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1 Introduction

Hotelling's seminal contribution of 1929 was one of several successful at-
tempts to give a precise interpretation to Bertrand's sweeping criticism of
Cournot's duopoly model of 1838. Chamberlin's of 1932 was another. The
common point was that if the commodity were homogenous, and the com-
petitors were quantity adjusters, as originally assumed by Cournot, then any
one competitor could, by undercutting the other competitor's price, however
slightly, recover the entire market as its share. This would lead to a price war
ending first when marginal costs were barely covered. Both Hotelling and
Chamberlin assumed price, not quantity, to be the decision variable. Chamberlin
assumed the commodity to be perceived as heterogeneous by the consum-
ers, so that they would prefer one brand or dealer among similar ones, and
only gradually desert their favourite when price differences grew too much
adverse. Hotelling, in contrast, assumed the commodity to be perceived as
perfectly homogenous by the consumers, but incorporated space, location,
and transportation costs, which provided each competitor with a local mo-
nopoly area, with competition only at the fringes.

In this way Hotelling's variant included a location problem. Hotelling as-
sumed demand to be completely inelastic. This made the location choice
unstable. In order to maximise market shares, both competitors would even-
tually crowd in the same point. So, what Hotelling showed was that his sug-
gested solution was no solution. To judge from passing comments, Hotelling
understood how the case would work out with elastic demand: The competi-
tors would tend to gravitate closer than placing themselves in the centres of
their respective markets, but would no longer cluster in the same point as with
inelastic demand.
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However, Hotelling did not analyse the case of elastic demand formally, and
this set the standard for following re-treatments. Hotelling's theory became a
theory of location, and it was almost forgotten that it primarily aimed at being
a theory of duopoly pricing.

Therefore, we think it rewarding to pin down the facts of Hotelling's model
with elastic demand. Lerner and Singer, in their ingenious graphic analysis of
1937, took the first step. They assumed a given reservation price. Whenever
the actual price was lower, the customers would buy a fixed quantity, quite as
Hotelling assumed, whenever it was higher, they would, however, buy noth-
ing. Later, in 1941, Smithies replaced this step function by a linear decreasing
demand function, and presented an insightful verbal analysis for it, though he
still considered the problem "too complex to be treated by rigorous meth-
ods".

However, the neat formal analysis of monopoly pricing by Beckmann 1968
and 1976, can easily be extended also to duopoly. With linear demand, profits
become cubic in prices and quadratic in locations even in 1D, so inner profit
maxima for both location and pricing do exist for a wide range of parameter
values and can even be obtained in closed form.

The case hence evades all problems pointed out by d'Aspremont et. al. in
their note 1979 on the original Hotelling case, where profits become quadratic
in price and linear in location. Linear demand is a much more interesting case
to study than the artificial case of transportation costs which increase with
the square of the distance, as suggested by d'Aspremont et. al.

2 Local Oligopoly Conditions

Suppose a firm is located along a 1D line at point xi . To the left there is

another firm at point xi −1 , to the right of it another at point xi +1 . The firms

charge "mill" prices p p pi i i− +1 1, , , so the consumers pay for transportation and
the good becomes more and more expensive farther away from the produc-
ing firm.

Unlike supply, which is concentrated to a discrete set of locations, demand
is continuously distributed. At any point x, provided the good is transported

from the firm located at xi , the density of demand is given by the local de-

mand function:

q f z= b g         with       z p k x xi i= + − (1)
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where k denotes the (constant) transportation cost per unit distance. Now
take the linear specification

f z z( ) = −α β

defined for z≥ 0 , and with f(z) = 0 if z ≥ α β/ . Total demand for the i:th

firm then becomes

Q f p k x x dxi i i

a

b

i

i

= + −z c h

For the linear function (2) we get (3) as the closed form integral:

Q p b a
k

a x b xi i i i i i i i= − − − − + −α β βb gb g b g b ge j
2

2 2

Here a bi i,  denote the boundary points for the market interval. Given the firm

is located between competitors, these points are not fixed, but determined by
the conditions that prices from different suppliers be equal  in boundary points:

p k a x p k a xi i i i i i+ − = + −− −1 1

p k b x p k b xi i i i i i+ − = + −+ +1 1

As x a x b xi i i i i− +< < < <1 1, the conditions (5)-(6) yield:

a
x x p p

ki
i i i i= + + −− −1 1

2 2
         b

x x p p

ki
i i i i= + + −+ +1 1

2 2

This implies that always b ai i= +1 . The geometry of the "price landscape" of

this case is illustrated in Fig. 1.

(2)

(3)

(4)

(5)

(6)

(7)
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Substituting from (7) in the quantity integral (4) it now becomes:

Q p
k

k x x p p p

k
kx kx p p kx kx p p

i i i i i i i

i i i i i i i i

= − − + + −

− − + − + − + −

+ − + −

− − + +

α β

β

b g b gc h

b g b ge j

1

2
2

8

1 1 1 1

1 1

2

1 1

2

The i:th firm will maximize its profits: Πi i i i ip Q C Q= − b g , where we also

take a linear production cost function C Q c Qi i i ib g = . Thus:

Πi i i ip c Q= −b g

Each firm maximizes Π i , by choosing its price pi  and its location xi .

xi −1 xi +1b ai i− =1 b ai i= +1xi

pi

pi −1
pi +1

Fig. 1. Local price variation over the region around the i:th firm.

(8)

(9)
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Suppose we first want to find the optimal location. Taking ∂Π ∂ =i ix/ 0 , or

even ∂ ∂ =Q xi i/ 0 , as the multiplicative factor p ci i−b g  of (9) does not con-

tain location xi , and solving we get:

x
x x p p

ki
i i i i= + + −− + + −1 1 1 1

2 2

This makes sense: If the competitors' prices are equal, the firm locates mid-
way in between, whereas a higher price of the competitor left or right drags
the firm in that direction. The second order condition presently becomes

∂ ∂ = − − <2 2 1
2 0Π i i i ix k p c/ β b g , so as price has to exceed marginal cost, i.e.

p ci i> , the second order condition is negative, and the location choice indeed
yields maximum profit. This is quite nice, because in the original Hotelling
model, where β = 0, there were no inner solutions.

Given the firm has chosen an optimal location, we can substitute for xi

from (10) back in the expression (8) for Qi  and hence in (9) Πi i i ip c Q= −b g .

In order to attain a concise formula, define a new compound variable:

λ i i i i ip p k x x= + + −− + + −1 1 1 1b g

We can also write λ i i i i i i ip k x x p k x x= + − + + −− − + +1 1 1 1b g b g , so λ i  denotes

the sum of the prices of the commodity, including transportation, if trans-

ported to xi  from the left neighbour xi −1  and from the right neighbour xi +1 .

The formula (11) is, however, more useful for stressing that λ i  only depends

on xi −1 and xi +1 , but not on xi .

With the new variable defined, the profits of the i:th firm become:

Π i i i i i i ik
p c p p= − − − −

F
HG

I
KJ

β λ α
β

λ
16

2 8 6b gb g

Next, differentiating (12), a cubic in pi , with respect to pi  and solving for

the variable, we get two solutions:

(10)

(11)

(12)
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p c

c c

i i i

i i i i

= + +

± −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ

4

9

1

3

1

9

1

18
36 12 2 13 2

2 2

α
β

λ

α
β

α
β

α
β

λ α
β

λ

We have the second derivatives:

∂
∂

= ± −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ

2

2

2 2
1

4
36 12 2 13 2

Π i

i
i i i ip k

c c
α
β

α
β

α
β

λ α
β

λ

so the second solution is the maximum. From (13)-(14) the profit minimising
price is the higher, and from (12) we find that profits increase without limit
after that minimum, but never mind. Such prices do not count because they

exceed the maximum admissible value α β/ .

3 Disjoint Monopolies

The linear demand function has certain discontinuity problems where it cuts

the axes. Above the price pi = α β/ , demand drops to zero and remains

zero. Of course, prices cannot be negative either. They must even be higher

than the positive unit production costs p ci i> . What was said above about

maximum price must hold for price plus transportation cost. Hence, the

highest total prices for the consumers, at the boundary points a bi i, , must not

exceed α β/ , i.e.:

α
β

≥ + −p k a xi i i                  
α
β

≥ + −p k b xi i i

Both actually boil down to the same condition once we consider how a bi i,

and xi  were determined in the above formulas (7) and (10):

(13)

(14)

(15)
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α
β

≥ + + − −− + + −
1

4
2

41 1 1 1p p p
k

x xi i i i ib g b g

If we want to avoid discontinuities due to the linear demand function, we
must check that condition (16) holds all the time.

