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Abstract

In this chapter we consider a simple financial market model following the pio-
neering works by R. Day, described by one-dimensional piecewise linear maps, either
being continuous or discontinuous. We shall see how rich the related dynamics are,
with sequences of stable cycles and chaotic intervals. Our results explain, among
other things, the emergence of intricate bull and bear markets dynamics, as observed
in many actual financial markets. Due to its simplicity, the model allows both a useful
analytical study and a qualitative interpretation of the dynamic outcomes. We describe
bifurcation sequences with both period increment by one and by two, and we illustrate
the wide regions of chaotic behavior.

4.1 Introduction

In this chapter we are interested in a piecewise linear model, in the case of both continuous
and discontinuous maps, which comes from the study of financial markets where heteroge-
neous speculators follow simple technical and fundamental trading rules to determine their
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orders. As we will see, our model is able to generate complex dynamics. For instance, asset
prices can be highly volatile and display irregular switches between bull and bear markets,
as also studied recently in [1] and [2]. Inspired by the seminal papers by R. Day ( [3, 4]),
such simple deterministic models are still sufficiently up-to-date to interpret the current
financial crises.

The financial market model we discuss in this chapter goes back to [5]. However, there
are so many possible scenarios associated with that particular piecewise linear model that it
is impossible to investigate all of the results in one contribution. In [5], we focused on cases
in which the two linear pieces of the map have either positive or negative slopes. Now we
focus on the case in which the right branch of the map has a negative slope while left has a
positive slope. However, both branches have positive offsets. Due to the assumptions about
the shape of the map, there is only one equilibrium, located on the right part of the map. It
always exists, and can be stable or unstable. If it is unstable, however, the global dynamics
are nevertheless bounded: we observe cyclical or chaotic motion, and the trajectory flips
back and forth between the left and the right side of the map.

The main point in the analysis of non-smooth systems (continuous and discontinuous)
is the occurrence of border collision bifurcations (BCB), due to the merging (or collapse)
of some invariant set (a fixed point, a periodic point of a cycle, or the boundary of any
invariant set) with the kink point at which the function changes its definition. This may
lead to a drastic change, unexpected (i.e. impossible) in the framework of smooth systems.
Such border collision bifurcations (the term was coined by Nusse and Yorke in 1992 [6],
(see also [7]) are responsible, for example, for the direct transition from a regular regime to
chaotic dynamics, or even to divergence ( [8–11]). It is not an easy task to analyze the effect
of a collision of an invariant set with a kink point, a boundary for the map definition. It is,
in effect, a global bifurcation that depends on the shape of the map on “the other side” of
the collision, and may lead to several different dynamic effects. For example, the dynamics
can suddenly change from an attracting fixed point to an attracting cycle of any period, or to
chaotic dynamics, and true chaos or strict chaos in the sense of [12], and especially robust
chaos [13], since it is persistent as a function of the parameters.

The chapter is organized as follows. The model is introduced in Section 2. In Section 3
we describe some of the model’s properties, including the degeneracy of all the flip bifurca-
tions of any cycle occurring in the model under our assumptions. In Section 4 we determine
the BCB curves associated with the periodicity regions of cycles with the symbol sequence
LkR and the related curves at which their degenerate flip bifurcation occurs. In Section 5 we
determine the BCB curves associated with the periodicity regions of cycles with the symbol
sequence LRk, which are paired with overlapping portions. Section 6 concludes the chapter.

4.2 A Simple Piecewise Linear Financial Model

In this section, we briefly recall the financial market model proposed in [5] and clarify
the economic meaning of our underlying parameter setting. We refer the reader to [5] for
more empirical evidence and theoretical justification for our behavioral model as well as
for related literature on agent-based models and general properties of asset price dynamics,
the so-called stylized facts.
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Let us start with the derivation of the model, which contains five types of agents: a
market maker, two types of chartists and two types of fundamentalists. The market maker
adjusts prices with respect to excess demand in the usual way. The log of price P for period
t +1 is

Pt+1 = Pt +a(DC,1
t +DC,2

t +DF,1
t +DF,2

t ), (4.1)

where a is a positive price adjustment parameter, DC,1
t and DC,2

t are the orders of the two
types of chartists, and DF,1

t and DF,2
t are the orders of the two types of fundamentalists,

respectively. Any positive (negative) excess demand, given by the four terms in brackets,
leads to a price increase (decrease). Without loss of generality, we assume a = 1.

