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1 Introduction

In the previous Chapter (Section 5) we have considered a variant of Palan-
der’s model of duopoly with kinked demand, and decreasing marginal costs.
In the original model, with constant, or even zero, marginal costs no more
interesting dynamics than periodic orbits can occur. This is because the re-
sulting slopes of the reaction functions are too low. A way to raise the slopes
is assuming the marginal cost line to be downsloping.

Of course, a globally downsloping marginal cost line does not make any
sense at all, because it will eventually (once it reaches negative values) result
in production costs decreasing with increasing production, and further even
in negative production costs.

However, a piecewise linear marginal cost function could approximate
the traditional U-shaped textbook case, which itself is awkward to work with
as even in the simplest case we have to consider roots of cubic equations
(see Section 4 of the previous Chapter). We could then focus the study on
just what happens in one downsloping section of the approximating train of
straight line segments, and take care to check that we only study processes
which are confined to this section. We already found indications of chaos,
and will now proceed to a more detailed and more formal study of these
cases. In particular we focus on the changes in the dynamics as we change
two of the parameters, more precisely the slopes of the two pieces in the
kinked demand function.
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2 Description of the General Model

Consider the general duopoly model with a piecewise linear continuous de-
mand function of the form

p = f(x + y) =

8<:
®1 ¡ ¯1(x + y); 0 · x + y · q;
®2 ¡ ¯2(x + y); q < x + y · q1;
0; x + y > q1;

(1)

where

q =
®1 ¡ ®2

¯1 ¡ ¯2

; q1 =
®2

¯2

are kink points; ®i > 0; ¯i > 0; i = 1; 2; (see fig.1).

Figure 1: Demand function.

Let ®1 > ®2; then ¯1 > ¯2, q > 0, f(q) = (®2¯1¡®1¯2)=(¯1¡¯2) >
0:

Let the cost function of the first competitor be

Cx(x) = axx ¡ bxx2; 0 < x <
ax

2bx
; (2)

and of the second

Cy(y) = ayy ¡ byy2; 0 < y <
ay

2by
: (3)
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We define the function Cx(x) in the interval 0 < x < ax=2bx because only
when the marginal cost is positive does the model make sense, and positive
marginal cost corresponds to the increasing branch of the cost function. For
the same reason the function Cy(y) is defined for 0 < y < ay=2by:

Note that if ax = 0 and bx > 0; then Cx(x) < 0; so that this case is not
allowed. We shall consider ax > 0; bx ¸ 0 as well as ay > 0; by ¸ 0:

Let 0 · x + y · q1: The marginal revenue MRx(x; y) and the marginal
cost MCx(x) of the first firm are:

MRx(x; y) = (f(x + y)x)
0
x =

½
®1 ¡ 2¯1x ¡ ¯1y; 0 · x + y · q;
®2 ¡ 2¯2x ¡ ¯2y; q < x + y < q1;

MCx(x) = ax ¡ 2bxx

and of the second one are:

MRy(x; y) = (f(x + y)y)
0
y =

½
®1 ¡ 2¯1y ¡ ¯1x; 0 · x + y · q;
®2 ¡ 2¯2y ¡ ¯2x; q < x + y < q1;

MCy(y) = ay ¡ 2byy

The profit functions of the two competitors are respectively

¦x(x; y) = f(x + y)x ¡ Cx(x) (4)

=

½
(®1 ¡ ax ¡ ¯1y)x ¡ (¯1 ¡ bx)x2; 0 · x + y · q;
(®2 ¡ ax ¡ ¯2y)x ¡ (¯2 ¡ bx)x2; q < x + y < q1;

and

¦y(x; y) = f(x + y)y ¡ Cy(y)

=

½
(®1 ¡ ay ¡ ¯1x)y ¡ (¯1 ¡ by)y2; 0 · x + y · q;
(®2 ¡ ax ¡ ¯2x)y ¡ (¯2 ¡ by)y2; q < x + y < q1:

In order to obtain local maximal profits of the first competitor we have to
solve the equation

@

@x
(¦x(x; y)) = 0 (5)

with respect to x (or, in other words, we solve the equation MRx(x; y) =
MCx(x) with respect to x). Note that the solution of (5) is indeed a profit
maximum if the second derivative of ¦x(x; y) is negative, i.e.