Should the condition not be satisfied, then market diameter 2Ri  becomes

less than the interval available. Demand drops to zero at α β β− − =p kRi i 0 ,
which yields

R
k

pi i= −
F
HG

I
KJ

1 α
β

Then the quantity integral (4) becomes:

Q f p k x x dx p R kRi i i

x R

x R

i i i

i i

i i

= + − = − −
−

+

z c h b g2 2α β β

or, with substitution for the market radius from (17),

Q
k

pi i= −
F
HG

I
KJ

β α
β

2

Profits then become:

Π i i i ik
p c p= − −

F
HG

I
KJ

β α
β

b g
2

Differentiating this cubic with respect to pi , equating the derivative to zero,
and solving, we get two solutions:

pi = α
β              and           p ci i= +1

3

2

3

α
β

(16)

(17)

(18)

(19)

(20)

(21)
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The second derivatives of (20) for the two solutions (21) are respectively

∂
∂

= ± −
F
HG

I
KJ

2

2

2Π i

i
ip k

c
β α

β

so, again, given marginal cost ci  does not exceed maximum price α β/ , the

first solution is a minimum and the second a maximum. The second solution
(21) in fact is the well known solution to a spatial monopoly (mill) pricing
problem in 1D with a linear demand function.

We can also easily calculate maximum monopoly profits by substituting
from the second expression of (21) into (20)

Π i ik
c= −

F
HG

I
KJ

4

27

3
β α

β

This solution is relevant when demand drops to zero at a distance before the
prices with accumulated transportation costs break even for the competitors.
The result then is that the market areas of neighbouring firms no longer touch,
but are isolated, possibly with intervals in between which are not served by
any firm - the price would simply be too high for anybody to buy the commod-
ity. Whether this occurs seems to be a question of how many firms crowd on
a given distance, what the maximum price is, and what the marginal costs
are. The present case represents a number of non-competing monopolies.
It is first when the firms are squeezed closer together that oligopoly arises.

To see that disjoint monopolies seamlessly go over into oligopoly, take (16)
as an equality, and substitute into (11). Then we obtain:

λ α
βi ip= −4 2

which is further substituted into equation (12) and after simplification yields
(20) quite as above, obtained for the case of monopoly. Further, substituting
from (24) into the solution for oligopoly price (13), rearranging, taking squares
to get rid of the root sign, and factoring, we get:

(22)

(23)

(24)
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α
β

α
β

−
F
HG

I
KJ + −
F
HG

I
KJ =p c pi i i

1

3

2

3
0

which gives the monopoly solutions (21) back.
We can transform formula (17), by expressing market radius in terms of

marginal cost, which is a parameter, in stead of in terms of price, which is an
endogenous variable. Just substitute from the second expression (21) in (17):

R
k

ci i= −
F
HG

I
KJ

2

3

1 α
β

The total space ~L occupied by n touching monopolies is hence:

~
L R

k
ci

i

n

i
i

n

= = −
F
HG

I
KJ= =

∑ ∑2
4

3

1

1 1

α
β

It is clear that the total length L of the space available must be less than ~
L  in

order that oligopolistic competition should develop, i.e.

L
k

ci
i

n

< −
F
HG

I
KJ=

∑4

3

1

1

α
β

Note that a market radius can be defined not only in the case of monopoly, but
also in the case of oligopoly, provided we deal with a firm having competitors
to both sides. The choice rule for optimal location (10) implies that the firm

always places itself in the midpoint of its market interval a bi i, . To see

this, substitute from (10) into (7), and form the differences:

x a
x x p p p

ki i
i i i i i− = − + − ++ − − +1 1 1 1

4

2

4

b x
x x p p p

ki i
i i i i i− = − + − ++ − − +1 1 1 1

4

2

4

(25)

(26)

(27)

(28)

(30)

(29)
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The expressions being equal, we can define market radius:

R
x x p p p

ki
i i i i i= − + − ++ − − +1 1 1 1

4

2

4

The result was based on the fact that there were other firms to the right and

left of each firm, so what if ai  or bi  is fixed, i.e. that the firm is the leftmost

or rightmost in a fixed interval? Then things become very different, as we will
see. It is no longer possible to define a market radius, because the firms do
not locate in the centres of their market areas. They may even crowd in the
same point, as in the original Hotelling case.

4 Space Dimensions and Boundary Conditions

The above discussion started out from the original Hotelling case, firms lo-
cated on a line in 1D, though we formulated the matter more generally by
considering one firm in relation to its neighbours. As we know, Hotelling con-
sidered two firms on a fixed interval, and then each firm only has a neigh-
bour to one side, the boundary point to the other being fixed from the outset.
We will consider this case at some length. It is, however, interesting to con-
sider also different types of similar models.

First, we may note that it makes a profound difference whether we have
fixed boundaries or not. We already mentioned Hotelling's conjecture about a
remaining tendency to gravitate towards the midpoint even when demand is
elastic. This will in fact be shown to be true in the sequel. However, consider
instead three oligopolists on a circle, hence without any boundary points. Then
we already know from the above discussion that each firm always locates in
the midpoint between the competitors, so there is no gravitation towards the
middle. The Hotelling clustering phenomena hence depend on the presence
of fixed endpoints.

Second, we should take note that most interesting phenomena in geographi-
cal space occur in 2D, the linear case only being a way of making things more
manageable in analysis. In 2D areas have shape in addition to size, and there
hence arise many more geometrical configurations than just beads on a string.

In unbounded space the regular tessellations first come into mind, triangles,
squares, and hexagons with the firms located in the midpoints. Given all mill
prices are equal, things become simple enough, but, as we know from the
Launhardt funnel construction, any price difference sets up fourth order curves

(31)
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for market boundaries, which make closed form integration for demand or
even for market area almost impossible to perform.

At least this is the case when we relate transportation costs to an Euclidean
distance metric. This, however, is not the only choice. Given a chessboard
lattice of locations, where each firm has neighbours to four sides, we can
combine it with a "Manhattan" North-South, East-West transportation cost

metric of the form x y x y+ + − , where x and y are the Euclidean space

coordinates. Then the loci for constant delivered price from each dealer be-
come squares, quite in conformity with the location pattern. Likewise we can
consider a triangular lattice of locations, combined with the metric

x y x y x+ + − +3 3 2 . This case arises when there are streets in three

directions intersecting at angles of 60 degrees, quite as there are streets in
two directions intersecting at angles of 90 degrees in the Manhattan case.
Each firm is now surrounded by six neighbours, and the curves of constant
delivered price in conformity become hexagonal. These cases seem to be the
simplest candidates for treatment in 2D, though we will not attempt these at
present.

As for bounded space, it is not even obvious which case is the natural
counterpart to Hotelling's duopolists on a line segment, maybe it is three com-
petitors in an equilateral triangle, and there seems not to be even an obvious
guess about whether the crowding phenomenon carries over to 2D.

We should also note that in 2D the powers for integrals of total sales and
profits are raised by one. To see this, we can just check the trivial cases of
independent monopoly market areas.

Given there are no close competitors, each firm would have a circular mar-

ket area of radius Ri , determined by the vanishing of demand on the bound-

ary circle, i.e. through the condition : α β− + =p kRi ib g 0 . From this we find:

R
k

pi i= −
F
HG

I
KJ

1 α
β

Given an Euclidean transport cost metric, the total sales for the firm are

Q p kr rdrdi i

Ri= − +zz α β θ
π

b gc h
00

2

(32)

(33)
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which simplifies to

Q p
R

k
R

i i
i i= − +2

2
2

3

2 3

π α β πβb g

or, substituting from (32), to

Q
k

pi i= −
F
HG

I
KJ

πβ α
β3 2

3

The corresponding profits then are:

Π i i ik
p c p= − −

F
HG

I
KJ

πβ α
β3 2

3

b g

It is now appropriate to maximise (36) with respect to pi , which yields the

profit maximising solution:

p ci i= +1

4

3

4

α
β

This is as well known as (21) in the 1D case, and similar, only the coefficients
are different. In both cases the mill price chosen is a weighted average of
maximum price and marginal production cost.

