stability, i.e. become unstable/stable respec-

tively, (iii) or a pitchfork bifurcation occurs at which a stable k−cycle becomes unstable

and two new k−cycles appear around it, both stable.

As observed several years ago by the pioneers of such studies ( [3], [12], [13], [14],

[15], [16]) still in the one-dimensional case we can see that once that the monotonicity (i.e.

the invertibility property) is lost, then very complicated paths may occur, which may be

predictable or not (although the model is completely deterministic). As a standard example

let us consider the simple Myrberg’s map (whose graph is a parabola), which for c < 0 has

the positive fixed point always unstable and the negative fixed point which may be stable

or unstable, depending on the slope (or eigenvalue) in that point. This map has a unique

critical point C (x = c), which separates the real line into the two subsets (see Fig. 2.1):

Z0 = (−∞, C), where no inverses are defined, and Z2 = (C,+∞), whose points have two

rank-1 distinct preimages. These preimages can be computed by the two inverses

x1 = f−1

1
(x′) =

√
x′ − c ; x2 = f−1

2
(x′) = −

√
x′ − c. (2.5)

If x′ ∈ Z2, its two rank-1 preimages, computed according to (2.5), are located symmetri-

cally with respect to the point C−1(x = 0) = f−1

1
(C) = f−1

2
(C). Hence, C−1(x = 0) is
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the point where the two merging preimages of C are located. The map f folds the real line

(Fig. 2.1), while the two inverses unfold it. As the map (2.3) is differentiable, at C−1 the

first derivative vanishes. However, note that in general a critical point may even be a point

where the map is not differentiable. This happens for continuous piecewise differentiable

maps such as the well known tent map or other piecewise linear maps. In these maps criti-

cal points are located at the kinks where two branches with slopes of opposite sign join and

local maxima and minima are located.

Similarly we can reason with a one-dimensional bimodal map, an example of which is

shown in Fig. 2.2.

Figure 2.2: Bimodal map.

Here we have two critical points: C the points of local maximum, and C ′, the point of

local minimum. These points separate the real line in three regions, called Z1 − Z3 − Z1,
where Z3 =]C, C ′[ as any point M ∈ Z3 has three distinct rank−1 preimages in R (see

Fig. 2.2).

2.3 Two-dimensional maps

In a generic two-dimensional map T , and in analogy with the one-dimensional case, the

set LC−1 is included in the set where detJT (x, y) changes sign, since T is locally an

orientation preserving map near points (x, y) such that det JT (x, y) > 0 and orientation

reversing if det JT (x, y) < 0. When the map is continuously differentiable the points of

LC−1 necessarily belong to the set where the Jacobian determinant vanishes, and LC =
T (LC−1) belongs to boundaries which separate regions Zk characterized by a different
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number of preimages. In order to give a geometrical interpretation of the action of a multi-

valued inverse relation T−1, it is useful to consider a region Zk as the superposition of k
sheets, each associated with a different inverse. Such a representation is equivalent to a

Riemann foliation of the plane (see e.g. Mira et al., [4]). Different sheets are connected by

folds joining two sheets, and the projections of such folds on the phase plane are arcs of

LC.

We can easily extend the definition given above to the m-dimensional case. It is clear

that the relation CS = T (CS−1) holds, and the points of CS−1, in which the map is

continuously differentiable, are necessarily points where the Jacobian determinant vanishes.

In fact, in any neighborhood of a point of CS−1 there are at least two distinct points which

are mapped by T in the same point. Accordingly, the map is not locally invertible in points

of CS−1.

Figure 2.3:

The true extension of the properties of the Myrberg map can be analyzed in a two-

dimensional non-invertible map. As a simple example let us consider the map T defined

by

T :

{

x′ = y
y′ = bx+ x2 + y2 (2.6)

which was considered in [6]. The points which are the analogue of the critical points of a

one-dimensional map are now associated with the vanishing of the Jacobian determinant.

Here we have

JT (x, y) =

[

0 1
b+ 2x 2y

]

, det JT (x, y) = −2x− b (2.7)

then the set defined by detJT (x, y) = 0, here x = − b
2
, represents the so called critical

line LC−1, and its image, LC = T (LC−1) here the hyperbola of equation y = x2 − 2b, is

a set which separates the phase plane into two regions: Z0 and Z2. Each point belonging

to Z0 has no rank-1 preimage, while each point belonging to Z2 has two distinct rank-1
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preimages, located one on the right and one on the left of LC−1 (the regions denoted as R1

and R2 in Fig. 2.3).

In Fig. 2.3 we show the phase plane at b = 0.8, when the origin O = (0, 0) is an

attracting fixed point. His basin of attraction D(O) is also shown, which is bounded by a

smooth frontier, which is made up by the stable set of an unstable fixed point of the map: a

saddle P .

We recall that while in invertible maps the basin of attraction of some attracting set

A is an invariant set, for noninvertible maps this property is not always satisfied. In fact,

whenever there is a region Z0 and a basin has a portion in it, then the image by the map of

the basin is a set strictly included into itself. So in Fig. 2.3 we have T (D(A)) ⊂ D(A), and

the generic properties are as follows:

T (D(A)) ⊆ D(A) , T−1(D(A)) = D(A) (2.8)

However, one of the main distinguishing features of noninvertible maps is in the structure

of the basins of attraction. In fact, while in invertible maps the basin of attraction of some

attracting set A is a simply connected set, in noninvertible maps we may have basins of at-

traction which are connected but not simply (i.e. with so-called holes) or also non connected

(i.e. disconnected, with so-called island). Important global bifurcations of the structure of

the basins of attraction, leading a simply connected basin to a connected basin but with

holes or to a non connected basin, are due to contact bifurcations between the basins and

the critical curves of a map.

