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5 Cournot Duopoly  with  Kinked Demand
according to Palander and Wald

1 Introduction

In a short printed abstract of contributions to a Cowles Commission confer-
ence at Colorado Springs in 1936, and an extensive follow up, in Swedish,
dating from 1939, Tord Palander focused some interesting dynamics prob-
lems in Cournot duopoly when the demand curve was kinked linear and the
marginal revenue curve hence jumped up, producing two different local profit
maximising intersections with the curve of marginal cost, which was as-
sumed constant or even zero. The Cournot reaction functions, as well, then
became piecewise linear, including a jump, and they could produce several,
coexistent and locally stable equilibria. Palander specified the basins for these,
though nor completely, and also the basin for initial conditions from which
the system in stead went to an attractive 2-periodic oscillation.

For another case, where the reaction functions did not intersect, and there
hence did not exist any Nash equilibrium, Palander recognised the existence
of an attractive 3-periodic cycle. Given the numerical tools at that time, the
accuracy of his calculations is in fact amazing, though he missed the coexist-
ence of a 6-period cycle and again the complete characterisation of the ba-
sins.

Palander gave his argument in terms of two numerical cases, one with
identical firms, another with a slight asymmetry between them.

It is noteworthy that, also in 1936, Abraham Wald considered the same
type of problems, in an article which later became celebrated as first rigor-
ous statement of existence problems for multi-market equilibria, left open by
Walras and later elaborated by Arrow and Debreu.

Like Palander, Wald gave his argument in terms of two numerical exam-
ples, and also assumed the demand curve to start and end with straight line
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segments, but, unlike Palander, he did not assume the curves to meet under a
sharp angle. Rather the two line segments were smoothly joined by either a
circular segment, or by a demand curve where price was reciprocal to supply
squared. The lines and curves were hence joined at tangency, so the demand
function was not only continuous but differentiable. The first example, with
a circular segment, seems miscalculated, but the second, hyperbola like, is
most interesting, as it results in a nondenumerable infinity of coexistent Nash
equilibria.

Given its context, Wald was not interested in the dynamics of the reaction
functions. Had he cared to elaborate the dynamics, he would have found that
none of the coexistent equilibria was even locally attractive. Rather the whole
state space, except the sparse subset of the diagonal, would provide basins
for oscillatory motions, quite as in Palander's cases, though all different and
nondenumerably infinite in number.

It seems sufficiently interesting in itself to lift forward this neglected mate-
rial, and completing the analysis. However, there is more to it. Sectional
linearity of the demand function, combined with constant marginal costs,
makes all falling segments of the reaction function have slope -1/2, and this
makes all Nash equilibria stable. There may be cycles, even coexistent, but
no such things as chaos. However, considering falling marginal costs, the
slope becomes steeper, and we may in fact obtain much more interesting
dynamics. Globally decreasing marginal costs, of course, do not make sense,
but locally, as an approximation to the falling section of a U-shaped marginal
cost curve, they indeed do.

We should note that, in all these cases, demand sensitivity to price goes up
as price goes down. Joan Robinson in 1933 gave factual arguments for this,
in terms of new and more numerous groups of consumers entering the mar-
ket once they could afford the good, in fact the same type of  assumptions as
used in all textbook discussions of price discrimination.

The so called "kinked demand case" for duopoly is something quite differ-
ent. There demand was assumed to become less, not more, elastic as price
went down. The explanation for this was not in terms of behaviour of the
consumers, but of the competitors, who were supposed to retaliate to in-
creased demand, aimed at bringing price down, but not to reduced demand to
bring about the reverse. This type of  model was used to the purpose of
explaining an allegedly observed extreme stability in duopoly pricing, and
so had a strong flavour of ad hoc explanation. See Sweezy (1939). In this
latter case the jump in marginal revenue was down, not up, but this is not the
issue Palander and Wald dealt with, which no doubt is the more interesting.
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2 Palander's First Case

In his first case Palander assumed two identical duopoly firms (both having
zero average = marginal cost), facing the kinked (inverse) demand function:
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shown as the broken black curve in Fig. 1. If we had dealt with a case of
simple monopoly, the marginal revenue would have been:
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as usual with the same intercepts as the bits of the demand function, but with
doubled slope for each. This produces a jump up from -80 to 40/7 in the
marginal revenue function at the kink point, i.e. for q = 1800, as we can
calculate from (2).

With zero marginal cost we obtain two local profit maxima for the
monopolist from MR = MC = 0, q = 1000 and q = 3000 respectively. The
corresponding monopoly prices from (1) then become p = 50, and p = 100/
21, and the profits (in absence of production costs) become pq = 50000 and
pq = 150000/7, so it is obvious that the monopolist would select the first of
the local maxima.

We can see the marginal revenue curve for the monopolist in Fig. 1 as the
curve supported by the darkest shade area. Fig. 1 was drawn for a duopolist,
but when one competitor supplies zero the other duopolist becomes a
monopolist. The horizontal axis in the present case also is the marginal cost
curve. It intersects the discontinuous marginal revenue curve in two points,
the local profit maxima. Economists are used to establish the global maxi-
mum by comparing the triangular areas formed by the marginal revenue curve
above and below the marginal cost curve (at present the zero line). It is obvi-

(1)

(2)
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ous that the loss area, below the axis, outweighs the gain area, above the
axis, by several times, so that the lower intersection with the axis establishes
the global optimum (as already demonstrated numerically). At least this is
true with the darkest marginal revenue curve, for the case of monopoly, or
zero supply by the competitor. We can already note that this is not always the
case in duopoly with positive supplies by the competitor. As shown by the
marginal revenue curves with support areas in brighter shade, it may be the
higher intersection point that represents the global optimum provided the
competitor supplies sufficiently much.