Equations (35)-(36) illustrate the raising of powers referred to. The inde-
pendent monopoly case is possible only if the space available allows circular
market areas to be packed together without deforming the circular bounda-
ries. If not, we have to consider other possibilities. There are intermediate
cases discussed in the literature (for instance hexagons with rounded cor-
ners), and, of course, the three regular tessellations of the plane: triangles,
squares, and hexagons. No matter how interesting, we, however, now leave
the 2D topics.

(34)

(35)

(36)

(37)
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5 The Hotelling Case: Equilibrium

5.1 Between Monopoly and Crowding. It is now time to deal, not only
with a firm in its relation to the closest competitors, but the global setup.

Suppose we just have two competitors. Further, suppose a1 1= −  and b2 1=
are fixed. This corresponds to the original Hotelling model. From (7):

a b
x x p p

k2 1
1 2 2 1

2 2
= = + + −

From (4) then:

Q p b
k

x b x1 1 1 1

2

1 1

2
1

2
1= − + − + + −α β βb gb g b g b ge j

Q p a
k

a x x2 2 2 2 2

2

2

2
1

2
1= − − − − + −α β βb gb g b g b ge j

The optimal locations can be found by differentiating (39)-(40) with respect

to x x1 2,  respectively, as location does not enter the multiplicative factor for
profits. Thus we obtain:

x
x p p

k k1
2 2 14

5

3

5

2

5
= − + − + α

β

x
x p p

k k2
1 2 14

5

3

5

2

5
= + + − − α

β

Note that (41)-(42) are different from (10), as we now have one boundary
point fixed for each firm. Also note that if we solve the location choice equa-

tions (41)-(42) as a simultaneous system, we get x x p p k1 2 2 1+ = −b g / , and

so from (38):

a b
p p

k2 1
2 1= = −

(38)

(39)

(40)

(41)

(42)

(43)
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Hence in equilibrium the inner market boundary point only depends on the
price difference divided by transportation cost. The geometry of the Hotelling
case is displayed in Fig. 2.

In disequilibrium, the inner market boundary point, resulting from location
choice by the first firm, taking the location of the second as given, is obtained
by substituting (41) into (38):

b
x p p

k k1
2 2 13 2

5

3 4

5 5
= − + − + α

β

Similarly, by substituting from (42) in (38), the choice of the second firm
results in:

a
x p p

k k2
1 2 13 2

5

4 3

5 5
= + + − − α

β

x1 b a1 2= x2 b2 1=a1 1= −

p2

p1

Fig. 2. Global price variation with two firms on the interval [-1, 1].

(44)

(45)
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Expressions (41)-(42) and (44)-(45) substituted in (39)-(40), result in one sin-
gle formula:

Q
k

p pi i i i i= −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
10

6 4
2 2

provided we define

λ1 2 21= + +p k xb g      and    λ 2 1 11= + −p k x( )

Note that λ i  have the following interpretation: They are the prices accumu-
lated by transportation costs if the commodity is transported from the firm to
the right all the way to the left endpoint, or from the left firm all the way to the
right endpoint.

From (46) we have profits:

Πi i i i i ik
p c p p= − −

F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

− −
F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
10

6 4
2 2

b g

which looks more complex than (12). This again is due to the fixed endpoints.

Optimising (48) with respect to pi  we obtain:

p c

c c

i i i

i i i i

= + +

± −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ

4

9

3

9

2

9

1

18
36 24 34

2 2

α
β

λ

α
β

α
β

α
β

λ α
β

λ

Again the second derivative has the sign of the root term of (49), i.e.

(46)

(47)

(48)

(49)
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∂
∂

= ± −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ

2

2

2 2

2 36 24 34
Π i

i
i i i ip

c c
α
β

α
β

α
β

λ α
β

λ

so the root with the minus sign corresponds to the maximum.
Let us check out equilibrium. Then equations (41)-(42), (47), and (49)

hold as a simultaneous system. It is nonlinear and not so obvious for a closed

form solution, unless the firms are identical, i.e. c ci =  for i = 1, 2, so for

simplicity we assume this to be the case. A good guess is that they then in

equilibrium also charge the same mill prices, i.e. p pi =  for i = 1,2. From

(41)-(42) we obtain, substituting p pi =

x
k

p1

2

3

1

3
= − + −

F
HG

I
KJ

α
β

     and     x
k

p2

2

3

1

3
= − −

F
HG

I
KJ

α
β

As we see, x x1 2 0+ = , so the firms locate symmetrically around the zero

point, the midpoint of the whole interval [-1, 1], though not as a rule in the
midpoints, -0.5 and 0.5, of their respective market areas. From (43) we al-
ready saw that in equilibrium with equal prices the markets are separated by
the zero point.

Try to substitute zero in the left hand sides of (51), and note that both firms
locate at the same point, the Hotelling case, if

 
1

2
k

p
α
β

−
F
HG

I
KJ =

Also note that the firms locate exactly in the middle of their intervals x1 05= − . ,

x2 05= . , the case of disjoint monopolies, if

1 1

2k
p

α
β

−
F
HG

I
KJ =

Normally they tend to locate closer together. With infallible intuition Hotelling
noted that with elastic demand "the tendency ... to establish business ex-

(51)

(52)

(53)

(50)
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cessively close ... will be less marked", but the competitors would "not go
as far ... as public welfare would require", i.e. locating in the midpoints of
their markets, due to the "tempting intermediate market". As a matter of
fact, they would, but only in the extreme case of adjacent monopolies. How-
ever, monopoly pricing would not correspond to the demands of public wel-
fare either, for a different but quite obvious reason. In Hotelling's original
case it was possible that once the firms located in the same point, competition
would take the form of price cutting even until the marginal cost was reached
(the classical competitive solution), but then the location choice would imply
loss of public welfare due to excessive transportation costs.

In order to avoid both the extreme cases, monopoly and crowding in the

centre, we would require k p k/ /2 2≤ − ≤α β , i.e. maximum price must

overshoot the equilibrium price by between half and double the transportation
cost rate. Once we established equilibrium price we will again be able to
translate this condition in terms of production cost.

Note that Hotelling's crowding phenomenon has to do with the global setup
of the model: How many competitors there are, and also with the boundary
conditions. In the present case we deal with a region that is a fixed interval.
But if we in stead consider three firms on a circle periphery, then, as we see
from the rule (10), each firm locates halfway between its neighbours. In
equilibrium the firms will be equally spaced, in the centres of their respective
subintervals, and crowding would never occur.

Next, substitute (51) in (47):

λ λ α
β1 2 3

4

3

5

3
= = − + +p k

So the auxiliary variables become equal for the two identical competitors, and
given also that marginal costs are equal, we get by substituting from (54) and

c ci =  in (49):

p c k c c k k= + + − −
F
HG

I
KJ − −

F
HG

I
KJ +2

5

3

5

8

5

3

10
4 8 34

2

2α
β

α
β

α
β

Note that after substitution from (54) in (49),  p is substituted under the root
sign, so we have to rearrange, take squares and solve for p anew in order to
get (55). Also note that we took the smaller root right away because we

(54)

(55)
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already know it to correspond to maximum. We can now obtain equilibrium
price p by substituting for the three parameters of the model: maximum

price α β/  according to the demand function, the unit production cost c, and

the transportation cost rate k in (55). Then, substituting the equilibrium price

p, the maximum price α β/ , and the transportation rate k into (51) we also

obtain the equilibrium locations x x1 2, .
Before continuing note that we can use (55) for replacing the endogenous

variable p by the parameter c in equations (52)-(53). The condition for crowding
and for noncompetitive monopolies thus read:

 
1 11

4k
c

α
β

−
F
HG

I
KJ

=       and      
1 3

4k
c

α
β

−
F
HG

I
KJ

=

The parameter interval between monopoly and crowding is hence

0 75 2 75. ( / ) / .< − <α β c k .