Chartists believe in the persistence of bull and bear markets. The orders of type 1
chartists are formalized as

DC,1
t =

{
+c1,a(Pt −F) i f Pt −F > 0
+c1,b(Pt −F) i f Pt −F < 0

, (4.2)

where c1,a and c1,b are positive reaction parameters and F is the log of the fundamental
value. Accordingly, type 1 chartists optimistically (pessimistically) buy (sell) assets when
prices are above (below) the fundamental value. The orders placed by type 2 chartists are
captured by

DC,2
t =

{
+c2,a i f Pt −F > 0
+c2,b i f Pt −F < 0

. (4.3)

In a bull market, their buying orders amount to c2,a > 0 while in a bear market, their selling
orders total c2,b > 0.

Fundamentalists bet on a convergence between prices and fundamental values. The
orders placed by type 1 fundamentalists are expressed as

DF,1
t =

{
+ f 1,a(F−Pt) i f F−Pt > 0
+ f 1,b(F−Pt) i f F−Pt < 0

, (4.4)

while the orders placed by type 2 fundamentalists are denoted by

DF,2
t =

{
+ f 2,a i f F−Pt > 0
+ f 2,b i f F−Pt < 0

. (4.5)

The reaction parameters f 1,a, f 1,b, f 2,a and f 2,b are all positive. Note that both types of
fundamentalists submit buying (selling) orders when the market is undervalued (overval-
ued).

Apparently, one key characteristic (and novel) feature of this framework is that type 2
agents always trade fixed amounts of assets while type 1 agents increase their orders linearly
with the observed mispricing. Moreover, the agents’ trading intensity depends on whether
the market is in a bull or a bear state. Eight parameters are therefore required to describe
the behavior of the four different groups of speculators.

Nevertheless, the model’s dynamical system can conveniently be expressed using the
following definitions: sR = 1+ c1,a− f 1,b, sL = 1+ c1,b− f 1,a, mR = c2,a− f 2,b and mL =
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f 2,a− c2,b. Combining (4.1)–(4.5) and expressing the model in terms of deviations from
fundamental values, P̃t = Pt −F , yields the discontinuous one-dimensional map

P̃t+1 =
{

sRP̃t +mR i f P̃t > 0
sLP̃t +mL i f P̃t < 0

. (4.6)

Moreover, by using x′ = P̃t+1 and x = P̃t , the following is finally obtained:

x′ = T (x) =
{

fL(x) = sLx+mL i f x < 0
fR(x) = sRx+mR i f x > 0

, (4.7)

which comprises a family of piecewise linear maps.
Of course, the dynamics of (4.7) depend on the size of the four (aggregated) slope and

offset parameters. There are a number of interesting scenarios, a few of which have already
been covered in [5]. However, there is no empirical evidence on the size of these parameters
and thus it is worthwhile (and fascinating) to study more of them. The main focus of this
chapter is on sR < 0 < sL < 1. Accordingly, in the bear market the aggressiveness of type
1 fundamentalists is “slightly” higher than the aggressiveness of type 1 chartists (such that
0 < sL < 1), while in the bull market it is “much” higher (and such that sR < 0). Moreover,
mL > 0 and mR > 0 mean that type 2 fundamentalists dominate type 2 chartists in the
bear market, and vice versa in the bull market. Note also that mL > mR indicates that
the dominance of type 2 fundamentalists over type 2 chartists in the bear market may be
regarded as larger than the dominance of type 2 chartists over type 2 fundamentalists in
the bull market. Of course, mL < mR implies the opposite. As will be pointed out in more
detail in Section 3, we additionally require in the latter case that the distance between mL

and mR, and thus the “difference in dominance”, is limited, i.e. we assume that mL ≥ x∗R,
where x∗R = mR/(1− sR) is the unique fixed point of the model.