In duopoly, denote the supplies of the competitors, x and y, so q = x + y.
Now the marginal revenue of the first firm is:
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Fig. 1. Demand curve in Palander's first case, and marginal revenue curves for
the first firm. Range for x: [0, 10000], range for p: [0, 100].
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and likewise for the second firm:
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As we see, the supply by the competitor subtracts from the intercept of the
marginal revenue curve, and also pushes the kink point to the left. See Fig. 1.
Note however that in equations (3)-(4) the competitor's supply enters with
only half the coefficient of the duopolist's own supply. Hence, the presence
of a positive supply by the competitor not only pushes the whole marginal
revenue curve to the left, but it also decreases the size of the dip, thereby
changing the loss and gain areas. As already noted it may be that the global
optimum shifts from small supply to large when the competitor increases his
supply.

To establish the local optimum, given zero marginal costs, the first firm

solves the equation: MR MCx x= = 0  with respect to x, and the second firm

solves the equation MR MCy y= = 0 with respect to y. This results in the

reaction functions ′ =x yφ b g  and ′ =y xϕ b g , which we will expect to be-

come identical in view of the symmetry of the present case. Equating (3) to

zero gives us two solutions for ′ =x yφb g :

′ = = −x y
yφb g 1000
2

′ = = −x y
yφb g 3000
2

so we have to establish a criterion for the choice. (Note that the dash denotes
advancing the map one step in a dynamical sense from t to t + 1.) There are
now two different things to consider.

First, (5) and (6) are not applicable everywhere. We have to consider that
(5) applies if q < 1800, (6) if q > 1800. Given q = x + y we find by substitu-
tion from (5) in q < 1800  the condition  y < 1600 for the validity of (5).
Likewise, substituting from (6) in q > 1800, we find the condition y > -2400
for the validity of (6), which is not restrictive, as the supply y anyhow has to
be nonnegative. So, we rephrase (5)-(6):

(4)

(5)

(6)
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′ = = − <x y
y

yφb g 1000
2

1600

′ = = − − <x y
y

yφb g 3000
2

2400

Further, not only the supply of the competitor, but the supply of the firm
itself has to be positive in order to make sense. From (5) we therefore find
y < 2000, which is not operative because it is already implied by y < 1600.
Likewise from (6) we find y < 6000, which, however, is. Consequently, con-
sidering all constraints, we can now write (7)-(8):

y

p x

Fig. 2. Local profit maxima for the first firm as dependent on the competitor's
supply. Black sections of the profit parabolas are the relevant ones.

Range for y: [0, 7000], range for px (profits): [0, 55000].
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We are not quite done yet, because the expressions (9)-(10) have a common
range of validity, 0 < y < 1600, and so do not yield a unique solution in this
interval. To achieve this we have to consider the following fact. Both solu-
tions provide local profit maxima, but we have to select the global one.

As production costs are zero, profits equal revenues, so we obtain by sub-
stitution from (9) in (1):

px
y

y′ =
−

< <
2000

80
0 1600

2b g

Similarly, substituting from (10) in (1):

px
y

y′ =
−

< <
6000

1680
0 6000

2b g

Equating (11) to (12), we get two solutions:

y = ±1800 200 21

but only the smaller root makes sense, as only this is in the common validity
range 0 < y < 1600. This always is the case when we compare profits. Even
if we solve a second order equation only one root counts. The geometry of
the case is illustrated in Fig. 2, where the dark curves are the relevant ones.

So, assembling the pieces we have:

(9)

(10)

(11)

(12)

(13)
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for the first firm, and likewise for the second firm:
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These piecewise linear reaction functions are displayed in Fig. 3 in white
against a background of the profit surfaces for the first and second firms
respectively, represented in terms of shading, the darker shade indicating
higher profits. Due to the symmetry of the cases the pictures are rotations of
each other with the diagonal as rotation axis.

In Fig. 4 we superpose the two reaction functions quite as Palander did.
Equations (14)-(15) have two intersections, x = y = 2000/3 and x = y = 2000,
obtained by either equating x' to y in (14) or y' to x in (15). As the slopes of
the reaction functions (both pieces) are -1/2, both equilibria, the Cournot
points, are locally stable. They hence coexist with each its proper basin of
attraction in the space of initial conditions.

y y

x x

′ =x yφb g ′ =y xϕb g

Fig. 3. Profit surfaces for the two firms in Palander's first case represented in
terms of shading and the raction curves for the firms. Ranges for x, y: [0, 7000].

(15)

(14)
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y y

x x

Fig. 4. Reaction functions and attraction basins according to Palander (left),
and complete description (right). Ranges displayed for x and y: [0, 6500].

Note that the slopes of the reaction function always have this value, so all
Cournot equilibria are stable. This is due to the linearity of the demand func-
tion. In all profit expressions the output of the optimising firms enters by its
square, while that of the competitor enters linearly. By differentiation then,
to get marginal revenue, as we see from (3)-(4), the competitor's sales enters
with half the coefficient of the firm's own sales. So, this constantly low slope
makes all the intersections of reaction functions into stable equilibrium points.

At least this is so with two competitors. We can note in passing that in the
general case of n competitors, the Jacobian matrix has (n - 1) eigenvalues
equal to 1/2 and 1 eigenvalue equal to -(n - 1)/2. Accordingly, with n > 3, the
equilibrium points are no longer stable. For instance first explorative
simulations indicate that with four competitors the first Palander case has an
attractive 13-period cycle.

The left picture in Fig. 4 displays the attraction basins for the two coexist-
ent fixed points exactly as described by Palander, and a basin from which the
process was supposed to go to a 2-period oscillation.

To be quite exact, in discussing the dynamics of the iterated map

′ ′ =x y y x, ,b g b g b gc hφ ϕ  according to (14)-(15), Palander, like most authors of

his day, was very keen on distinguishing between two different systems, re-
spectively called "simultaneous adjustment", and "alternative adjustment".
In the first case both competitors react on the actual supplies recorded from
the previous period, in the latter they take turns in reacting. In terms of dy-
namics there is actually no difference. We can always compose two inde-
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pendent iterations ′′ =x xφ ϕo b g  and ′′ =y yϕ φo b g  in each variable alone,

only note that the processes then run with a basic period twice as long as the
one originally introduced. The dynamics is exactly the same in both of Palan-
der's adjustment schemes. The only difference lies in the fact that, for the
"alternative" case, the process cannot start out from every initial condition in
x, y -space, the initial y-coordinate being a first iterate of the first x-coordi-
nate, and vice versa. So, alternative adjustment just does not recover the full
dynamics possibilities of Palander's model.