5.2 Price Cutting. We have disregarded one complication. As we saw, the
Hotelling identical duopolists on a fixed interval may locate in the same point,

if ( / ) / .α β − =c k 2 75, even when demand is elastic. They may then start a
price cutting war until the level of marginal costs is reached, or they may
form a collusive monopoly, if law permits.

It is notable that this competitive situation may occur even if the firms do
not locate in the same point but just sufficiently close. Each firm can then,
by undercutting the competitor's price by the transportation cost over the
distance between the locations take the whole market. This, of course, is
feasible only if the undercut price still exceeds marginal cost for production.
But a more interesting criterion is when the maximum duopoly profits, from
each firm taking half the total interval, break even with undercutting the com-
petitor's price and taking the whole market. As we will see it is possible to
establish an exact condition for this to happen.

First, calculate the profits, when each firm takes half the market:

Π1 11

0

1
2

1

2

2
1

= − − + −

= − − − + +F
HG

I
KJ

−zp c p k x x dx

p c p
k

x x

b g c hd i

b g b ge j

α β

α β β

(57)

(56)
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Π2 20

1

2
2

2

2

2
1

= − − + −

= − − − + −F
HG

I
KJ

zp c p k x x dx

p c p
k

x x

b g c hd i

b g b ge j

α β

α β β

Note that these profits are equal because from (51) the firms locate sym-

metrically around the origin, i.e. x x2 1= − . Further, prices and marginal costs

are equal for the firms, as indicated by dropping the indices. Substituting for
price and location from (55) and (51) in (57)-(58), and using:

κ α
β

= −
F
HG

I
KJ

1

k
c

we obtain maximum profits for the duopolists (equal for both firms):

Π Π1 2

2
2 2 3 2

250
2 44 377 4 8 34 4 92 482 2194

= =

− + − + + − + −β κ κ κ κ κ κ κk d ie j

Note that maximum duopoly profit, apart from the multiplicative factor βk2 ,

only depends on the compound parameter κ , as defined in (59). Note from
(23) that, using (59), we can also put maximum monopoly profit in the same

form: Πi k= ( / )4 27 2 3β κ . So if we want to find at which point monopoly profit

breaks even with duopoly profit we would equate this expression to (60) and
could find the break even point in terms of the compound parameter κ  alone.
Further from (56) we find that the criteria not only for monopoly, but also for
clustering are in terms of this parameter alone. It so turns out that κ , the
difference between maximum price and production cost divided by the trans-
portation cost rate, is crucial for most of the topics we discuss.

Now, consider that if any of the firms undercuts the equilibrium price p, as

given by (55), with the amount k x x kx kx2 1 1 22 2− = − =b g , which is the trans-

portation cost between the duopoly locations of the firms, it will take the
whole market as its share. However, this takes for granted that the undercut-
ting firm does not relocate, as assumed by d'Aspremont et. al. in their discus-
sion for the case of inelastic demand. Putting things in this way we get a too
restrictive estimate of when price undercutting becomes profitable.

(58)

(59)

(60)
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As a rule the firm trying price undercutting would not remain where it is
located. It would relocate and choose the perfect location in combination
with price, which always yields a higher profit than if it were constrained to
remain where it is.

There are constraints for the choice of location and price for the firms:

~ ~p p k x x1 2 1= − −b g      and     ~ ~p p k x x2 2 1= − −b g

Here p denotes the original duopoly price. It has no index as it is the equilib-
rium price for both duopolists to which the other firm is assumed to continue

to adhere. So p is given according to (55), as before, and so are x x1 2, , by

(51). But the firms can choose ~ , ~x p1 1  and ~ , ~x p2 2  as they wish provided (61)

is fulfilled. Note that the constraints result in undercutting without change of

location as indicated above if we take ~x x1 2= −  or ~x x2 1= − . The undercut-

ting situation is illustrated in Fig. 3. Note also that given the way we have

Fig. 3. Price undercutting and relocation by the first firm.

x1
~x1 x2 1-1

~p1

p p

(61)
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drawn the picture, unchanged location x1  is no choice at all, because the first

firm could then not even charge a positive undercutting price, so there would
be no profit even if production costs were zero.

Now the undercutting profits for the first firm are:

Π1 1 1 11

1

1 1 1

2

1

2
2

2
1 1

= − − + −

= − − − + + −F
HG

I
KJ

−z~ ~ ~

~ ~ ~ ~

p c p k x x dx

p c p
k

x x

b g c hd i

b g b g b g b ge j

α β

α β β

and for the second firm:

Π2 2 2 21

1

2 2 2

2

2

2
2

2
1 1

= − − + −

= − − − − + +F
HG

I
KJ

−z~ ~ ~

~ ~ ~ ~

p c p k x x dx

p c p
k

x x

b g c hd i

b g b g b g b ge j

α β

α β β

We now have just one free optimization variable for each firm, either price or
location, the other is dependent so as to fit on the relevant linear constraint of

(61). Suppose we choose location for optimising. Then we substitute for ~p1

from (61) in (62) and optimise with respect to ~x1 . Likewise we substitute for
~p2  from (61) in (63) and optimise with respect to ~x2 . The solutions for loca-
tion become more messy than before, as we now solve quadratic equations:

~x x
p c

k k
c p k x k p kx1 2 2

2

2

1

3
1

1

3
1

1

3
1 6= + − − − + − + + + − +

F
HG

I
KJb g b gc h α

β

~x x
p c

k k
c p k x k p kx2 1 1

2

1

1

3
1

1

3
1

1

3
1 6= − + − + − − + − + − −

F
HG

I
KJb g b gc h α

β

(62)

(63)

(64)

(65)
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Given x x2 1= −  we hence also get ~ ~x x1 2= −  which is reassuring. However,

note that undercutting is a strategy under the condition that the competitor

adheres to previous duopolistic behaviour. The case x x2 1= −  is a conceiv-

able equilibrium, but ~ ~x x1 2= −  is not. If both try to undercut at the same time

both get disappointed. Undercutting is hence like the von Stackelberg 1938
case, rather than like the Cournot 1838 case.

But, supposing that only one firm undercuts, we can now first substitute the
location according to (64)-(65) in (61) to obtain the corresponding undercut-
ting prices, and then substitute for both in the profit expressions (62)-(63).
Further, in either case, we again substitute for duopoly equilibrium price p
(assumed to be retained by the other firm) from (55), and for the location of

the other firm x2  or x1  from (51). Finally, again using the compound param-

eter from (59), profits become:

Π

κ
Monopoly CrowdingPrice Cutting WarsDuopoly

Fig. 4. Profit curves and competition regimes.
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Π Π1 2

2
2 2

3

2

2
2 2 3 2

2

3375
13 34 17 6 6 4 8 34

2

3375
31 28 29 4 8 34 63 369 819 2187

= = + − − − − +

+ + − − + − + − −

β κ κ κ κ κ

β κ κ κ κ κ κ κ

k

k

b ge j

c he j

Note that (66) states that undercutting profits are equal for both firms, pro-
vided one firm undercuts but the other does not. As the undercutting firm
takes the whole market, the profits of the other firm become zero. If both try
undercutting at the same time, we have a new situation which is worth ex-
ploring in order to make explicit the dynamics of economic warfare.

It is yet interesting to establish criteria for when such warfare does not
occur, i.e. the firms find it most profitable to adhere to duopoly behaviour.
Equating (66), price cutting profit, to (60), duopoly profit, cancelling the equal

factors βk2 , and rearranging to get rid of the roots, we finally obtain the nasty

looking tenth order polynomial equation:

3584 216832 4696592 50448000

294183456 1142701440 3361000744

6631985696 9946507384 8248430736 2165411397 0

10 9 8 7

6 5 4

3 2

κ κ κ κ
κ κ κ
κ κ κ

− + −

+ − +

− + − + =

It has three pairs of complex roots, and four real ones. As always, repeated
squaring produces lots of nonsense roots. In fact only one real root makes
sense. It is approximately equal to κ ≈ 12146. . So it seems that we should

have 0 75 12146. .< <κ  to ensure that true oligopolistic competition be
established, without monopoly, and without price cutting competition.
The various regimes: monopoly, duopoly, and price cutting competition, are
illustrated in Fig. 4 by their respective profit functions, and we see that their
intersections define sharp points in which one regime becomes more profit-
able than another.