@2

@x2
(¦x(x; y)) = ¡2(¯i ¡ bx) < 0;
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which is true if

¯i > bx; i = 1; 2:

Using the same arguments for the second competitor we get the following
conditions:

¯i > by; i = 1; 2:

Solving (5) with respect to x we get the following two functions denoted
by '1(y) and '2(y) (associated with the two functions defining ¦x(x; y) in
(4)):

x = '1(y) =
(®1 ¡ ¯1y ¡ ax)

2(¯1 ¡ bx)
; (6)

x = '2(y) =
(®2 ¡ ¯2y ¡ ax)

2(¯2 ¡ bx)
: (7)

The function '1(y) is defined for 0 · x + y · q; i.e. 0 · '1(y) + y · q;
from which it follows that if ¯1 > 2bx then '1(y) is given for

0 · y · y1 ;

where

y1 =
2q(bx ¡ ¯1) + ®1 ¡ ax

2bx ¡ ¯1

=
f(q) ¡ ax

2bx ¡ ¯1

+ q ;

while if ¯1 < 2bx then '1(y) is defined for

y1 · y · y2 ;

where

y2 =
®1 ¡ ax

2bx ¡ ¯1

:

The condition x = '1(y) ¸ 0 also has to be fulfilled and it holds for

y · y0;1 =
®1 ¡ ax

¯1

:
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Note that from y ¸ 0 it follows that y0;1 ¸ 0; i.e. the following condition
has to be satisfied:

®1 ¸ ax:

The function '2(y) is defined for q < x + y < q1; i.e. q < '2(y) + y <
q1; from which it follows that if ¯2 > 2bx then '2(y) is given for

y3 < y < y4;

where

y3 =
2q(bx ¡ ¯2) + ®2 ¡ ax

2bx ¡ ¯2

=
f(q) ¡ ax

2bx ¡ ¯2

+ q;

y4 = q1 ¡ ax

2bx ¡ ¯2

;

while if ¯2 < 2bx then '2(y) is defined for

y4 < y < y3:

From x = '2(y) ¸ 0 we get the inequality

y · y0;2 =
®2 ¡ ax

¯2

which together with the condition y ¸ 0 gives the following condition

®2 ¸ ax:

In order to have the cost function defined in the suitable range (given
in (2)) we substitute x = '1(y) and x = '2(y) into the marginal cost
expression and ask for positivity:

MCx('i(y)) = ax ¡ 2bx'i(y) > 0;

which, when bx 6= 0; holds if

y >
®i

¯i

¡ ax

bx
; i = 1; 2:
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A sufficient condition for the inequality above to be fulfilled is

®i

¯i

<
ax

bx
; i = 1; 2:

Summarizing, it can be shown that two qualitatively different cases occur
for the range of definition of the functions '1(y) and '2(y) depending on
ax 7 f(q):

1) If ax · f(q); then y0;1 · y0;2. Moreover, the function '1(y) is
defined only for ¯1 > 2bx (as y1 > y0;1 for ¯1 < 2bx) :

x = '1(y) for 0 · y · y1; ¯1 > 2bx:

The function '2(y) is given as follows:

x = '2(y)

½
for y3 < y < y0;2 if ¯2 > 2bx;
for 0 < y < y0;2 if ¯2 < 2bx:

In the last inequality the function '2(y) is defined for 0 < y < y0;2 because
when ¯2 < 2bx then y4 < 0:

2) If ax > f(q); then y0;1 > y0;2. The functions '1(y) and '2(y) are
defined as follows:

x = '1(y)

½
for 0 · y · y0;1 if ¯1 > 2bx;
for y1 · y < y0;1 if ¯1 < 2bx;

x = '2(y) for 0 < y < y3; ¯2 < 2bx;

(as y3 > y0;2 for ¯2 > 2bx):

Using the same arguments for the second competitor we can repeat all
the computations performed above putting x instead of y and vice versa,
denoting the two solutions of the equation

@

@y
(¦y(x; y)) = 0

by Ãi(x) (instead of 'i(y)); i = 1; 2:
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Let us collect all the parameter conditions which are to be fulfilled in
order to have a meaningful duopoly model with the demand function (1) and
the cost functions (2) and (3):