The composite iteration, which can be seen in Fig. 5, is:
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Fig. 5. Composite of reaction functions and diagonal. Range shown [0, 6500].

(16)
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and, as mentioned, there is an identical expression for the composite

′′ =y yϕ φo b g . The Cournot equilibria can also be recovered from (16) by

equating x" to x, though only from the second and third pieces because the
ones obtained from the first and fourth are not in the intervals of relevance
specified in the composite function. Put in other words, in Fig. 5 the relevant
pieces of (16) do not intersect the diagonal.

To describe the basins, we define the two strips:

S x y xx = − < < −,b g{ }400 21 1600 1800 200 21

S x y yy = − < < −,b g{ }400 21 1600 1800 200 21

They are shown in the brightest shade in Fig. 4. The extrema defining the

strips Sx  and Sy  are the first two discontinuity points of the composite reac-

tion function (16) displayed in Fig. 5. For initial conditions x y S Sx y0 0,b g ∈ ∩ ,

i.e. in the intersection of the two strips, the process goes to the lower Cournot
equilibrium point. However, in a complete analysis, there are also initial
points to the right of the third discontinuity point in (16), which also belong
to the basin of the lower fixed point, as we will see below. For the moment,
let us follow Palander's reasoning: For initial conditions in the union of the

strips, net of the intersection, x y S S S Sx y x y0 0,b g d i d i∈ ∩ ′ ∪ ′ ∩ , the process

goes to a 2-period oscillation, and for all other initial conditions it goes to the
higher Cournot equilibrium. In all Palander described one quadratic basin
for the lower equilibrium, four rectangular basin pieces for the higher equi-
librium, and four rectangular basin pieces for oscillation, nine pieces in all.

Palander missed the full description of the basins, because he did not note
that the various areas in his account also had preimages under the mapping.
So, suppose we define two more strips:

T x y xx = + < < −,b g{ }400 21 2400 9200 800 21

T x y yy = + < < −,b g{ }400 21 2400 9200 800 21

(17)

(18)

(19)

(20)
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These strips are the new bright shade ones in the right picture of Fig. 4. Their
intersections with the previous strips give rise to three new basin pieces for
the lower Cournot equilibrium, further adding to and fragmenting the basins
for the upper equilibrium and for oscillation so that the total number of pieces
increases from 9 to 25. If it were not for the horizontal sections of the reac-
tion functions, we could continue this process ad infinitum, but, in fact, it
stops here. Note from Fig. 4 how the new strips (19)-(20) form by the inter-
sections of the reaction functions with the old strips (17)-(18).

3 Palander's Second Case

As an alternative Palander, in his Swedish article, but not in the abstract,
suggested:
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Fig. 6. Profit surfaces for the two firms in Palander's second case represented in
terms of shading and the raction curves for the firms. Ranges for x,y: [0, 6500].
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where the first firm has a constant marginal = average cost equal to 6, whereas
the second firm still has zero production cost.  By exactly the same proce-
dure as before, this time not forgetting to subtract costs from the revenues for
the first firm, we obtain the reaction functions:
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They are displayed in Fig. 6, again against the background of the profit sur-
faces indicated by shading. It is easy to check that the reaction functions do

yy

x x

′ =y xϕb g′ =y xϕb g

′ =x yφb g′ =x yφb g

Fig. 7. Three-cycle for Palander's second case (left) and coexistent six-cycle
(right). Ranges for x, y: [0, 3000].

(22)

(23)
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y

x

not intersect, and so there exist no Cournot equilibria at all. Palander noted
the existence of a stable 3-period cycle. See Fig. 7, the left picture. However,
there is a coexistent 6-cycle, as we see in the right picture of Fig. 7, in a
somewhat increased resolution in order to see all the points as distinct. The
basin, shown in Fig. 8 is quite complex, as we see. Again the pattern would
be repeated ad infinitum if we did not have the (white) vertical and horizon-
tal segments of the reaction function, which are again due to the fact that
supply cannot become negative.

In his picture for the second case, Palander showed a shaded area, without
commenting its significance at all. He definitely did not designate it as a
basin for the 3-period oscillation. In view of Fig. 8 it is, in fact, a mixture of
the basins for the two coexistent oscillations. Probably he checked this area
and noted that the system went to oscillatory motion, whereas he left the rest
of the plane unchecked. The coexistence of the different cycles for a more
general class of models has recently been established by Bischi, Mammana,
and Gardini (2000).

It is interesting to note, in numerical simulations, though difficult to see in
Fig. 7, that both in the 3-cycle and in the 6-cycle it is always the same three
values for the x-coordinate and the y-coordinate, though different for the

Fig. 8. The basins for the 3-cycle (bright) and the 6-cycle (dark).
Range for x and y: [0, 6500]
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coordinates, which are visited. The way the 3-cycle becomes a 6-cycle is by
each competitor lingering two periods at the same supply. As the time series
for x and y are displaced, it then takes six periods to arrive at the same com-
bination of coordinate values. It is also noteworthy that, whereas in the 3-
cycle the points are not on the reaction curves, in the 6-cycle they in fact are.
So, though assuming Palander's "simultaneous" adjustment, the process it-
self settles at "alternative" adjustment. See Table 1.