To be able to appreciate our results, let us also put these new cases into perspective with
the two (main) cases explored so far. In [5] we analyzed scenarios in which type 1 chartists
are always dominated by type 1 fundamentalists while simultaneously type 2 chartists al-
ways dominate type 2 fundamentalists (or the other way around). In this contribution, we
depart from this kind of symmetry; now, a dominance of one trader type over the other and
the level of dominance may depend on economic circumstances, that is, whether the market
is in a bear or a bull state. It is interesting to investigate how the departure from this kind
of symmetry may affect the dynamics of the model. Is such a twist sufficient to destroy the
model’s potential to generate complex endogenous price dynamics? As we will see, the op-
posite holds. Our analysis illustrates that the corresponding map still gives rise to intricate
(price) dynamics and thus that the results derived in [5] may be regarded as robust.

4.3 Some Properties of the Model

The family of maps we consider is given in (4.7). The restrictions on the parameters we
impose in this chapter are:

sR < 0 < sL < 1 , mL T mR , mL,R > 0 (4.8)
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so that we have an increasing straight line for x < 0 and a decreasing straight line for x > 0.
The shape of the map (4.7) is shown in Fig. 4.1a,b.

Figure 4.1: The two cases under analysis.

Hence, since we limit the branch on the left to a positive slope and less than one, we
have no equilibrium on the left, and the iterated points are pushed to the right, where a
negative slope exists. In case of an unstable fixed point, the generic trajectory is necessarily
forced to return (after a finite number of turns around the unstable fixed point) to the left,
where an increasing sequence will start again. Thus the dynamics are always bounded in
a natural way: they can never explode (diverge). The different regimes which can occur
under (4.7) and (4.8) are visualized in Fig. 4.1a,b from which we can conclude that:

(i) either the left branch ends above the right one, mL ≥ mR (as in Fig. 4.1a), and the
map is continuous in the case of mL = mR and discontinuous otherwise;

(ii) or the left branch ends below the right one, yet remains above the fixed point x∗R ≤
mL < mR (as in Fig. 4.1b);

(iii) or the left branch ends below the fixed point, 0 < mL < x∗R(< mR).
To keep this chapter concise, we limit our analysis to cases (i) and (ii). As we shall

see, the dynamics occurring in the continuous case are the same as those which may occur
for a decreasing jump when mL > mR. That is, the continuous case can only be considered
a particular one in class (i) given above. Hence, since our results are totally generic and
depend on all of the parameters of the model, the equations giving the border collision
bifurcation curves and the flip bifurcations curves of the cycles occurring in the continuous
case are the same as those detected for the discontinuous case, with the particular choice of
parameters mL = mR.

Due to the simplicity of the model, it is quite easy to determine the eigenvalue associated
with a certain cycle. In fact, a periodic orbit with period k = p + q with p points on the L
side and q points on the R side, necessarily has eigenvalue λ = sp

Lsq
R. Moreover, we shall see

that the cases (i) and (ii) defined above, all of the cycles that may be stable necessarily have
a negative eigenvalue, so that they can only have a bifurcation with eigenvalue λ = −1,
which in our piecewise linear map is always a degenerate flip bifurcation. A degenerate flip
bifurcation of a k-cycle is such that at the bifurcation value (when the eigenvalue is equal
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to −1), the map possesses an interval filled with cycles of period 2k (with the k−cycle
in between). This is also a border collision bifurcation (for the cycle at the boundary of
the interval), meaning that it is generally not known what occurs after a degenerate flip
bifurcation. In our model, the degenerate flip bifurcation of the fixed point is followed by a
unique stable 2k−cycle in case (i), and by chaotic dynamics in case (ii).