®i > 0; ¯i > 0;
®1 > ®2; ¯1 > ¯2; ( ®2¯1 ¡ ®1¯2) > 0;
ax > 0; bx ¸ 0; ay > 0; by ¸ 0;
ax · ®i; bx < ¯i; ay · ®i; by < ¯i;
®i=¯i < ax=bx for bx 6= 0;
®i=¯i < ay=by for by 6= 0:

(8)

The functions '1(y) and '2(y) are the solutions of the local optimization
problem for the first competitor. In order to get a global maximal profit
(denote it by ¦1(y)) we have to substitute the functions '1(y) and '2(y) in
the profit expression (4), compare two profits and choose the function that
corresponds to the maximum. In this way we obtain a reaction function of
the first competitor x defined (at each y) by the function 'i(y); i = 1; 2;
which corresponds to the global maximal profit.

Denote ¦x('1(y); y) by ¦x;1(y) and ¦x('2(y); y) by ¦x;2(y) :

¦x;1(y) =
(®1 ¡ ¯1y ¡ ax)2

4(¯1 ¡ bx)
; ¦x;2(y) =

(®2 ¡ ¯2y ¡ ax)2

4(¯2 ¡ bx)
;

the graphs of these functions are convex parabolas which intersect the verti-
cal axis in

¦x;1(0) =
(®1 ¡ ax)2

4(¯1 ¡ bx)
; ¦x;2(0) =

(®2 ¡ ax)2

4(¯2 ¡ bx)
;

and have minimum value (zero) at the following points:

¦x;1(y) = 0 at y = y0;1; ¦x;2(y) = 0 at y = y0;2:

It follows from the conditions '1(y) ¸ 0 that the function ¦x;1(y) is
defined for 0 · y · y0;1; from the condition '2(y) ¸ 0 we get that ¦x;2(y)
is defined for 0 · y · y0;2: In order to have the function ¦1(y) defined for
all positive y; let ¦1(y) be given by

¦1(y) =

½
max f¦x;1(y); ¦x;2(y)g ; 0 · y · max fy0;1; y0;2g ;
0; y > max fy0;1; y0;2g :
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It is easy to get that ¦x;1(y) \ ¦x;2(y) = fy; y1g ; where

y =
(®1 ¡ ax)

p
(¯2 ¡ bx) ¡ (®2 ¡ ax)

p
(¯1 ¡ bx)

¯1

p
(¯2 ¡ bx) ¡ ¯2

p
(¯1 ¡ bx)

;

y1 =
(®1 ¡ ax)

p
(¯2 ¡ bx) + (®2 ¡ ax)

p
(¯1 ¡ bx)

¯1

p
(¯2 ¡ bx) + ¯2

p
(¯1 ¡ bx)

:

Note that in order to avoid division by zero in the expression for y, the fol-
lowing condition should be checked:

bx 6= ¯1¯2

¯1 + ¯2

:

Proposition 1 Let ax < f(q); ¯1 > 2bx; y > 0 and

bx <
¯1¯2

¯1 + ¯2

: (9)

Then the reaction function of the f irst competitor is

x =

8<:
'1(y); 0 · y < y;
'2(y); y · y · y0;2;
0; y > y0;2:

(10)

Proof. In fact, it follows from the assumptions on the parameters that
y0;1 < y0;2; y < y1; y < y0;1; y0;1 < y1 < y0;2; that is the point y1

belongs to the interval where only the profit function ¦x;2 (y) is defined,
thus only the point y is related to a jump from one function to the other.

The function '1(y) is defined for 0 < y · y1; ¯1 > 2bx: It can be
shown that y < y1 < y0;1:

If ¯2 > 2bx then the function '2(y) is defined for y3 < y < y0;2: It
follows from the assumptions that y3 < y; if ¯2 < 2bx then '2(y) is defined
for 0 < y < y0;2.