4 Cubic Demand Functions

It is also interesting in this context to consider the case of a cubic demand
curve, as considered by for instance Joan Robinson (1933), and hence also a
cubic marginal revenue curve, especially as combined with the standard text-
book case of a quadratic (U-shaped) marginal cost curve. We now only need
one single expression to state price:

p A B x y C x y D x y= − + + + − +b g b g b g2 3

Provided we choose all the coefficients positive and such that

8 3 92BD C BD< <

3-period cycle 6-period cycle

x-coordinate y-coordinate x-coordinate y-coordinate

280.6349
242.5396
 90.1587
280.6349
242.5396
 90.1587
280.6349

 454.9206
2359.6825
378.7302
454.9206

2359.6825
 378.7302
454.9206

280.6349
280.6349
90.1587
90.1587

242.5396
242.5396
280.6349

378.7302
2359.6825
2359.6825
454.9206
454.9206
378.7302
378.7302

Table 1. Coordinates for 3-cycle and 6-cycle.

(24)

(25)
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then the marginal revenue curve has a minimum followed by a maximum,
while the demand curve is monotonically decreasing. Marginal revenues are
obtained by multiplying (24) through by x for the first firm, by y for the
second, and then differentiating with respect to that variable:

MR A By Cy Dy B Cy Dy x

C Dy x Dx

x = − + − − − +

+ − −

2 3 2

2 3

2 2 3

3 3 4

d i d i
b g

MR A Bx Cx Dx B Cx Dx y

C Dx y Dy

y = − + − − − +

+ − −

2 3 2

2 3

2 2 3

3 3 4

d i d i
b g

Supposing for simplicity the symmetrical case, so that the firms have identi-
cal, U-shaped marginal cost curves, we now write the marginal cost as:

MR
MC

x

p

Fig. 9. Cubic demand, marginal cost, and marginal reveue curves for different
supplies of the competitor. Range for x: [0, 7.5], range for p: [0, 6].

(27)

(26)
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MC E Fx Gxx = − +2 3 2

MC E Fy Gyy = − +2 3 2

Again all coefficients are positive, which gives the right kind of curvature,
and we now require:

F EG2 3<

in order that in its minimum point marginal cost be still positive.
An example of suitable numerical coefficients are A = 5.6, B = 2.7, C = 0.62,

D = 0.05, E = 2.1, F = 0.3, and G = 0.02. With these we have two local profit
maxima, and now a profit minimum in between.

In Fig. 9 we display the situation quite as above in Fig. 1. Again, the dark-
est shade supports the marginal revenue function when the competitor sup-
plies nothing, i.e. the firm is a monopolist. The more the competitor supplies
the brighter the support shade. We can again compare the loss areas below
the marginal cost curve with the gain areas above the marginal cost curve. It
so seems that for the brightest shade, in the foreground, the loss outweighs
the gain, and it also seems that the same holds true for the darkest shade, in
the absolute background. Intermediate cases yield a larger gain area, which
causes switching and reswitching. Fig. 10 displays the reaction functions

′ =x yφ( )  and ′ =y xϕ( )  for the two firms against a background of the profit
surfaces, again in terms of shading. We see how they switch up from the
lower local maximum to the upper, and reswitch back to the lower.

This classical textbook case would merit closer study, but it is compu-

tationally awkward. To get ′ =x yφ( )  and ′ =y xϕ( )  we have to solve the
following cubic equations for local profit maxima, obtained through equat-
ing (26) to (28) and (27) to (29).

A E By Cy Dy B F Cy Dy x

C G Dy x Dx

− − + − − − − + ′

+ − − ′ − ′ =

2 3 2

2 3

2 2 3

3 3 4 0

d i d i
b g

A E Bx Cx Dx B F Cx Dx y

C G Dx y Dy

− − + − − − − + ′

+ − − ′ − ′ =

2 3 2

2 3

2 2 3

3 3 4 0

d i d i
b g

(28)

(29)

(30)

(32)

(31)
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Being third order equations, (31) and (32) may have three real roots for x'
and y' respectively, which is the really interesting case. Then the intermedi-
ate root is a profit minimum, whereas the smallest and the largest provide
local profit maxima. To decide between them it must be determined which is
the global maximum, by evaluating the relevant quartic profit function:

Π x x y A B x y C x y D x y E Fx Gx x′ = − ′ + + ′ + − ′ + − + ′ − ′ ′,b g b g b g b ge j2 3 2

Π y x y A B x y C x y D x y E Fy Gy y, ′ = − + ′ + + ′ − + ′ − + ′ − ′ ′b g b g b g b ge j2 3 2

As we see in Fig. 10, we get nonlinear decreasing reaction curves with one
switch up and another reswitch down. The lower segments in each picture
are part of one single curve, representing the lower local profit maximum.
Between this and the upper curve segment there is a locus for the minima,
not drawn in the pictures, but with a position which can be inferred from the
shading.

Equating x = x' and y = y', subtracting (31) from (32), and factoring, we get
the equation:

x y D x y C G x y B F− + − − + + − =a f a f a fa fd i3 2 3 2 0
2

for the location of possible Cournot equilibria. The first factor yields x = y,
which substituted into (31) and (32), yields:

Fig. 10. Profit surfaces and reaction curves for the cubic demand case.
Range shown for x and y: [0, 4.5].

y y

x x

′ =y xϕb g′ =x yφb g

(33)

(34)

(35)



1295 Cournot Duopoly with Kinked Demand According to Palander and Wald

A E B F x C G x Dx− − − + − − =b g b g b g3 2 8 3 20 02 3

A E B F y C G y Dy− − − + − − =b g b g b g3 2 8 3 20 02 3

The three roots, possible Cournot equilibria, are two intersections between
the profit maximising branches or the reaction functions, and one between
the minimising, though one or both of the former may, but need not in gen-
eral, be excluded by the jump conditions.

From (31) and (32) we can also (by implicit differentiation) obtain the
slopes of the reaction functions in the Cournot points (where as we remem-
ber x = y):

dx

dy

B Cy Dy

B F C G y Dy

′ = − − +
− − − +

6 24

2 2 10 6 36

2

2b g

dy

dx

B Cx Dx

B F C G x Dx

′ = − − +
− − − +

6 24

2 2 10 6 36

2

2b g

If they multiply to a value larger than unity, then the Cournot equilibria lose
stability and there is a possibility for complex dynamics. To judge from our
numerical case, illustrated in Fig. 10, the slopes might be sufficiently high.
However, the reaction curves do not intersect at all, so we are in a case simi-
lar to Palander's second. Provided we skip the simplifying assumption of
identical firms, things become even more complicated.