Figure 2.4:

In Fig. 2.4 we schematically show this contact bifurcation: a portion of the frontier has

a contact with the critical curve LC, here denoted L, and crosses it, leaving a region H0

whose points have a different fate (they do not belong to the considered basin). But this

portion H0 belongs to the region Z2 and thus has two distinct rank-1 preimages which

form together a hole H1 inside the old basin. Then this area H1 has an infinite sequence

of preimages inside the old basin, and all such areas are holes of points having a different

fate. So a simply connected basin is transformed into a multiply-connected basin. Note that

if the points outside are converging to a different attractor, and thus belong to a different

basin, for it the same bifurcation has created new portions, islands, inside a different area,

and thus it has been transformed from connected to non connected.

Another import properly, due to the noninvertibility, is the boundary of absorbing areas

made by portions of critical curves. As it occurs in one-dimensional maps, where absorbing

intervals are bounded by the images of the critical point, also now the images of the critical
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curve, called critical curves of higher rank, are used to bound absorbing areas as well as

chaotic areas. Consider the following map T :

T :

{

x′ = ax+ y
y′ = b+ x2 (2.9)

(which was extensively considered in [4] and [5]). Here we have

JT (x, y) =

[

a 1
2x 0

]

, det JT (x, y) = −2x (2.10)

Figure 2.5:

then the set defined by detJT (x, y) = 0, here x = 0, represents the critical line LC−1,
and its image, LC = T (LC−1), here the line of equation y = b, is a set which separates the

phase plane into two regions: Z0 and Z2. An example of chaotic area is shown in Fig. 2.5, at

a = −0.42 and b = −1.6. In [4] it is proved that the boundary of the chaotic area is given

by portions of critical curves belonging to the images of the segment (called generating arc

g) of LC−1 belonging to the area itself.

The bifurcations leading to changes in the structure of the basins (connected, multiply

connected or disconnected) are called contact bifurcations (see in [4], [17]) because they

are due to the contact of the frontier of the basin with the critical set LC. While bifurcations

leading to changes in the structure of the chaotic areas (reunion of chaotic pieces, explosion

to a wide area, final bifurcation, etc.) are also called contact bifurcations but due to the

contact of two (at least) different invariant sets.

The chaotic area, bounded by portions of critical arcs of increasing ranks Lr, r =
0, 1, ..., 5, L0 = L (the critical curve), is shown in Fig. 2.5 inside its basin of attraction,
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whose frontier has a fractal structure. Also the process leading from a smooth basin bound-

ary to a fractal basin boundary, is explained via sequence of contact bifurcation involving

the critical curves. Let us show this process via a guiding example, by using the map (2.9),

at the parameter at a = −0.42 and decreasing the value of the parameter b.

Figure 2.6:

In Fig. 2.6a, at b = −1.09 we see the coexistence of two different attractors: of a closed

invariant curve Γ with a multiply-connected basin, and a chaotic attractor (chaotic area)

made up of three cyclical pieces (di), i = 1, 2, 3, whose basin is non connected. This basin

consists of the three immediate basins of the three areas (di), i = 1, 2, 3, and related preim-

ages of any rank. The external boundary, separating the basins of the two attractors from the

basin of divergent trajectories, includes a repelling node P and its preimages. In Fig. 2.6b,

at b = −1.25 the chaotic attractor (di), i = 1, 2, 3, has been destroyed (via a contact bifur-

cation with the immediate basin boundary) leaving a chaotic repellor, or strange repellor

(SR) (although not visible, in the figure, appearing as inside the basin of the unique attract-

ing set, now an attracting cycle of period 7). That is, at b = −1.25 the unique attracting set

is now an attracting cycle of period 7 (star points), and its basin boundary is made up of an

“external” part, including the repelling fixed point P, its preimages, and infinitely repelling

cycles of increasing period belonging to another strange repellor (SR′) (black points on the

quadrangular piecewise smooth line), and an “internal” part made up of the fractal set (SR)
(some of its repelling cycles being the black points inside the brown region). The basin

boundary is thus fractal.

In Fig. 2.7a, at b = −1.35 we see the effect of the contact bifurcation between the

external frontier and the critical curve LC. The attracting set is still a 7-cycle, and its basin

is multiply connected. Infinitely many preimages of the region H0 give areas (holes) inside

the basin, which are here made up of points having divergent trajectories, and now the

infinitely many holes are accumulating on the strange repellors (SR) and (SR′), thus a new

fractal structure has been created, that related to the basin with its boundary. The crossing

of the preimage of the repelling node P denoted as P 2
−2 trough the critical curve LC gives

as result the fractal basin shown in Fig. 2.5.

We also note that in Fig. 2.5 the attractor is a chaotic area quite close to the frontier of
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its basin. A contact of this chaotic attractor with the frontier of its basin will transform the

chaotic attractor into a chaotic repellor. An example is shown in Fig. 2.7b: almost all the

points have divergent trajectories, however the transient part in the old chaotic area shows

the old shape as a kind of ghost. This gives rise to a chaotic transient toward infinity.

Figure 2.7:

2.4 Conclusion

To conclude our short summary, it is worth to note the importance of the global structures

and of the global bifurcations, in the interpretation of the dynamics of maps in the applied

context. As in fact we may have simple attractors with a very small basin of attraction, or

with a fractal shape, and coexistent with several other attractors (as it occurs for example in

the case of Cournot duopoly models) which limit the importance of the attractivity property,

or at least must be followed by other kind of considerations.
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