Thus, the global maximal profit for the first competitor is given by

¦1(y) =

8<:
¦x;1 (y); 0 · y < y;
¦x;2 (y); y · y · y0;2;
0; y > y0;2;

(see fig.2 a), from which it follows that the reaction function is given by (10)
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Proposition 2 Let ax < f(q); ¯1 > 2bx; y < 0 and

bx <
¯1¯2

¯1 + ¯2

:

Then the reaction function of the f irst competitor is

x =

½
'2(y); 0 · y · y0;2 ;
0; y > y0;2 :

(11)

Proof. It is easy to see that if y < 0 then the global maximal profit is

¦1(y) =

½
¦x;2 (y); 0 · y · y0;2 ;
0; y > y0;2 ;

and the reaction function of the first competitor in this case is given by (11).

Figure 2: The prof it functions ¦x;1 and ¦x;2 corresponding to the branches
'1(y) and '2(y) of the reaction function of the f irst competitor in the case
of parameter assumptions of Proposition 1 (a) and Proposition 3 (b).
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Corollary 1 If the assumptions ax < f(q); ¯1 > 2bx are maintained
but the inequality (9) is not satisf ied (which can occur only if ¯2 < 2bx)
then y > y1, i.e. y belongs to the interval where the prof it function is equal
to zero. Thus the reaction function of the f irst competitor is def ined by (11).

Proposition 3 Let ax > f(q); ¯2 < 2bx; y > 0 and

bx >
¯1¯2

¯1 + ¯2

: (12)

Then the reaction function of the f irst competitor is

x =

8<:
'2(y); 0 · y < y;
'1(y); y · y · y0;1;
0; y > y0;1:

(13)

Proof. It follows from the assumptions on the parameters that y0;1 > y0;2; y <
y1; y < y0;2; y0;2 < y1 < y0;1; that is the point y1 belongs to the interval
where only the profit function ¦x;1 (y) is defined. Thus only the point y is
related to a jump from one function to the other.

The function '2(y) is defined for 0 < y · y3; ¯2 < 2bx: It can be
shown that y < y3 < y0;2:

If ¯1 < 2bx then the function '1(y) is defined for y1 · y < y0;1: It
follows from the assumptions that y1 < y3; y1 < y0;1 and y1 < y; if
¯1 > 2bx then '1(y) is defined for 0 < y < y0;1.

Thus, the global maximal profit of the first competitor is

¦1(y) =

8<:
¦x;2 (y); 0 · y < y;
¦x;1 (y); y · y · y0;1;
0; y > y0;1;

(see fig.2 b), and the reaction function is given by (13).

Proposition 4 Let ax > f(q); ¯2 < 2bx; y < 0 and

bx >
¯1¯2

¯1 + ¯2

:

Then the reaction function of the f irst competitor is

x =

½
'1(y); 0 · y · y0;1;
0; y > y0;1:

(14)
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Proof. It can be easily shown that if y < 0 then the global maximal profit is

¦1(y) =

½
¦x;1 (y); 0 · y · y0;1;
0; y > y0;1;

and the reaction function of the first competitor is as (14).

Corollary 2 If the inequality (12) is not satisf ied (which can occur only
if ¯1 > 2bx) but the assumptions ax > f(q); ¯2 < 2bx hold, then y >
y1; i.e. y belongs to the interval where the prof it function is zero. It can be
shown that in this case the reaction function is def ined by (14).

Corollary 3 If ax = f(q) then y0;1 = y0;2 = q: If the inequality (9)
holds then the reaction function of the f irst competitor is given by (14), while
if the inequality (12) is satisf ied then the reaction function is given by (13).

Using the same arguments for the second competitor one can get similar
results for his reaction function putting x instead of y and vice versa, and
Ãi(x) instead of 'i(y); i = 1; 2:

3 An Example of the Duopoly Model with Piecewise Linear De-
mand and Nonlinear Cost

In this section we shall propose a two-parameter family of models defined
by the demand function (1) assuming quadratic cost functions, (2) and (3), in
order to investigate the dynamics of the piecewise linear models which come
out from the process described in the previous section. We shall consider an
economic example which generalizes a model proposed by Palander (1936,
1939). The original Palander’s example was already considered in Section
5 of the previous Chapter, both in the case of zero cost functions and in the
case of a linear cost function. The model we propose here has a demand
function given by

p = f(x + y) =

8<:
150¡ ¯1(x + y); 0 · x + y · q;
64¡ ¯2(x + y); q < x + y · q1;
0; x + y > q1;

where

q = 86=(¯1 ¡ ¯2); q1 = 64=¯2;