(66)

(67)
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6 The Hotelling Case: Dynamics

6.1 Immediate Location Adjustment. We can now set up the Hotelling
model as a dynamical system from (41)-(42) and (49):

′ = − + − +x
x p p

k k1
2 2 14

5

3

5

2

5

α
β

′ = + + − −x
x p p

k k2
1 2 14

5

3

5

2

5

α
β

′ = + + −p c1 1 1 1

4

9

3

9

2

9

1

18

α
β

λ ∆

′ = + + −p c2 2 2 2

4

9

3

9

2

9

1

18

α
β

λ ∆

where

λ1 2 21= + +p k xb g

λ 2 1 11= + −p k x( )

as stated in equation (47), and

∆ i i i i ic c= −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ36 24 34

2 2
α
β

α
β

α
β

λ α
β

λ

for i = 1, 2. The dash indicates advancing the map one period, from t to t + 1.
We are interested in the dynamic behaviour of the system (68)-(71). As we
shall see the system is a contraction, so any initial condition gives rise to a
trajectory converging to the attracting fixed point, which exists and is neces-
sarily unique.

(68)

(69)

(70)

(71)

(72)

(73)

(74)
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To see this, consider the Jacobian matrix of the system (68)-(71):

J
x x p p

x x p p

k k

k k
k

k

=
∂ ′ ′ ′ ′
∂

=

−

−

−

L

N

M
M
M
M
M
M

O

Q

P
P
P
P
P
P

1 2 1 2

1 2 1 2
1 1

2 2

0
1

5

3

5

1

5
1

5
0

1

5

3

5
0 0

0 0

, , ,

, , ,

b g
b g

Φ Φ
Φ Φ

where

Φ
∆i

i

j i

i i

p

x
c= ∂ ′

∂
= − −

F
HG

I
KJ − −

F
HG

I
KJ

F
HG

I
KJ

2

9

1

9
6 17

α
β

α
β

λ

for i, j = 1, 2 and i j≠ . As a preliminary lemma, let us show that the values
of these partial derivatives are always bounded (whatever the parameter
values and the points in phase space).

Lemma. The following inequalities hold:

− < <1

4

3

4
Φi

for i = 1, 2.

Proof: We have Φ i > −1 4/  iff

24

17
4

α
β

α
β

λ−
F
HG

I
KJ

− −
F
HG

I
KJ

<ci i i∆

The inequality is certainly true when the left hand side is negative, otherwise
we solve:

24

17
4

2
α
β

α
β

λ−
F
HG

I
KJ − −

F
HG

I
KJ

F
HG

I
KJ

<ci i i∆

(75)

(76)

(77)

(78)

(79)
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which gives:

     18 12 706 34 5052 0
2

2

2
α
β

λ α
β

λ α
β

α
β

−
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ >i i ic c. .

As the discriminant of the left hand side is negative, this inequality is always
satisfied.

On the other hand, Φ i < 3 4/  iff

− −
F
HG

I
KJ + −

F
HG

I
KJ <24

19
4

17

19

α
β

α
β

λci i i∆

Again, this inequality is certainly true if the left hand side is negative. If not
we solve for

− −
F
HG

I
KJ + −

F
HG

I
KJ

F
HG

I
KJ

<24

19
4

17

19

2
α
β

α
β

λci i i∆

which gives

     2419 14 958 34 4 0
2

2

2

. . .
α
β

λ α
β

λ α
β

α
β

−
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ >i i ic c

Again, the discriminant of the left hand side is negative, so the inequality is
always satisfied. n

We hence prove the following:
Theorem. The map defined in (68)-(71) is a contraction.

Proof: In order to show that the map is a contraction it is enough to prove that
all the eigenvalues, say z, of the matrix J as stated in (75) are less than 1 in
absolute value at all the points in the phase space. To this end we solve the
characteristic polynomial equation:

Det( )J z C z C z C z C= + + + + =4
1

3
2

2
3 4 0

where from the Jacobian (75)

(80)

(81)

(82)

(83)

(84)
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C1 0=

C2 1 2

1

5

1

5
= − −F

HG
I
KJ −F
HG

I
KJΦ Φ

C3 1 2 1 2

3

25
10= + −Φ Φ Φ Φb g

C4 1 2

9

25
= − Φ Φ

It is known from Fairbrother (1973) that the necessary and sufficient condi-
tions for (84) to have all roots less than 1 in absolute value are:

1 04− >C

3 1 04 2+ − >C Cb g

1 02 4 1 3+ + − + >C C C C

1 1 04

2

4 2 1 3 3 1 4− + − + − − >C C C C C C C Cb g b g b gb g

which upon substitution from (85)-(88) become:

1
9

25
01 2+ >Φ Φ

3 1
9

25

1

5

1

5
01 2 1 2−F

HG
I
KJ + −F

HG
I
KJ −F
HG

I
KJ >Φ Φ Φ Φ

     1
1

5

1

5

9

25

3

25
10 01 2 1 2 1 2 1 2− −F

HG
I
KJ −F
HG

I
KJ − − + − >Φ Φ Φ Φ Φ Φ Φ Φb g

(85)

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)
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1
9

25
1

9

25

1

5

1

5

3

25
10 0

1 2

2

1 2 1 2

1 2 1 2

2

+F
HG

I
KJ − + −F

HG
I
KJ −F
HG

I
KJ

F
HG

I
KJ

− + −F
HG

I
KJ >

Φ Φ Φ Φ Φ Φ

Φ Φ Φ Φb g

Given the result of the above Lemma, stating that − < <1
4

3
4Φi  for i = 1, 2, it

is easy to see that conditions (93)-(96) are always satisfied.
(i) The inferior limit value for the expression on the left in (93) is

1 9
25

1
4

3
4+ −b gd i  which is positive.

(ii ) Next, rearranging the condition stated on the left in (94) we get

1
25 1 2 1 2

1
25

3
4

2 3
276 2 5 76 2 5 0− − + > − − >Φ Φ Φ Φb gc h b g b ge j .

(iii ) As for (95) we consider two cases:

       (a) Suppose Φ Φ Φ Φ1 2 1 210 0+ − >b g . Rearranging expression (95),

we get  2
25 1 2 1 2

2
25 1 2 1 2 1 212 2 12 8 10− + + = + + + −Φ Φ Φ Φ Φ Φ Φ Φ Φ Φb g b g

> + > + − >2
25 1 2

2
25

1
4

3
412 8 12 8 0Φ Φb g b gd i .

       (b) Next, suppose Φ Φ Φ Φ1 2 1 210 0+ − <b g . Then, rearranging (95),

its left hand side equals 8
25 1 2 1 23 8− + +Φ Φ Φ Φb g , the inferior limit value of

which is zero (obtained for Φ Φ1 2
3
4= = ).

(iv) As for (96) we use the maximum value of Φ Φ Φ Φ1 2 1 210+ − , which

is 33/8 (obtained for Φ Φ1 2
3
4= = ). Rearranging the left hand side of (96):

1
25

9
25 1 2

2

1 2 1 2
3
25

2

1 2 1 2

2
1 26 16 5 10+ + − + − + − >Φ Φ Φ Φ Φ Φ Φ Φ Φ Φb g b gc h b g b g

1
25

9
25

1
4

3
4

2
1
4

3
4

3
2

3
25

2 33
8

2
1 26 16 5 0+ − + − − − >b gd i b g b gd i b g b g . n

6.2 Delayed or Adaptive Location Adjustment. Let us now generalize
the model (68)-(71) as follows:

(96)
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′ = − + − + − +
F
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KJx x

x p p
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b g
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I
KJx x

x p p
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β
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′ = + + −p c2 2 2 2

4
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3

9

2

9

1

18

α
β

λ ∆

where σ i ∈ 0 1,  while the λ i  and ∆ i  are as given in (72)-(73) and (74)

respectively.
The difference to the previous model is that we now allow for a slower

location adjustment than price adjustment by assuming an adaptive process.
The firms need not immediately jump to the new optimum locations but may
experience a certain inertia due to the considerable cost associated with relo-
cation. In reality, the firms would relocate only now and then, whenever the
potential gains from relocation offset the substantial relocation costs, but then
take full relocation steps.