It is better to try things out through linear approximation, replacing the
falling branch of the marginal cost curve with a straight line and letting the
kinked linear demand curve replace the qualitatively similar cubic. As we
will find things become interesting enough.

5 Decreasing Marginal Cost

So, let us revert to the kinked demand curve case as suggested by Palander,
and assume:

(36)

(37)

(39)

(38)
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p f x y
x y x y q

x y x y q
= + =

− + + ≤
− + + >

R
S
T

( )
α β
α β

1 1

2 2

b g
b g

where

q = −
−

α α
β β

1 2

1 2

is the quantity coordinate at the kink point. Note that to have the right kind of

kink we must have α α β β1 2 1 2> >, . Given we take α 1 150= , α 2 450 7= / ,

β1 0 0565= .  and β 2 0 00249= . , this indeed is the case. The facts are illus-
trated in Fig. 11, We see the kinked demand curve, familiar by now from the
original Palander cases, and further a selection of marginal revenue curves,
drawn at regular intervals of the supply for the competitor  0, 450,  900, and
1350. As usual the darker shade represents a smaller supply by the competi-
tor, the darkest being the case of a monopolist.

Fig. 11. Demand, falling marginal cost, and marginal reveue curves for different
supplies of the competitor. Range for x: [0, 10000], range for p: [0, 155].

x

p

MRx

MCx

y =900

y = 0

y = 450

(40)

(41)
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Further suppose we have quadratic total cost functions, i.e. linear marginal
cost functions:

C g x a x b xx x x x= = −b g 2

C g y a y b yy y y y= = −b g 2

In general we take a b a bx x y y, , ,  positive to have down sloping marginal cost

curves. In particular take the numerical coefficients a ax y= = 53 and

bx = 1 780/  and by = 1 800/ . The marginal cost curves hence have the same

intercept, 53, whereas the slopes, 1/390 and 1/400, are very slightly differ-
ent. Fig. 11 was drawn for the first firm, but the difference is so slight that it
would almost be imperceptible in the picture. As we see, though the mar-
ginal cost curves are down sloping, we took care that the firms never operate
in the region where there is in any danger for marginal costs becoming nega-
tive. Again we can, by comparing loss and gain areas, see that in the case of
virtual monopoly, y = 0, the first firm would choose the lower intersection of
the marginal cost and revenue curves, whereas for y = 1350 it would defi-
nitely choose the higher one, as there is hardly any loss area at all.

From (40) and (42)-(43) we now get profits:

Π x xf x y x g x= + −b g b g

Π y yf x y y g y= + −b g b g

The pieces of the reaction functions for the first firm are obtained by differ-
entiating profits (44) with respect to x, equating to zero, and solving, equiva-
lent to the procedure of equating marginal revenue to marginal cost. We get
two solutions:

′ = −
−

−
−

x
a

b

y

b
x

x x

1

2 2
1

1

1

1

α
β

β
β        ′ = −

−
−

−
x

a

b

y

b
x

x x

1

2 2
2

2

2

2

α
β

β
β

As usual these are results of local optimization. The choice of branch is due
to globally maximal profits. Substituting from the reaction curve branches in

(42)

(43)

(44)

(45)

(46)
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the profit expression (44) we get local maximum profits for the first firm as
dependent on the supply of the competitor alone:

Π x
x

x

a y

b
1 1 1

2

14
=

− −
−

α β
β

b g
b g          Π x

x

x

a y

b
2 2 2

2

24
=

− −
−

α β
β

b g
b g

The procedure now runs as in Section 2, by establishing the ranges of valid-
ity for the branches, by substituting the reaction function pieces (46) in the
condition for the choice of branch, according to (40) and (41), and consider-
ing that no supply quantity can be negative. In this way we find, this time
skipping details, that again only one of the roots in the quadratic for y, obtained
from equating the two expressions (47), is in the range where both branches
are relevant. This root is:

y
b b a b b

b b

x x x x x

x x

=
− − − − − − −

− − −

α β α β β β

β β β β
1 2 2 1 2 1

1 2 2 1

e j

and we can state the reaction function for the first firm as:

Fig. 12. Profit surfaces and reaction curves for the decreasing linear marginal
cost case. Ranges shown for x and y: [0, 6500].

x x

yy

′ =x yφb g ′ =y xϕb g

(47)

(48)
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x

φ
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β

β
β
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β

β
β
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β
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1

2 2
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1

1
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Likewise, we obtain for the second firm:

 
′ = =

−
−

−
−

< <

−
−

−
−

< <
−

−
<

R

S

|
|
|

T

|
|
|

y x
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b

x

b
x x

a

b

x
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x x

a

a
x

y

y y

y

y y

y

y

ϕ

α
β

β
β
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β

β
β

α
β

α
β
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1

2 2
0

1

2 2

0

1

1

1

1

2

2

2

2

2

2
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2

with

x
b b a b b

b b

y y y y y

y y

=
− − − − − − −

− − −

α β α β β β

β β β β
1 2 2 1 2 1

1 2 2 1

e j

We do not replicate the derivation, all the arguments run as before, just inter-
change x and y everywhere in the formulas (41)-(43).

The facts are illustrated in Fig. 12, where we as usual display the profit
surfaces in terms of shading, according to (44) and (45). We also see the
reaction functions.

The big difference now is that the slopes of some pieces of the reaction
functions exceed unity and hence destabilise any Cournot equilibrium, pro-
vided it exists. Actually, as we may see in Fig. 13, there is no such equilib-
rium in the example, but the case nevertheless involves more complex dy-
namics than encountered up to now. It is a bit difficult, in this resolution, to
see that the long almost concurrent reaction curve segments do not intersect,
but they do not.