Let us start with the equilibrium of our model: the fixed point that comes from the
function on the right side. From fR(x∗R) = x∗R, a fixed point x∗R > 0 is given by:

x∗R =
mR

1− sR
(4.9)

which is attracting for −1 < sR < 0. A degenerate flip bifurcation occurs when sR = −1,
which means that at the bifurcation value all of the points of interval I :

I = [ fR
2(0), fR(0)] = [0,mR] (4.10)

are cycles of period 2 (except for the fixed point). After the bifurcation, only one cycle of
period 2 may or may not be left. A 2−cycle must necessarily be of symbol sequence LR.
The two periodic points can be easily found, solving for fL ◦ fR(x) = x, which gives the
periodic point on the R side, and solving for fR ◦ fL(x) = x, which gives the periodic point
on the L side, so that we obtain

x0 =
sRmL +mR

1− sLsR
< 0 , x1 =

sLmR +mL

1− sLsR
> 0 (4.11)

which, when existing, is stable for −1 < λ2 = sRsL < 0. Its existence is associated with the
condition given by the numerator of x0 (as the denominators are always positive), that is:
sR <−mR

mL
and the border collision bifurcation leading to its existence is sR =−mR

mL
yielding

x0 = 0, while the second possible border collision bifurcation associated with x1 = 0 can
never occur (since under our assumptions on the parameters we always have (sLmR +mL) >
0.

We can therefore immediately see that in the continuous case, when mL = mR, the BCB
of the 2−cycle reduces to sR = −1 and thus corresponds to the degenerate flip bifurcation
of fixed point x∗R. While in the discontinuous case, when mL > mR, the BCB of the 2−cycle
is associated with a value −1 < sR < 0 to which an attracting fixed point corresponds. This
implies a region of coexistence of the stable fixed point with the stable 2−cycle (born by
border collision bifurcation). Thus, keeping the values of parameters mL and mR fixed,
a 2−cycle will be left at the degenerate flip bifurcation of the fixed point, attracting if
−1 < λ2 = sRsL < 0 or repelling if sRsL < −1. However, in our assumptions (0 < sL < 1)
for mL > mR only a stable 2−cycle can occur.
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Figure 4.2: Two dimensional (sR,sL) bifurcation diagram in (a) and related BCB curves in
(b), at mL = 3 and mR = 2. The enlarged portion for −1.5 < sR < 0 is shown in (c) where
the coexistence region occurs for −1 < sR < −mR/mL = 0.6. In (d) the shape of the map
and of its second iterate are presented.

In Fig. 4.2a we represent the generic shape of the two-dimensional bifurcation diagram
in the slopes (sR,sL) for mL ≥ mR and an enlarged portion in Fig. 4.2c shows the region of
coexistence of the stable fixed point with the stable 2−cycle. The shape of the map T and of
its second iterate T 2 in this region is shown in Fig. 4.2d for mL = 3 > mR = 2, sR =−0.95
(so that the fixed point is stable), and sL = 0.7. When these two periodic orbits coexist, the
basin of attraction of the fixed point x∗R is bounded by the discontinuity point and its rank-1
preimage on the right side, i.e. B(x∗R) =]0,−mR/sR[, while the other real initial conditions
converge to the 2−cycle. Note also that defining T (0) = mL this point converges to the
2−cycle while defining T (0) = mR this point converges to the stable fixed point.

On the other hand in the discontinuous case with mL < mR, the BCB of the 2−cycle is
associated with a value sR =−mR

mL
<−1, so that when the flip bifurcation of the fixed point

occurs (at sR =−1), a 2−cycle cannot exist and, the behavior is complex, as we can argue
from the bifurcation diagram in Fig. 4.3.

As stated above, our results are generally valid regardless of the value of the parameters,
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under the restriction given in (4.8). In order to simplify the exposition, our figures are
related to a fixed value mR = 2, which can be any positive value, and mL = 3, mL = 1,
which can be substituted with any value mL ≥ mR, x∗R ≤ mL < mR, respectively. The same
qualitative figures and bifurcations are obtained, as described in the following sections,
where we shall analyze what kind of dynamics occur in the model when fixed point x∗R is
unstable, and in particular the structure of chaotic trajectories.

Figure 4.3: Two-dimensional orbit diagram at mL = 1 and mR = 2.

Fig. 4.3 represents the generic shape of the two-dimensional bifurcation diagram in
slopes (sR,sL) in case (ii), when x∗R ≤ mL < mR. We can see that there are two typi-
cal scenarios. An increasing sequence of periodicity regions of k−cycles for any integer
k = 1,2,3, . . ., described in Section 4 (of type LkR, with period increment by 1). In the
enlargement between the periodicity region of the fixed point on the R side, x∗R, and the pe-
riodicity region of the 2−cycle, there is an infinite sequence of periodicity regions of stable
2p−cycles, of even periods only, which we call period increment, with increment 2 (of type
LRk, with period increment by 2), as described in Section 5.