In a model it makes no harm to represent this conservatism to relocation in
terms of smaller steps in stead. Over a longer period the outcomes are equiva-

lent. The coefficients σ i  can represent any speed of reaction, from total

inertia when σ i  = 0, to extreme agility when σ i  = 1.
We note that the system (97)-(100) in fact becomes identical to (68)-(71)

for σ i  = 1, and that the equilibrium of the system (97)-(100) is the same as
for (68)-(71), which we already know to exist and to be unique. The study of
its stability, however, is now more complex. In order to investigate the proper-
ties of (97)-(100), we make use of the Jacobian matrix which now is:

(97)

(98)

(99)

(100)
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J
x x p p

x x p p

k k

k k
k
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=
∂ ′ ′ ′ ′
∂
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− −
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−
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M
M
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M
M
M
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P
P
P
P
P
P
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1
1 1 1

2
2

2 2

1 1

2 2

1
5

3

5 5

5
1
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3

5
0 0

0 0

, , ,

, , ,

b g
b g

b g

b g

σ σ σ σ

σ σ σ σ

Φ Φ
Φ Φ

where the Φ i  are the derivatives defined in (76), with upper and lower bounds

still as stated in the above Lemma. The characteristic polynomial of the Jacobian
matrix (101) is

Det( )J P z z C z C z C z C= = + + + +b g 4
1

3
2

2
3 4

where now

C1 1 21 1= − − − −σ σb g b g

C2 1 2
1

1
2

21 1
5 5

= − − − −F
HG

I
KJ −F
HG

I
KJσ σ σ σb gb g Φ Φ

C3
1 2

1 2

1 2 2
1 1

1 2 1
2 2

2 8
5

8
5

3
5 5 5

1 3
5 5 5

1

= − −F
HG

I
KJ

+ − −F
HG

I
KJ + − −F

HG
I
KJ

σ σ

σ σ σ σ σ σ σ σ

Φ Φ

Φ Φb g b g

C4
1 2 1

2
2

1 1 2 1 29
5 5

3
5

1 3
5

1 1 1= − − − − − + − −F
HG

I
KJ

σ σ σ σ σ σ σ σb g b g b gb g Φ Φ

It is clear that in order to have a contraction map the conditions can be ob-
tained by introducing the above coefficients in (89)-(92), but the analysis is
now more complex, and even if numerical experiments suggest that the sys-
tem is still always stable, we are not able to prove this rigorously, except for

the limiting cases σ i  = 1, dealt with above, and σ i  = 0, dealt with below.

(101)

(102)

(103)

(104)

(105)

(106)
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However, we can prove that the equilibrium is always stable in the symmetric

case. Considering identical firms (c c c1 2= = ) we already stated the explicit

expressions for Nash equilibrium, whence p p p1 2= = , as given in (55), and

Φ Φ Φ1 2= = . Further assume σ σ σ1 2= =  for the sake of complete sym-

metry. Evaluated in the equilibrium point, (103)-(106) become:

C1 2 1= − − σb g

C2

2
2

1
5

= − − −F
HG

I
KJσ σb g Φ

C3
24

5
2 8

5
1= −F

HG
I
KJ −F
HG

I
KJ

σ σΦ Φ

C4

2
28

5
1= − −F

HG
I
KJ

σ Φ

With these coefficients the characteristic polynomial factorizes:

P z P z P zb g b g b g= 1 2

where

P z z z1
2 4

5
1 8

5
1b g = + + −F

HG
I
KJ + −F

HG
I
KJ

σ σΦ Φ

P z z z2
2 6

5
1 8

5
1b g = + − −F

HG
I
KJ − −F

HG
I
KJ

σ σΦ Φ

so that it is possible to get the expressions for the four eigenvalues explicitly.
To prove stability we can employ the usual necessary and sufficient condi-
tions to have the two eigenvalues of a quadratic polynomial in modulus less
than 1:

(108)

(109)

(110)

(111)

(112)

(113)

(107)
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P P P1 1 11 0 1 0 0 1b g b g b g> − > <, ,

P P P2 2 21 0 1 0 0 1b g b g b g> − > <, ,

From (107)-(110) and (112)-(113) we have:

P1 1 8
5

4
5

0
1

2
b g = + > > −σ σΦ Φiff

P1 1
10 4

5

10 8

5
0− = − − − >b g σ σ σ

σ
Φ Φiff <

5- 2

5- 4

P1 0 8
5

1 1
5

8 5

5

8
b g b g b g= −F

HG
I
KJ < < >

−
> <σ

σ
σΦ Φiff for

P2 1 8
5

6
5

0
3

4
b g = − + > <σ σΦ Φiff

P2 1
10 6

5

10 8

5
0− = − + − >b g σ σ σ

σ
Φ Φiff > -

5- 3

5- 4

P2 0 8
5

1 1
5

8 5

5

8
b g b g b g= − −F

HG
I
KJ < > < −

−
> <σ

σ
σΦ Φiff for

As − < <1
4

3
4Φ  it is easy to see that the six conditions (116)-(121) are always

satisfied for any σ ∈ 0 1,b . Thus the Nash equilibrium is locally stable, what-

ever the values of the parameters. Hence a bifurcation can never occur.

The case σ = 0  is degenerate. Given any choice of locations x x1 2,  these

are never changed, and there is a pure price dynamics given by the two
equations:

(114)

(115)

(116)

(117)

(118)

(119)

(120)

(121)
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 ′ = + + −p c1 1 1 1

4

9

3

9

2

9

1

18

α
β

λ ∆

′ = + + −p c2 2 2 2

4

9

3

9

2

9

1

18

α
β

λ ∆

This two-dimensional system is a contraction. The Jacobian matrix is:

J =
L
NM

O
QP

0

0
1

2

Φ
Φ

with − < <1
4

3
4Φi  for i = 1, 2. The two eigenvalues (real or complex conju-

gates), always less than 1 in absolute value, are z = ± Φ Φ1 2 .

Throughout the discussion we kept the coefficients α  and β  from the

demand function, though nowhere in the reaction functions did these param-

eters enter except in terms of their ratio α / β , so we could just have used

one symbol for their ratio. Further, inspecting the reaction formulas it is obvi-
ous that if we redefine all value variables (prices, production costs, transpor-

tation costs) as ratios to this maximum price α / β , then nothing at all is

changed. Accordingly, we could even put α / β  = 1 without any loss of gen-

erality. We will profit from this possibility in Section 8 below.

7 Triopoly with an Intermediate Firm

Despite the seeming stability inherent in the model of two firms on a fixed
interval, the introduction of a third intermediate firm introduces some mani-
fest instability. The intermediate firm will, as we have seen, locate between
the competitors, in the centre of its market area. On the other hand the latter
will still tend to gravitate towards the centre. At a certain point it may hence
occur that the intermediate firm becomes so squeezed by its neighbours that
it will find larger market areas by moving out to the left or right on one or the
other side of the competitor there. As a rule, in equilibrium, the intermediate
firm will also have to charge a lower price than the competitors, even when
all three are identical in terms of equal production costs. This enhances the

(122)

(123)

(124)
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tendency for the intermediate firm to move out, and so introduces a locational
instability in the process.

Let us now reconsider the Hotelling case, but suppose that there is an
intermediate firm, i.e. three firms on a fixed interval. As we will see the case
has some unexpected surprises. Again assume the interval is [-1,1]. Now

there are three firms located at x x x1 2 3 1 1, , [ , ]∈ − . The demand quantities can
be recovered immediately from (39)-(40) for the extremal firms, and from (4)
for the intermediate one:

Q p b
k

x b x1 1 1 1

2

1 1

2
1

2
1= − + − + + −α β βb gb g b g b ge j

Q p b a
k

a x b x2 2 2 2 2 2

2

2 2

2

2
= − − − − + −α β βb gb g b g b ge j

Q p a
k

a x x3 3 3 3 3

2

3

2
1

2
1= − − − − + −α β βb gb g b g b ge j

where we used a1 1= −  and b3 1= . We can recover the two remaining mar-

ket boundary points a b2 1=  and a b3 2=  directly from (7) above.