(49)

(50)

(51)
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Using the numerical specifications, we find the two slopes in equation (49)

equal to − − ≈ −β β1 12 05116/ / .bxb g  and − − ≈ −β β2 22 10307/ / .bxb g , those

in (50) to − − ≈ −β β1 12 05113/ / .byd i  and − − ≈ −β β2 22 1004/ / .byd i . As

already seen in the previous examples, the dynamics of the duopoly are strictly
related to the dynamics of the one dimensional maps obtained as composite
functions.

The graph of ′′ = =x x F xφ ϕo b g b g  is shown in Fig. 13 (left) and we see

that the map is absorbing in the interval I I I= ∪1 2  because any initial

condition is mapped by F into I, and I is invariant, F(I) = I. Moreover, it is
easy to see that the dynamics of F are completely chaotic in the interval I. In

fact, the function F in I is made up of two linear pieces: an expansion in I 1

with slope (-1.004)(-1.0307) = 1.034828, and a contraction in I 2 , with slope

(-1.004)(-0.5116) = 0.5136464. Then, as F is an expansion in I 1 , any cycle

of F in I must have at least one point in the interval I 2 , but then any point

x I0 2∈  is mapped by F in I1 : x F x I1 0 1= ∈b g , and the expanding process

starts. The number of iterations which are necessary in order to again get a

point in the interval I 2  is higher than 21 (actually more than 50). As

05136464 1034828 1
21

. .b gb g > , we can conclude that the multiplier associated

with any cycle of F in I is higher than 1, and all the cycles are thus unstable.

Fig. 13. Composite reaction functions. Range for x, y: [0, 5000]

I 2I1 J1 J2x y

x y

 F(x)

G(y)
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x

y

As F is invariant in I we conclude that any initial condition is either asymp-
totically periodic to a repelling cycle or aperiodic, and thus F is chaotic in I.

Similarly, ′′ = =y y G yϕ φo b g b g , the graph of which is shown in Fig.13 (right),

is absorbing and invariant in the interval J J J= ∪1 2 , and it too is chaotic in

that interval.
Summing up, for the dynamics of this duopoly game, whose double iterate

is governed by the two maps F and G, we find that the rectangle I J×  (the
cartesian product) is absorbing and invariant in the phase space ℜ2  and that

the dynamics are chaotic in I J× . An example is shown in Fig.14. Note that
from Fig. 13 we can deduce that all the trajectories spend more time (more
iterations) in the lower part of the interval I and the upper part of interval J
where the graphs of F and G are close to the diagonal. As a consequence the
dynamics of the duopoly game visit the upper left corner of the rectangle

I J×  most frequently.  This is shown in Fig. 14 where we used a colouring
process: the brightness of shade represents the frequency of visiting in the
iteration process. More on this kind of dynamics can be found in Chapter 7.

Fig. 14.Reaction functions in case of decreasing marginal costs and chaotic
attractor. Range for x and y: [0, 6000].
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6 Wald's Second Model

As mentioned Abraham Wald suggested two cases where the kink in a
piecewise linear demand function was replaced by a curve segment which
smoothly and tangentially joined the line segments. The most interesting is
the second example with the demand function:

p g x y

x y x y

x y
x y

x y
x y

= + =

− + + ≤

+
≤ + ≤

− + + ≥

R

S

|
||

T

|
|
|

( )

( )

( )

3 2 1
1

1 4

3

16 32
4

2

and zero marginal cost for both firms. To construct the reaction functions,
profits (=revenues) according to the various expressions (52) are maxim-

ised. For the first firm we have the profits: 3 2− +x y xb gc h , x x y/ +b g2 ,  and

6 32− +x y xb gc h /  respectively, and maximise with respect to x. In this way

the reaction function branches:

x
y= −3

4 2

x y=

x
y= −3
2

are obtained. Wald does not need to compare profits for the various branches,
it just suffices to consider the validity due to the inequality constraints in
(52). Take the constraint x y+ ≤ 1, substitute from (53), and solve for

y ≤ 1 2/ . Likewise, take 1 4≤ + ≤x y , substitute from (54) and solve for

1 2 2/ ≤ ≤y . Finally, take x y+ ≥ 4 , substitute from (55), and solve for y ≥ 2.
As we see the three reaction curve pieces have exclusive ranges of relevance,
so there are only two points, y = 1/2 and y = 2, in which the ranges meet.

(52)

(53)

(54)

(55)
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The three local maximum profit expressions are easily calculated as

( ) /3 2 62− y , 1 4/ ( )y , and ( ) /6 1282− y  respectively, so in the points y = 1/2

and y = 2 profits are pairwise the same for the expressions, 1/2 and 1/8 re-
spectively. So, unlike Palander, Wald does not need to compare profits for
selecting a global optimum. The ranges of relevance are sufficient.

Considering also that no supply quantity can be negative, we add a lower
bound for the first section and an upper bound in the third, and can so piece
the reaction function for the first firm together:

′ = =

− ≤ ≤
≤ ≤

− ≤ ≤
≤

R

S
||

T
|
|

x y

y y

y y

y y

y

φ( )

/ / /

/

/

3 4 2 0 1 2

1 2 2

3 2 2 6

0 6

and a similar one for the second firm:

′ = =

− ≤ ≤
≤ ≤

− ≤ ≤
≤

R

S
||

T
|
|

y x

x x

x x

x x

x

ϕ( )

/ / /

/

/

3 4 2 0 1 2

1 2 2

3 2 2 6

0 6

As we see the reaction functions coincide along the entire middle segment,
so, as Wald noted, there is a continuum of Nash equilibria x = y along the
entire line segment.