In case (i), when mL ≥ mR, as shown in Fig. 4.2a, the region of (coexistence) of the
stable fixed point leads directly to a stable 2−cycle, and for low values of the slope sR only
stable cycles of type LkR, with period increment 1, exist.

The white regions in Fig. 4.2a and Fig. 4.3a represent parameter combinations at which
chaotic dynamics occur, thus in both cases wide parameter regions with chaos exist. The
chaotic regime in these kinds of maps is associated with cyclical chaotic intervals, and
chaos is called robust (see [13]) because it is persistent with respect to parameter variations.
Although the different kinds of cyclical chaotic intervals occurring in our model are not
investigated in this chapter, we shall note a peculiarity: the underlying structure associated
with the unstable cycles of period LkR also influences the chaotic trajectories. We provide
some typical numerical examples in the following sections.
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4.4 Maximal Cycles LkR

In this Section we describe the BCB curves involved in the period increment scenario where
the period increases by one. Let us call x0 the point of the cycle immediately to the left of
the discontinuity point x = 0. Then the periodic point x0 of the orbit of symbol sequence
LkR can be obtained by looking for the fixed point of the function fL

k−1 ◦ fR ◦ fL(x), that
is, by solving for fL

k−1 ◦ fR ◦ fL(x) = x, where the 2−cycle is obtained again for k = 1. We
have:

fL
k−1 ◦ fR ◦ fL(x) = sk

LsRx+ sk−1
L (sRmL +mR)+mL

1− sk−1
L

1− sL

so that we get:

x0 =
sk−1

L

1− sk
LsR

[(sRmL +mR)+mLφ
L
k−1] , φ

L
k =

1− sk
L

(1− sL)sk
L

(4.12)

and setting x0 = 0, we obtain the BCB curve of equation:

BCBLkR : sR =−φ
L
k−1−

mR

mL
(4.13)

which bounds the existence region of these cycles of period (k+1), given by sR <−φL
k−1−

mR
mL

. Moreover, it is a complete existent region. It cannot be followed by a second BCB
curve leading to the disappearance of the cycle because, as we have seen for the cycle of
period 2, we always have x1 = fL(x0) > 0 for any such cycle, so that it can never merge
with the boundary x = 0. It follows that it can only be attracting or repelling before or
after the degenerate flip bifurcation occurs, when its eigenvalue λ(LkR) = sk

LsR bifurcates.
Thus the equation of the flip bifurcation curve of an existent (k + 1)−cycle is given by
λ(LkR) = sk

LsR =−1, that is:
sR =−1/sk

L (4.14)

For increasing values of k, up to 6, the BCB curves given in (4.13) are drawn in black in
Fig. 4.2b, while the flip bifurcation curves given in (4.14) are drawn in red.

Figure 4.4: Bifurcation diagrams.
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Figs. 4a and 5a show a one-dimensional bifurcation diagram at sL = 0.6 and sL = 0.4,
respectively, in case (i), while Figs. 4b and 5b show the analogous situation for case (ii).
As we can see, the degenerate flip bifurcations occurring in Fig. 4.5 are always followed by
cyclical chaotic intervals, which become a one-piece chaotic interval (after a short interval
in the parameter).

Figure 4.5: Bifurcation diagrams.

The kind of chaotic dynamics that may occur differ significantly from the usual chaotic
trajectories, where we can have an unpredictable number of iterations on both sides. Here,
depending on the slopes of the functions, we have always a limited number of points in each
region, so that the chaotic structure is in some sense predictable, depending on the slopes.
For example, we can always have only one point on the L side for small slopes of sR in
absolute value (Fig. 4.6a), or we can always have only one point on the R side for very high
slopes of sR (Fig. 4.6c), and intermediate situations otherwise (as in Fig. 4.6b).