So, substitute for these, and maximise sales according to (125)-(127) with
respect to the choice of location. As we recall, the multiplicative factor (price
minus unit cost) in profits does not influence location. Hence, differentiating
(125)-(127) and solving for location, we obtain:

x
x p p

k k1
2 2 14

5

3

5

2

5
= − + − + α

β

x
x x p p

k2
1 3 3 1

2 2
= + + −

x
x p p

k k3
2 3 24

5

3

5

2

5
= + + − − α

β

As we see, (128) and (130) are quite similar to (41)-(42), whereas (129)
resembles (10) above.

(125)

(126)

(127)

(128)

(129)

(130)
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Adding (128) and (130) and substituting from (129) we obtain the handy ex-
pression:

x x x
p p

k2 1 3
3 1= + = −

Considering equilibrium with three identical firms (equal marginal production
costs), we could conjecture that, (125) and (127) being similar, as well as
(128) and (130), we would have equal prices at least for the extremal firms.

So, substituting p p1 3=  in (131) we find that: i) the extremal firms locate

symmetrically around the origin; ii) the intermediate firm locates midway
between the competitors. The conjecture about prices of the extremally lo-
cated firms in fact turns out to be true, though the intermediate firm will as a
rule  have to charge a lower price.

The intermediate firm always locates in the middle of its market area a b2 2,

- whether in equilibrium or not! From (7) and (129) we find that for i = 2,
equations (29)-(30) always hold. This is, however not true for the extremal
firms, which have a location bias towards the centre.

Consider for a moment the case of disjoint identical monopoly firms (i.e.
having equal production costs). Then all three firms charge equal prices. An-
other case of price equality is if all three cluster in the centre. Substituting

p p p p1 2 3= = =  in (128)-(130), we obtain:

x
k

p1

4

5

2

5

1= − + −
F
HG

I
KJ

α
β

x2 0=

x
k

p3

4

5

2

5

1= − −
F
HG

I
KJ

α
β

First try the case of clustering by substituting zeros in all left hand sides. Then

we easily obtain: α β/ − =p k2  quite as in the case of two competitors, so if

maximum price overshoots equilibrium price by twice the transportation cost,
then all firms crowd in the centre, not only two, but even three.

(131)

(132)

(133)

(134)
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Next try the case when the firms locate in the midpoints of their respective
markets. The central one always is at the origin according to (133), but the
outer ones would have to locate in the points m2 3/ . Substituting in (132) and

(134) we then have α β/ /− =p k 3 . It is easy to check that this corresponds

to the case of disjoint monopolies. The denominator in the condition is differ-
ent from the duopoly case, but the firms are now three in stead of two, so a
shorter segment is available for each.

For the general case of duopoly equilibrium we have to consider one spe-
cial problem. As the extremal firms tend to locate close it may happen that
the intermediate firm finds that it will obtain a larger market interval by leav-
ing its central position and moving left or right of their competitors. (We sug-
gested that the extremal firms may also charge higher prices, so a larger
market with a higher potential price might result in higher profit.) If so there
will be set up a location instability, and we have to check the exact point at
which this happens.

We now have to settle the issue of pricing. Assume the firms are identical,
i.e. that all the marginal costs are equal to c. From (125)-(127) we then get

output, which we multiply by p ci −b g  to get profits and then substitute for

locations xi  from (128)-(130). Again define auxiliary variables to simplify the

formulas. Let:

λ1 2 21= + +p k x( )    λ 2 1 3 3 1= + + −p p k x xb g    λ 3 2 21= + −p k x( )

Note that the first and last resemble (47), whereas the middle one resembles
(11). Using (135) we get profits:

Π1 1 1

2

1 1 1

2

10
6 4= − −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
k

p c p pb g

Π2 2 2 2 2 216
2 8 6= − − − −

F
HG

I
KJ

β λ α
β

λ
k

p c p pb gb g

Π3 3 3

2

3 3 3

2

10
6 4= − −
F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

− −
F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
k

p c p pb g

(135)

(136)

(137)

(138)
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Note that (136) and (138) look similar, and indeed become identical in equilib-

rium when x2 0=  according to (131), given equal prices for the extremal

firms and hence λ λ1 3=  from (135). Note also the similarity of (136) and

(138) to equation (48), as well as of (137) to (12).

Next differentiate with respect to pi , equate to zero, and solve. In order to

make the formulas more concise let us define the two expressions:

A c ci i i= −
F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

+ −
F
HG

I
KJ

36 24 34
2 2

α
β

α
β

α
β

λ α
β

λ

B c ci i i= −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ36 12 2 13 2

2 2
α
β

α
β

α
β

λ α
β

λ

Using (139)-(140) we can write:

p c A1 1 1

4

9

3

9

2

9

1

18
= + + −α

β
λ

p c B2 2 2

4

9

3

9

1

9

1

18
= + + −α

β
λ

p c A3 3 3

4

9

3

9

2

9

1

18
= + + −α

β
λ

Again we note the similarity of (141) and (143) to (49), and of (142) to (13).

In equilibrium with identical firms we have p p1 3=  but, as a rule, p p p2 1 3< = ,
except in the obvious case of disjoint monopolies.

We can now easily state the maximum profits of the various firms when a
profit maximising price policy is chosen according to (141)-(143). Substituting
from (141)-(143) in (136)-(138) we obtain:

(139)

(140)

(141)

(142)

(143)
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Π1 1

3

2
1 1 1

2

2430

1

2
2 3 120= + − +

F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

F

H
GG

I

K
JJ

β α
β

λ α
β

λ
k

A c Ab g

Π2 2

3

2
2 2 23888

4 6 16 6 5 8 6 7= − − +
F
HG

I
KJ − −
F
HG

I
KJ + −
F
HG

I
KJ

F
HG

I
KJ

β α
β

λ α
β

λ α
β

λ
k

B c c cb g

Π3 3

3
2

3 3 3

2

2430

1

2
2 3 120= + − +

F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

F

H
GG

I

K
JJ

β α
β

λ α
β

λ
k

A c Ab g

As we consider identical firms in equilibrium (135) apply for the auxiliary

variables, further with p p1 3= .
Consider now the case when the middle firm moves out from its central

position either right or left of one of the extremal firms. Suppose it moves

right, to the position 
r
x2 . Note that all the symbols associated with a right

move are identified by the arrow pointing right. The market boundary points

then become 
r
a2 , to be obtained from (7), and 

r

b2 1= , as prescribed by the
fixed interval. From (7) we immediately get:

r
r r

a
x x p p

k2
3 2 2 3

2 2
=

+
+

−

where 
r
p2  denotes the yet undetermined price of the previously middle firm in

its new rightmost position. Similarly, for a left move to 
s
x2  (indicated by ar-

rows pointing left) we get 
s
a2 1= −  in the new position and 

s

b2 , likewise ob-

tained from (7):

s
s s

b
x x p p

k2
1 2 1 2

2 2
= + + −

Next, from (4) we get demand for each case:

(144)

(145)

(146)

(147)

(148)
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r r r r r r
Q p a

k
a x x2 2 2 2 2

2

2

2
1

2
1= − − − − + −α β βb gb g b g b ge j

s s s s s s
Q p b

k
x b x2 2 2 2

2

2 2

2
1

2
1= − + − + + −F

H
I
Kα β βb ge j b g e j

We can substitute for 
r
a2  from (147) in (149) and then as usual differentiate

with respect to 
r
x2 , put equal to zero, and solve for the optimum location in the

new interval. In the same way substitute for 
s
b2

 from (148) in (150) and do

the same with respect to 
s
x2 . We get:

r
r

x
x p p

k k2
3 2 34

5

3

5

2

5
= + + − − α

β

s
s

x
x p p

k k2
1 2 14

5

3

5

2

5
= − − − + α

β

where ∂ ∂ = ∂ ∂ = − <2
2 2

2 2
2 2

2 5 4 0
r r s s
Q x Q x k/ / /β  guarantee the fulfilment of the

second order conditions for profit maxima in both cases.