158 Irina Sushko, Laura Gardini, and Tönu Puu

so that our linear components of the demand function depend on the parame-
ters ¯1 and ¯2 which model the slopes of the linear pieces. We shall let these
parameters vary in the region denoted by P :

P = f(¯1; ¯2) : 0:043 < ¯1 < 0:065; 0:0022 < ¯2 < 0:0026g ;

all giving examples close to the one proposed by Palander.
The cost functions are assumed of quadratic shape, and we shall keep

them fixed as follows:

Cx(x) = 53x ¡ 0:00128x2;

Cy(x) = 53y ¡ 0:00125y2:

In this way we have fixed the following parameters:

a1 = 150; a2 = 64;

ax = 53; bx = 0:00128;

ay = 53; by = 0:00125;

and shall vary the parameters ¯1 and ¯2 in the region P . We shall see that
in spite of the narrow intervals in which these parameters are let to vary, the
model reveals a very rich variety of dunamic behaviours. It is easy to verify
that whichever are the values of ¯1 and ¯2 in the given ranges, the conditions
given in (8) are fulfilled, and that the following also hold:

¯1 > 2bx; ¯2 < 2bx;
¯1 > 2by; ¯2 < 2by;
ax < f(q); ay < f(q);
bx < ¯1¯2=(¯1 + ¯2);
by < ¯1¯2=(¯1 + ¯2);
y > 0; x > 0:

(15)

Thus, from Proposition 1 it follows that the reaction function of the first
competitor is

x = '(y) =

8><>:
'1(y) = s1y + d1; 0 · y < y;
'2(y) = s2y + d2; y · y · y0;2 = 97

¯2
;

0; y > y0;2 = 97
¯2

;
(16)
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where

s1 = ¡ ¯1

2(¯1 ¡ 0:00128)
; d1 =

97

2(¯1 ¡ 0:00128)
;

s2 = ¡ ¯2

2(¯2 ¡ 0:00128)
; d2 =

11

2(¯2 ¡ 0:00128)
;

y =
97¯2 ¡ 11¯1³p

(¯2 ¡ 0:00128)
p

(¯1 ¡ 0:00128) ¡ 0:00128
´

(¯1 ¡ ¯2)
+ q;

while the reaction function of the second competitor is given by

y = Ã(x) =

8><>:
Ã1(x) = m1y + l1; 0 · x < x;
Ã2(x) = m2y + l2; x · x · x0;2 = 11

¯2
;

0; x > x0;2 = 11
¯2

:
(17)

where

m1 = ¡ ¯1

2(¯1 ¡ 0:00125)
; l1 =

97

2(¯1 ¡ 0:00125)
;

m2 = ¡ ¯2

2(¯2 ¡ 0:00125)
; l2 =

11

2(¯2 ¡ 0:00125)
;

x =
97¯2 ¡ 11¯1³p

(¯2 ¡ 0:00125)
p

(¯1 ¡ 0:00125) ¡ 0:00125
´

(¯1 ¡ ¯2)
+ q:

4 Dynamic Behavior of the Model

As usual, a dynamic model is get by introducing a time lag in the variables
x and y, that is ½

xt+1 = '(yt)
yt+1 = Ã(xt)



160 Irina Sushko, Laura Gardini, and Tönu Puu

so that the time evolution of the model is described by the iterations of the
two-dimensional piecewise linear discontinuous map T : R2

+ ! R2
+, R2

+ =
[0; +1) £ [0; +1); of the form

T :

µ
x
y

¶
!

µ
'(y)
Ã(x)

¶
; (18)

where the functions '(y) and Ã(x) are given in (16) and (17) respectively.
The study of a two dimensional duopoly model has already been per-

formed in many papers by several authors. Let us recall the paper by Bischi,
Mammana and Gardini (2000) which puts in evidence some general results
for the class of maps (18), also recalled in Chapter 3. In our case the dy-
namics of the model can be described by means of the properties of the
piecewise linear one-dimensional discontinuous maps F : R+ ! R+ and
G : R+ ! R+ given by

F : x 7! F (x) = (' ± Ã)(x);

G : y 7! G(y) = (Ã ± ')(y):

and in order to understand the dynamics of the map T , we can consider only
the map F from which the properties of the map G can be deduced (for
example, if xi is a periodic point of F then yi = Ã(xi) is a periodic point of
G).