We have described the equations of the BCB leading to the appearance of cycles with
symbol sequence LkR and have seen that a second BCB curve does not exist. This is the
only possible dynamic behavior when mL ≥ mR, as when the fixed point is unstable, the
fate of point fR(0) = mR is the same as that of fL(0) = mL ≥ mR. Hence we notice in such
regimes that the definition of the map in the discontinuity point, T (0) = mR or T (0) = mL,
is irrelevant, as both cases lead to the same attracting set, i.e. we get the same kind of
dynamics.



Intricate Asset Price Dynamics and One-Dimensional Discontinuous Maps 53

Figure 4.6: Price versus time.

This kind of dynamic behavior can also exist when x∗R ≤mL < mR for parameters in the
left region with respect to the 2−cycle, i.e. for sR ≤−mR

mL
. The price versus time trajectories

in the chaotic regime are also similar, depending on the slopes. An example is given in
Fig. 4.7 for mL = 1 < mR. We can always only have one point on the L side for small slopes
of sR in absolute value (Fig. 4.7a), or we can only always have one point on the R side for
very high slopes of sR (Fig. 4.7c), and intermediate situations otherwise (as in Fig. 4.7b).

Figure 4.7: Price versus time.

While for x∗R ≤mL < mR and sR >−mR
mL

as shown in the enlarged part of Fig. 4.3, we can
have a different dynamic behavior, with periodicity regions that overlap, giving well-known
regions with two coexisting attracting cycles, and the two different definitions of the map
in the discontinuity point converge to two different cycles (with a period which differs by
2), as proved in the next section.

4.5 Maximal Cycles LRk

As stated above, the iterations may clearly behave differently when x∗R ≤ mL < mR, as in
such a case, also when the fixed point is unstable, the two points fL(0) = mL and fR(0) = mR

may have a different dynamic behavior. This is not a new phenomenon. Indeed, when
x∗R ≤ mL < mR, we can have not only cycles of the kind LkR (when sR ≤ −mR

mL
), but also

cycles with symbol sequence LRk (when sR > −mR
mL

). The reason for this is immediately
clear when we look at the graph in Fig. 4.1a: point fL(0) = mL may be much less than
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mR and close to the unstable fixed point x∗R so that several applications of function g(x) on
the R side are necessary before reaching the L side. Moreover, as we shall see below, the
coexistence of two stable cycles of symbol sequence LRk and LRk+2 is allowed in suitable
regions for any odd k≥ 1. To find the conditions leading to the existence of these new kinds
of cycles, let us call x0 the point of the cycle which is immediately to the left of discontinuity
point x = 0. Then the periodic point x0 of the orbit of symbol sequence LRk can be obtained
by looking for the fixed point of the function f k

R ◦ fL(x), that is, solving for f k
R ◦ fL(x) = x.

We have:

f k
R ◦ fL(x) = sk

R(sLx+mL)+mR
1− sk

R
1− sR

so that we obtain:

x0 =
sk

R

1− sk
RsL

[mL +mRφ
R
k ] , φ

R
k =

1− sk
R

(1− sR)sk
R

(4.15)

and setting x0 = 0 we obtain the BCB curve of equation:

BCBl
LRk : mL +mRφ

R
k = 0. (4.16)

We denote this by BCBl
LRk because at the border collision periodic point x0 of the cycle

collides with discontinuity point x = 0 from the left. In the parameter plane (sR,sL) of
Fig. 4.8, such curves are vertical lines of equation sR = const., where the constant value is
determined from the equations in (4.16).

Figure 4.8: Two-dimensional orbit diagram.

We also notice that such a BCB curve BCBl
LRk leads to a cycle with periodic point

x1 = fL(x0) > x∗R. In fact by assumption, we have fL(0) = mL ≥ x∗R at the bifurcation value
and thus the existent cycle starts with periodic point x1 = fL(x0) > x∗R. This implies that
periodic point x1 may be mapped on the L side after an even number of applications of
function g(x), so that such cycles only exist when k is an odd number, and period (k +1) is
even. Moreover, it is obvious that such cycles only exist as long as another border collision
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occurs, due to periodic point xk−1 (which implies k > 1) merging with discontinuity point
x = 0. Equivalently, the cycle exists as long as periodic point xk merges with the maximum
value fR(0) = mR. That is to say, xk−1 = 0 iff xk = mR iff x0 = fR(mR). Thus we have the
equation of the second BCB curve, obtained by equation x0 = mR(1+ sR), that is:

sk
R

1− sk
RsL

[mL +mRφ
R
k ] = mR(1+ sR) (4.17)

which leads to:

BCBr
LRk : sL =

1
sk

R
− mL

mR(1+ sR)
−

φR
k

(1+ sR)
. (4.18)

We call this BCBr
LRk because at the border collision periodic point xk−1 of the cycle

collides with discontinuity point x = 0 from the right. A few BCB curves on both sides,
from (4.16) and (4.18), are shown in black in Fig. 4.8 (the BCBl

LRk are the vertical lines).
We have noticed above that such bifurcation curves BCBr

LRk only exist for k > 1, since
for k = 1 we have the 2−cycle, whose periodic point x1 can only collide the fixed point x∗R,
as already mentioned in Section 3.

We can see from Fig. 4.8a that the cycles determined here may be stable or unstable.
Stability is associated with the related eigenvalue. We know this must be negative, because
we have an odd number of periodic points in the R region, so that λ(LRk) = sLsk

R < 0, and
its flip bifurcation occurs at λ(LRk) = sLsk

R =−1, that is:

sL =−1/sk
R. (4.19)

The related flip bifurcation curves are shown in red in Fig. 4.8.
Fig. 4.8 also emphasizes that the numerically calculated flip bifurcation curves always

intersect at the same point of two BCB curves. That is: each curve BCBl
LRk and BCBr

LRk+4

intersects exactly at a point belonging to the flip bifurcation curve of cycle LRk+2, which
proves that two stable cycles at most can coexist. This property can be easily verified from
the related equation. In fact, by using the relation

φ
R
k+1 = φ

R
k +

1
sk+1

R

after some algebra it follows that φR
k = −mL

mR
from (4.16) and sk

R = − 1
sLs2

R
from (4.19) for

cycle LRk+2 identically satisfy the equation of BCBr
LRk+4 .

The relevant result in this regime is that a stable cycle may not be the only existent
cycle, i.e. may be not globally attracting, as we have seen that we can have a stable cycle
and also several unstable cycles placed on the basin boundary of the stable one. Moreover,
in particular regions we have the coexistence of two stable cycles.

4.6 Conclusion

In this chapter we considered a piecewise linear discontinuous map with one increasing
branch on the L side and a decreasing branch on the R side, both having positive offsets,
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and representing interactions between heterogeneous traders in a financial market. We de-
termined the border collision bifurcation curves leading to the existence of stable cycles in
two qualitatively different regimes for the values of the jump. In case (i), for mL ≥mR, only
stable cycles of symbolic sequence LkR can exist, whose BCB curves are given in Section
4. In case (ii), for x∗R ≤mL < mR there are all the stable cycles LRk for sR ≤−mR

mL
. In region

−mR
mL

< sR <−1 there are overlapping periodicity regions for stable cycles of even periods
only, of type LRk, whose BCB curves were determined in Section 5. Some regions have
still not been explored, and several parameter constellations for the models considered here
have been left for further studies.

Finally, let us reflect the dynamic properties of our model from an economic point of
view. As is well known, actual financial markets are quite volatile, occasionally displaying
severe bubbles and crashes. Our model obviously has the potential to replicate such fea-
tures, at least in a qualitative manner. Besides fixed point dynamics, we also find periodic
or chaotic motion (and some intriguing examples are given in Figures 6 and 7 with strongly
fluctuating prices and erratic switches between bull and bear markets episodes). Moreover,
there may even be coexisting attractors, and the types of bifurcations we observe imply that
even a tiny shift in one of the behavioral parameters may significantly affect the variability
of prices and thus the efficiency of financial markets. Given the threat originating from
actual financial markets for the real economy, it is apparently very important to understand
the main drivers of such dynamics. Our study ultimately illustrates that even quite simple
behavioral models in which market participants follow well-established trading patterns can
be useful to improve our basic understanding of what is going on in these systems.

It goes without saying that more work is required in this area. Here we studied a situa-
tion where our discontinuous map consists of two linear pieces. The next natural step would
be to extend the analysis and explore models which contain three or more linear pieces.
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