Substituting for 
r
x2  from (151) in (149) and for 

s
x2  from (152) in (150)

we obtain total sales in the new optimal locations:

r r r r r

Q
k

p p2 2

2

2 2 2

2

10
6 4= −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ

s s s s s

Q
k

p p2 2

2

2 2 2

2

10
6 4= −
F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

− −
F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ

respectively, where we have defined new auxiliary variables

r

λ 2 3 31= + −p k xb g             
s

λ 2 1 11= + +p k xb g (155)

(154)

(153)

(152)

(151)

(149)

(150)
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x2 x3x1 a2 b2 1-1

p1 p2 p3

Fig. 5. Price landscape for three competitors on a line segment.

different from the middle formula (135) as the firm is now in an extremal
position.

From (153)-(154) we get profits:

r r r r r r

Π2 2 2

2

2 2 2

2

10
6 4= − −
F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

− −
F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
k

p c p pb g

s s s s s s

Π2 2 2

2

2 2 2

2

10
6 4= − −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

β α
β

α
β

α
β

λ α
β

λ
k

p c p pb g

which we maximise with respect to 
r
p2  or 

s
p2 , depending on the direction of

jump, always using the corresponding 
r

λ 2
or 

s

λ 2
 from (155), and solve for the

variable. In order to obtain a concise expression we again define some abbre-
viations:

(156)

(157)
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p1 p3

r
p2

x1 x3

r
x2

r
a2 1-1

Fig. 6. Price landscape with the squeezed middle firm jumping right.

r r r

A c c2

2

2 2

2

36 24 34= −
F
HG

I
KJ − −

F
HG

I
KJ −
F
HG

I
KJ + −

F
HG

I
KJ

α
β

α
β

α
β

λ α
β

λ

s s s

A c c2

2

2 2

2

36 24 34= −
F
HG

I
KJ

− −
F
HG

I
KJ

−
F
HG

I
KJ

+ −
F
HG

I
KJ

α
β

α
β

α
β

λ α
β

λ

Using this we obtain relocation prices:

r r r
p c A2 2 2

4

9

3

9

2

9

1

18
= + + −α

β
λ     

s s s
p c A2 2 2

4

9

3

9

2

9

1

18
= + + −α

β
λ

Finally, substitute from (160) in (156)-(157) to obtain maximum profits in this
new location:

(160)

(159)

(158)
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r r r r r

Π2 2

3
2

2 2 2

2

2430

1

2
2 3 120= + − +

F
HG

I
KJ

− −
F
HG

I
KJ

F

H
G

I

K
J

F

H
GG

I

K
JJ

β α
β

λ α
β

λ
k

A c Ad i

     

s s s s s

Π2 2

3

2
2 1 2

2

2430

1

2
2 3 120= + − +

F
HG

I
KJ − −

F
HG

I
KJ

F

H
G

I

K
J

F

H
GG

I

K
JJ

β α
β

λ α
β

λ
k

A c Ad i

These expressions (161)-(162) for profits in case of moving out, are what we
have to compare to (145) in order to establish if jumping out is profitable or
not. Such comparisons do not result in manageable closed form criteria, but
are better carried out by the computer for numerical cases.

The geometry of the original middle location and a jump is illustrated in
Figs. 5-6.

Even though only the middle firm may have reason to jump from an equi-
librium position due to the fact that it is squeezed by the outer firms, it is
perfectly possible that, in any disequilibrium state in the dynamic process, an
outer firm may in stead consider jumping in between the competitors. So, if
we want to set up an explicit dynamical process we have to consider jumping
possibilities for all three firms, even the extremal ones which may want to
jump in into the middle or even to the other end. Only computer programs are
conceivable for checking the dynamics of such processes. Preliminary
simulations indicate the possibility of never ending reshuffling of sequences
of firms.

8 Different forms of the Demand Function

If one considers the absence of complex dynamics a problem, a linear de-
mand function may seem to be one, at least in 1D models, because, as we
have seen in Section 6 above, the derivatives of the reaction functions are too
low for the Nash equilibrium to be ever destabilised.

However, linear demand is not the only choice. As mentioned, Lerner and
Singer first tried a step function, before Smithies tried the linear. We might

want to check the whole class of demand functions p qρ ρ+ = 1, with the

parameter r  between unity (the linear), and infinity (the step function). This
function is of the Minkowski metric type, or as economists might prefer to
say, CES type, even if the curvature would be in the wrong direction com-

pared to normal isoquants. Note that for the linear case we now put α β/ = 1,

(161)

(162)
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as we noted that we may without loss of generality. The problem with such a
family is that we have to integrate expressions such as (3) over space, and
easily end up with expressions of a monstrous complexity right at the outset.

However, we can easily find these things out with a broken line demand
function in the unit square with a kink point along the positive diagonal:

q
p k x x p k x x

p k x x p k x x

i i i i

i i i i

=
− − + − + − ≤

−
−

+ − − + − >

R

S
||

T
||

1
1

1

µ
µ

µ

µ µ
µ

µ µ

c h

c h

If µ = 1 2/  we have the linear case back, if µ → 1, we approach the Lerner

and Singer case.

From (163) we see that the kink point is located at p k x xi i+ − = µ . For

the integration of total demand we have to locate the points in space where

this kink occurs, i.e. p k x p k xi i i i i i+ − = + − =ξ η µb g b g . Solving we get:

ξ µ
i i

ix
p

k
= − −

     and     η
µ

i i
ix

p

k
= + −

so we can easily calculate the total demand for the general firm:

Q p k x x dx

p k x x dx

p k x x dx

i i i

a

i i

i i

b

i

i

i

i

i

i

= − − + −
F
HG

I
KJ

+ −
−

+ − −
F
HG

I
KJ

+ − − + −
F
HG

I
KJ

z

z

z

1
1

1

1
1

µ
µ

µ µ
µ

µ

µ
µ

ξ

ξ

η

η

c h

c h

c h

Quite as above, a bi i,  denote the boundary points for the market interval,

whereas ξ ηi i,  are defined in (164) above. Breaking up the integral in three
terms makes integration easy. We get the closed form expression:

(165)

(164)

(163)
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Q p b a
k

a x b x

p

k

i i i i i i i i

i

=
−

− − − − + −F
HG

I
KJ

−
− −

−

µ
µ

µ µ µ
µ µ

1
1

2

2 1

1

2 2

2

2

b gb g b g b ge j

b gb g
b g

This is quite similar to (4), only note that we have simplified by putting α   and

β equal to unity. Further, recall that the linear demand function case we dealt

with has µ = 1 2/ , so then the coefficient or the first term becomes unitary

whereas the second term vanishes altogether. This is indeed reassuring. We
note that the effect of the kink in the demand function is to scale up the first
term and subtract an additional term.

We can now easily obtain all the relevant closed form expressions for the

Hotelling duopolists on a line. Just recall that we have a1 1= − , b2 1= , and

quite as in (10) a b x x p p k2 1 1 2 2 12 2= = + + −b g b g/ / . Optimising (166) with

respect to location we note that i) location does not enter the additional term
and ii ) the multiplicative factor makes no difference for the optimum location
condition. Accordingly, (41)-(42) still hold, as restated here:

x
x p p

k1
2 2 14

5

3 2

5
= − + − +

    x
x p p

k2
1 2 14

5

3 2

5
= + + − −

Again there is a slight simplification due to our choice of α   and β  equal to

unity.
The rest of the procedure follows as above. Define the auxiliary variables:

λ1 2 21= + +p k xb g         λ 2 1 11= + −p k x( )

and we can write the total demand for the Hotelling duopolists:

Q
k

p p

p

k

i i i i i

i

=
−

− − − − − −

−
− −

−

µ
µ

λ λ

µ µ µ
µ µ

1

1

10
6 1 4 1 1 1

2 1

1

2 2

2

2

b g b gb g b ge j

b gb g
b g

(166)

(167)

(168)

(169)
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Profits are next obtained by multiplying the quantity expressions through by

the factor p ci i−b g , which still makes profits cubic in prices. Optimization

with respect to prices is straightforward, though the occurrence of the kink
makes the expressions slightly more complicated.

The important thing, however, is that the derivatives of the reaction func-
tions still seem to retain the property of being bounded in a range which
makes the Nash equilibrium stable.

By conclusion we should stress that we left many loose ends worth further
study, such as phenomena in 2D, processes where a third competitor in a
fixed interval may feel squeezed and set up a series of location order changes,
or phenomena in unbounded space, such as three firms on a circle in 1D, or a
sphere in 2D.
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