The map F is given by the following linear functions:

x 7! F (x) =

8>>>>>>>><>>>>>>>>:

('2 ± Ã1)(x); 0 · x < x; y · Ã1(x) · y0;2;
('1 ± Ã1)(x); 0 · x < x; 0 · Ã1(x) < y;
('2 ± Ã2)(x); x · x · x0;2; y · Ã2(x) · y0;2;
('1 ± Ã2)(x); x · x · x0;2; 0 · Ã2(x) < y;
0; 0 · x < x; Ã1(x) > y0;2;
0; x · x · x0;2; Ã2(x) > y0;2;
0; x > x0;2:

It is a discontinuous map with break points x; x1 = Ã¡1
1 (y), x2 = Ã¡1

2 (y),
x3 = Ã¡1

1 (y0;2); x4 = Ã¡1
2 (y0;2) and x0;2 (if the values Ã¡1

1 (y), Ã¡1
2 (y);

Ã¡1
1 (y0;2) and Ã¡1

2 (y0;2) are defined), an example is shown in fig.3.
Depending on the parameters (¯1; ¯2) 2 P the map F may be made up

by a different numbers of linear pieces.
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Let L1 denote the curve in the (¯1; ¯2)¡ parameter plane of equation
Ã1(x) = y (see fig.4). It can be shown that if the parameter point (¯1; ¯2) 2
P is above the curve L1 (i.e. the condition Ã1(x) < y is satisfied) then the
function F (x) consists of 5 linear pieces (see fig.3):

x 7! F (x) =

8>>>><>>>>:
s2m1x + d2 ¡ s2l1; 0 < x · x1;
s1m1x + d1 ¡ s1l1; x1 < x < x;
s2m2x + d2 ¡ s2l2; x · x · x2;
s1m2x + d1 ¡ s1l2; x2 < x · x0;2;
0; x > x0;2:

The map F in this case has a fixed point x¤
1 = (d1 ¡ s1l1)=(1 ¡ s1m1) 2

(x1; x) which is attracting in the considered parameter range (being 0 <
s1m1 < 1).

Figure 3: An example of the map F given by 5 linear functions with break
points x1; x; x2 and x0;2 (¯1 = 0:045; ¯2 = 0:00245):

The map F has one more fixed point x¤
2 = (d2 ¡ s2l2)=(1 ¡ s2m2) 2

(x; x2) if F (x) < x and F (x2) > x2, or if F (x) > x and F (x2) < x2: Let
L3 denote the curve in the (¯1; ¯2)¡ parameter plane given by the equation
F (x) = x and L5 denote the curve of equation F (x2) = x2 (see fig.4): The
fixed point x¤

2 exists and is repelling if the parameter point (¯1; ¯2) is below
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L3 and is attracting if (¯1; ¯2) is above L5: The fixed point x¤
2 does not exist

if (¯1; ¯2) is below L5 and above L3:

Figure 4: (¯1; ¯2)¡ parameter plane where the curves Li; i = 1; :::; 6 and
the region P1 are represented.

Let L2 denote the curve in the (¯1; ¯2) parameter plane given by Ã2(x) =
y0;2: If the parameter point (¯1; ¯2) 2 P is below the curve L2 (i.e. Ã2(x) >
y0;2) then the map F is given by

x 7! F (x) =

8>>>><>>>>:
s2m1x + d2 ¡ s2l; 0 < x < x;
0; x · x < x3;
s2m2x + d2 ¡ s2l2; x3 · x · x2;
s1m2x + d1 ¡ s1l2; x2 < x · x0;2;
0; x > x0;2:

(see fig.5). We do not consider further this case in the present paper, however
we note that it can raise intersting issues from the economical point of view
because the presence of a zero branch for x · x < x3 can give rise to
attracting cycles with points on the axes. This means that we may have zero
quantity produced by one competitor and non-zero by the other in some
periods and the opposite situation in other periods, i.e. shifting monopoly.
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If the parameter point (¯1; ¯2) 2 P is below the curve L1 but above the
curve L2 (i.e. Ã1(x) > y and Ã2(x) < y0;2) then the map F is given by

x 7! F (x) =

8>><>>:
f1(x) = s2m1x + d2 ¡ s2l; 0 < x < x;
f2(x) = s2m2x + d2 ¡ s2l2; x · x · x2;
f3(x) = s1m2x + d1 ¡ s1l2; x2 < x · x0;2;
0; x > x0;2;

(19)

A trajectory of the map F will never visit the zero branch if the parame-
ter point (¯1; ¯2) is above the curve denoted by L4 (see fig.4) of equation
f2(x2) = x0;2 (i.e., if f2(x2) < x0;2 then the interval (0; x0;2) is absorbing).

When the inequalities f2(x2) > x2 and f2(x) > x are both satisfied (i.e.
(¯1; ¯2) is below the curve L5 and above L3) then the map F has no fixed
points (an example is shown in fig.6).

It can be verified that the slopes s2m1 and s1m2 of the functions f1(x)
and f3(x) are positive and less then 1: Thus the map F is a contraction on
the intervals (0; x) and (x2; x0;2): F is expanding on the interval (x; x2) if
s2m2 > 1; which holds if

¯2 < ¯¤
2 = ((bx + by) +

q
(bx + by)2 ¡ 3bxby)=3:

In the family we are considering we have ¯¤
2 ¼ 0:00253; the line ¯2 = ¯¤

2 is
shown in fig.4.

In order to define a particular region, denoted by P1 in fig.4, let us intro-
duce in the parameter plane another curve, L6; of equation f2(x) = f3(x2)
(with f2(x) < f3(x2) below L6): The three curves L3; L6 and ¯2 = ¯¤

2

bound a region P1 :

P1 = f(¯1; ¯2) 2 P : x < f2(x) < f3(x2); ¯2 < ¯¤
2g

such that for (¯1; ¯2) 2 P1 the resulting map F has an invariant absorbing
interval I = I1 [I2 = [f3(x2); x2][ [x2; f2(x2)]: That is, F (I) = I (so that
F (x) 2 I 8x 2 I) and the trajectory of any point x0 2 [0; +1) is mapped
into I in a finite number of iterations. A qualitative picture of the graph of
F (x) in this case is shown in fig.7.

Being F expanding in I1 any trajectory must have at least one point in
the interval I2; and any point x0 2 I2 maps into the interval I1; i.e. x1 =
f3(x0) 2 I1; then it is necessary to make some iterations by f2 in order to
get the first return in I2 (i.e, again a point in the interval I2). Let k be the
least integer such that fk

2 (x1) 2 I2; then this number is obtained taking the
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Figure 5: An example of the function F (x) with zero branches where ¯1 =
0:055; ¯2 = 0:00225.

Figure 6: An example of the function F (x) given by 4 linear pieces with
break points x; x2 and x0;2 where ¯1 = 0:06; ¯2 = 0:0025.
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Figure 7: Qualitative picture of the function F (x) at (¯1; ¯2) 2 P1:

trajectory with the initial point x¤
0 = f2(x2) 2 I2: That is, k is get as the

least integer for which fk
2 (f3(x¤

0)) 2 I2; i.e. x2 · fk
2 (f3(x¤

0)) · f2(x2)
(see fig.7). We then prove the following

Proposition 5 Let (¯1; ¯2) 2 P1: If

k > n¤ = ¡ ln s1m2

ln s2m2
;

then the map F is chaotic in I = I1 [ I2 = [f3(x2); x2] [ [x2; f2(x2)]; and
the map T is chaotic in the cartesian product I £ J being J = Ã(I):

Proof. It was shown that the interval I is invariant for (¯1; ¯2) 2 P1:
In order to prove the proposition it is enough to show that when k > n¤
then the map F can have only repelling cycles in I: Let us consider a pe-
riodic trajectory, then it must have at least one point in I2; let x0 2 I2 and
x1 = f3(x0) 2 I1; then let n1 be the integer giving its first return in I2;
i.e. fn1