Considering the dynamics, which Wald did not, it is easy to see from the

definition of the reaction functions ′ =y xϕb g  and ′ =x yφb g that, given any

initial condition x y0 0,b g  with x0 0>  and y0 0> , in one or at most two

iterations y x1 0= ϕb g  or x y2 1= φb g  jumps into the interval [0.5, 2], and

x y1 0= φb g  or y x2 1= ϕb g  as well into the interval [0.5, 2]. Thus any further

iterations remain confined inside the square S= ×05 2 05 2. , . ,  of the phase

plane. In fact, either x y2 2= , so we arrive at a fixed point. Or x y2 2≠ , so we

are in a cycle of period two: x y0 0,b g , x y1 1,b g , x y2 2,b g , y x2 2,b g , x y2 2,b g ...

(56)

(57)
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Thus all the points on the diagonal of S, (x, x) with 05 2. ≤ ≤x , are infinitely
many (uncountable) fixed points of the game, while all the points in S off the

diagonal, say x y,b g , with x y≠  and x y, . ,∈ 05 2 , belong to infinitely many

(uncountable) cycles of period two x y y x x y, , , , , , ...b g b g b gc h . Note also that

all the fixed points are stable but not asymptotically stable, as any initial
condition in a neighbourhood of a fixed point (x, x) will not give rise to a
sequence converging to that fixed point, but either to a two-cycle or to a
different fixed point in a neighbourhood of (x, x). Similarly, for the same
arguments, all the two-cycles are stable but not asymptotically stable. As
there are infinitely many such oscillations and basins for them, there is no
point in drawing basin pictures. This type of coexistence has a strong flavour
of structural instability.

Unfortunately, we cannot remove the symmetry of the firms from Wald's
model, because any nonzero cost (the only characterising difference between
the competitors) would cause us to have to solve a third degree equation for
getting the reaction function for the middle piece. If so, we could as well go
back to the cubic case treated above.

x, y

x, y

Fig. 15. Composite Wald reaction functions F(x) and G(y), (identical).
Variable ranges [0, 7].

0.5

0.5

2

2

S

x0

F=G
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Accordingly the Palander examples are much more useful to elaborate than
the Wald cases.

7 A Modified Wald Model

Departing from Wald's second example we may construct a simpler demand
function, where the middle segment is just a hyperbola replaced by tangent
straight lines at the ends, say:

p

q q

q q

q q

=
− ≤

≤ ≤
− ≥

R
S|

T|

4 4 05

1 05 2

1 4 2

.

/ .

/

The original Wald cases must be regarded as mere examples, without any
subject matter significance. The hyperbola, p = 1/q, however, arises in a
natural way in basic economic models. For instance, whenever the utility
functions of the consumers have Cobb-Douglas shape, then utility
maximisation results in constant budget shares for each commodity. Con-
stant budget shares, however, mean that demand of each commodity is recip-
rocal to its price. As this holds for all consumers, this is one of the rare cases
where the aggregation problems are easily solved, and aggregate demand as
well becomes reciprocal to price.

There is a problem with this type of demand function. When used as de-
mand function for a monopolist, the result is no definite profit maximum.
This is because price times quantity sold, i.e. total revenue, is independent of
price. By letting price become infinite and the quantity go to zero the
monopolist can retain the same constant revenue, but cut any production
costs down to zero. This, of course, is a symptom of something basically
wrong in the assumptions. In no consumption theory does it make sense to
buy zero fractions of units of a commodity at infinite prices. The function
(58) is one way of dealing with this problem. (In another chapter we deal
with this by adding a positive constant in the denominator instead.)

Now, dealing with duopolists having constant marginal costs c cx y, , we

obtain the reaction functions:

(58)
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These are similar to Wald's original reaction functions, but in the middle
section the straight line is replaced by a curve segment. Further, we may now

introduce an asymmetry between the firms (different c cx y, ), as it is possible

to solve for the middle sections of the reaction functions in closed form even
with nonzero costs.

Let us fix the parameter cy  = 0.53 and study what happens as we succes-

sively decrease the parameter cx , from cx  = 0.1. At cx  = 0.1, the two com-

posite functions ′′ = =x x F xφ ϕo b g b g  and ′′ = =y y G yϕ φo b g b g  have a glo-

bally stable fixed point. Thus also the duopoly game has only one globally

stable fixed point. Put F x x* *d i = . Then, defining y x* *= ϕd i , we have

G y y* *d i = . From F x x x* * *d i d i= =φ ϕo  we deduce that φ y x* *d i = , so

G y y x y* * * *d i d i d i= = =ϕ φ ϕo . Then x y* *,d i  is the only fixed point of our

map.

However, as cx  decreases, the fixed point becomes repelling and the two

composite functions both get an attracting cycle of period 2 (see Fig. 16

drawn for cx  = 0.05). Let x1  and x2  be the two points of the cycle of F, and

define y x1 1= ϕb g  and y x2 2= ϕb g . Then we see that y1  and y2  are the peri-

odic points of G.  In fact, as φ ϕo x F x x1 1 2b g b g= =  we deduce that φ y x1 2b g = ,

(59)

(60)
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Fig. 16. Composite reaction functions and 4-cycle. Variable range [0, 3].

and as φ ϕo x F x x2 2 1b g b g= =  we deduce that φ y x2 1b g = . Then we have

G y y x y1 1 2 2b g b g b g= = =ϕ φ ϕo  and similarly G y y x y2 2 1 1b g b g b g= = =ϕ φ ϕo .