2 (x1) 2 I2: It follows that the eigenvalue of such a cycle has a fac-
tor ¹1 = s1m2(s2m2)n1 ; and the eigenvalue of the cycle is given by the
product of similar factors: ¹1¹2:::¹r for some suitable integer r ¸ 1 and
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¹i = s1m2(s2m2)ni for i = 1; :::; r. It is enough to have ¹i > 1 8i to state
that the cycle is repelling, and the inequality ¹i > 1 is satisfied if

ni > n¤ = ¡ ln s1m2

ln s2m2
:

As for any point of I2 we have ni ¸ k (by definition of k); when k > n¤
then ni > n¤ 8i from which it follows that any cycle of the map F has the
eigenvalue higher than 1; i.e. F has only repelling cycles.

Thus, any trajectory with initial point x0 2 I is either asymptotically
periodic to a repelling cycle, or aperiodic, and F is chaotic in I: A similar
reasoning apply to the map G, and due to the relation between F and G we
have that G is chaotic in J = Ã(I) so that the two-dimensional map T is
chaotic in the cartesian product I £ J: ¤

Figure 8: An example of chaotic attractors of the map T at ¯1 = 0:06;
¯2 = 0:0025:

As an example let us fix ¯1 = 0:06; ¯2 = 0:0025: For such parameter
values n¤ ¼ 27:6455; k = 78; so that the assumptions of Proposition 5 are
satisfied and the map T has a chaotic attractor, the rectangle I £ J which is
shown in fig.8.

The two-dimensional bifurcation diagram of the map F in the (¯1; ¯2)
- parameter plane is shown in fig.9 where the regions of regular and chaotic
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behavior are indicated. It is recalled in Chapter 3 that one of the characteristic
properties of the class of maps (18) is the multistability, i.e. the coexistence
of distinct attractors that may be stable cycles or attracting cyclic chaotic
sets. In fig.9 the regions which correspond to coexisting attracting cycles

Figure 9: Two-dimensional bifurcation diagram in the (¯1¯2) parameter
plane for the map F where regions corresponding to attracting cycles of
the map T are indicated by numbers;region which corresponds to chaotic
behavior is indicated by C:

are indicated by numbers (which denote the periods of the cycles of the two-
dimensional map T ). From the properties of the maps of type (18) we know
that in order to get all the attractors of the map T it is enough to consider
first all the attractors of the one-dimensional map F (which, on they turn,
are determined by considering the trajectories with initial points equal to the
two values associated with all the break points of F ), and then, by using the
results of Bischi, Mammana, Gardini (2000), we can get all the attractors of
T: For instance, the region indicated by 7; 14 corresponds to the parameter
values such that F has an attracting cycle of period 7, so that the map T
has one attracting cycle of period 7 and three coexisting attracting cycles of
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period 14: In fig.10 we show the basins of attraction in the phase plane (x; y)
of the four distinct cycles of T for an example in that parameter region, with
¯1 = 0:055 and ¯2 = 0:00234:

Figure 10: An example of basins of attraction of one cycle of period 7 and
three cycles of period 14:

Also the structure of the basins is typical for this class of maps (18), as
we know that the basin boundaries always belong to vertical and horizontal
lines.

The region indicated by 20 corresponds to the parameter values such that
the map F has an attracting cycle of period 10, so that T has f ive distinct
attracting cycles of period 20:

It can be shown that the transition from one region to another is due to
a border-collision bifurcation, occurring when some point of an attracting
cycle of F coincides with a break point (see, for instance, Nusse and Yorke
(1995) where such a bifurcation is descibed for piecewise smooth continuous
one-dimensional maps).

If the parameter point (¯1; ¯2) belongs to the region denoted by C then
the map T has a chaotic attracting set. The region C was obtained by calcu-
lating the Lyapunov exponent which is positive for (¯1; ¯2) 2 C:
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An example of a n-piece chaotic attractor is presented in fig.11 where
¯1 = 0:065; ¯2 = 0:002488: Note that in this case (¯1; ¯2) 2 C is below
the curve L3 (and thus out of the region called P1):

Figure 11: An example of n-pieces chaotic attractor of the map T at ¯1 =
0:065; ¯2 = 0:002488:
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