As these two cycles are globally attracting for the composite functions we
can deduce that the duopoly game T has a unique attractor which is a cycle of

period 4. The point x y1 1,b g  is mapped by T in the following sequence:

x y T y x x y

T y x x y

T y x x y

T y x x y

1 1 1 1 2 1

1 2 2 2

2 2 1 2

2 1 1 1

, , ,

, ,

, ,

, ,

b g b g b gc h b g
b g b gc h b g
b g b gc h b g
b g b gc h b g

→ → =
→ → =
→ → =
→ → =

φ ϕ
φ ϕ
φ ϕ
φ ϕ

Besides the repelling fixed point x y* *,d i  of the map T, we also have another

repelling cycle of period four, in fact, all the periodic points of the map T

(61)

x1 x2

y1

y2

F

G

x

y
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belong to the Cartesian product x x x y y y1 2 1 2, , , ,* *n s n s×  and besides the sta-

ble 4-cycle and the fixed point (repelling node) we also have a saddle cycle
of period 4:

x y T y x x y

T y x x y

T y x x y

T y x x y

* * *

* *

* *

* *

, , ,

, ,

, ,

, ,

1 1 2

2 2

2 1

1 1

d i b g d ie j d i
d i b ge j d i
b g d ie j d i
d i b ge j d i

→ → =

→ → =

→ → =

→ → =

φ ϕ

φ ϕ

φ ϕ

φ ϕ

It is easy to predict that as cx  is further decreased, more complex dynamics

may occur, including bistability.

As an example we see that at cx  = 0.02 the composite functions have an

attracting cycle of period three, see Fig. 17 Let x x x1 2 3, ,l q  be the 3-cycle of

F (with x F xi i+ =1 b g , see Fig. 17), and define y xi i= ϕb g  for i= 1, 2, 3. Then

(62)

Fig. 17. Composite reaction functions, 3- and 6-cycles. Variable  range  [0, 3].

x1 x2

y1

y2

x3

y3

F

G

x

y
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(63)

(64)

Fig. 18. Basins for coexistent 3- and 6-cycles. Axes: x, y in interval [0, 3].

we have φ y x1 2b g = , φ y x2 3b g = , φ y x3 1b g = , hence G y y1 2b g = , G y y2 3b g = ,

G y y3 1b g = . It follows that the cartesian product x x x y y y1 2 3 1 2 3, , , ,l q l q×  in-

cludes stable periodic points. We have:

x y T y x x y

T y x x y

T y x x y

T y x x y

T y x x y

T y x x y

1 1 1 1 2 1

1 2 2 2

2 2 3 2

2 3 3 3

3 3 1 3

3 1 1 1

, , ,

, ,

, ,

, ,

, ,

, ,

b g b g b gc h b g
b g b gc h b g
b g b gc h b g
b g b gc h b g
b g b gc h b g
b g b gc h b g

→ → →
→ → →
→ → →
→ → →
→ → →
→ → →

φ ϕ
φ ϕ
φ ϕ
φ ϕ
φ ϕ
φ ϕ

which is a 6-cycle of T, whose points are clearly visible in Fig. 17 But there
is also an attracting 3-cycle:

x y T y x x y

T y x x y

T y x x y

1 2 2 1 3 1

1 3 2 3

3 1 2

, , ,

, ,

, ,

b g b g b gc h b g
b g b gc h b g
b g d ie j b g

→ → →
→ → →

→ → →

φ ϕ
φ ϕ

φ ϕ

x

y
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Further, note that the cartesian product x x x x y y y y1 2 3 1 2 3, , , , , ,* *n s n s×  in-

cludes periodic points, and besides the two cycles given above we have the
repelling fixed point and the repelling cycle of period 6 of saddle type given

by x y* , 1d iK  The stable set of this saddle of period 6, which is made up of

vertical and horizontal lines issuing from the periodic points and their
preimages, as shown by Bischi, Mammana, and Gardini (2000), separating
the two basins of attraction of the map T, as shown in Fig. 18, where the light
grey points belong to the basin of the 6-cycle while the dark-grey points
constitute the basin of the 3-cycle.

We note however that the basins shown in Fig. 18 are only approximate,
and the picture is a consequence of the numerical impossibility to see the
fine structure of repelling Cantor sets. For example it includes also the repel-
ling fixed point in some rectangle but it is clear that it is a repellor and that
point will not converge to any other cycle. Similarly we have infinitely many
other cycles existing in the phase plane, all unstable, and such points, to-
gether with their stable sets, cannot be seen in the figures numerically com-
puted, but their existence can be rigorously proved.

Fig. 19. Chaotic attractor in 1 piece. Axes intervals: x, y: [0, 3].
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Note the great difference in comparison to the case considered in Section 3,
where the basins shown in Fig. 8 too were associated with cycles of period 3
and 6 of the map. In that example the composite functions F and G were
discontinuous, and all pieces constituting F and G had slope 1/4, so that the

3-cycle x x x1 2 3, ,l q  of F was its only cycle (globally attracting), and simi-

larly for G. The map T can only have those two stable cycles, whose periodic

points belong to the cartesian product x x x y y y1 2 3 1 2 3, , , ,l q l q× , and their ba-
sins are separated by the lines in which the discontinuous map changes by
definition, and of their preimages.

Differently, in the case shown in Fig. 17, the reaction functions are con-
tinuous, so that the maps F and G are continuous too, and the Sharkovsky
theorem applies, which means that F and G possess infinitely many repelling
cycles of any order. It also follows that the map T has infinitely many repel-
ling cycles of any order as the cartesian product of (periodic points of
F)× (periodic points of G) includes all periodic points of the map T. See the
proof in Bischi, Mammana, and Gardini (2000).

Fig. 20. Chaotic attractor in 8 pieces.  Axes intervals: x, y: [0, 3].
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It is easy to deduce that, as the parameter cx  decreases from 0.05 to 0.02,

chaotic dynamics in F and G occur, so that also chaotic dynamics of T exist.

An example is shown in Fig. 19 (cx  = 0.025), where F is chaotic on an

interval I, G is chaotic on the interval J I= ϕb g , and thus the map T is cha-

otic in the rectangle I J× . Another example is shown in Fig. 20 (cx  = 0.0295)

where F has 4-cyclical chaotic intervals I I I I1 2 3 4, , ,l q  and as has G,

J J J J1 2 3 4, , ,l q  (where J Ii i= ϕb g  for i = 1, 2, 3, 4), so that the map T is also

chaotic, having 16-cyclical chaotic rectangles belonging to the cartesian prod-

uct I I I I J J J J1 2 3 4 1 2 3 4, , , , , ,l q l q× .
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