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Abstract

In this paper we describe some sequences of global bifurcations of attract-

ing and repelling closed invariant curves of two-dimensional maps that have a

fixed point which may lose stability both via a supercritical Neimark bifurca-

tion and a supercritical flip bifurcation. These bifurcations, characterized by

the creation of heteroclinic and homoclinic connections or homoclinic tangles,

are first described through qualitative phase diagrams and then by numerical

examples.

1 Introduction

The local and global bifurcations associated with closed invariant curves have been
one of the main interesting subjects of the last decades in the field of Dynamical
Systems. Clearly the local bifurcations are mainly those related with the supercrit-
ical Neimark bifurcation of fixed points in two-dimensional maps, and the related
structure of the bifurcation diagram, in a two-dimensional parameter plane, given by
the so called “Arnold’s tongues” associated with a rational rotation number p/q (see
[11], [10], [16], [18], [6], [12]). Other properties of the Arnold tongues have been in-
vestigated by several authors, see e.g. [4], [7], [8], [5], [13], [14], [17], to cite a few. In
particular, some global bifurcations associated with the appearance/disappearance
of closed invariant curves, which may be related with homoclinic tangles of sad-
dles, has been recently emphasized in [1], [2], [3]. In this paper we focus on some
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possible mechanisms, which are associated with saddle-focus cycles and global bi-
furcations related to homoclinic tangles which cause the appearance/disappearance
or modifications of closed invariant curves, attracting or repelling.

It is well known that a saddle and an attracting cycle may give rise to a closed
attracting curve, which is called an heteroclinic connection, moreover the attracting
cycle may be a node or a focus (giving rise to a closed curve homeomorphic to
a circle, or not homeomorphic, respectively). Similar closed invariant curves, but
repelling, may be associated with a saddle and a repelling cycle, node or focus. In
the first case the attracting closed curve is made up by the unstable set of the saddle,
while in the second case the repelling closed curve is made up by the stable set of
the saddle.

The bifurcation mechanisms described in this paper may be associated with a
saddle-connection, also called homoclinic loop, defined as a closed invariant curve
formed by the merging of a branch of the stable set of a periodic point of a saddle
cycle with the unstable branch of another periodic point of the same saddle, thus
forming a closed connection among the periodic points of the saddle. This is a
structurally unstable situation, which causes a bifurcation between two qualitatively
different dynamic behaviors. This kind of bifurcation cannot be predicted by a local
investigation, so that it can be classified as a global bifurcation. In particular, the
unstable branch of the saddle involved in the bifurcation exhibits different dynamic
behaviors before and after the bifurcation, because it reaches two different attracting
sets. A similar property holds for the stable branch of the saddle involved in the
bifurcation: before and after the bifurcation the preimages of the local stable set
come from different invariant repelling sets. Such homoclinic loops of saddle are
known to occur in the resonant cases of the Neimark bifurcation (see [12], [9]),
and recently they have been observed in some families of maps in relation with a
subcritical Neimark bifurcation (see [2]). However, we shall see that its occurrence
is quite common also far from the Neimark bifurcation, and is related with several
bifurcations of closed invariant curves. As we shall see in the examples shown in this
paper, when dealing with maps this structurally unstable situation is often replaced
by the following sequence of bifurcations: first, a cyclical heteroclinic tangency (or
homoclinic tangent bifurcation of non simple type), followed by a parameter range
of transverse crossing between the stable and unstable set of the saddle cycle, that
gives rise to cyclical heteroclinic points (or cyclical homoclinic connections), followed
by a second cyclical heteroclinic or homoclinic tangency. In other words, the simple
homoclinic loop of a saddle, quite common in continuous flows, is often replaced, in
maps, by a range of parameters that give rise to an homoclinic tangle of the saddle
(and related complex dynamics).

The paper is organized as follows. In Sec.2 we give a qualitative description of
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the bifurcations which lead to the appearance of closed invariant curves, attracting
and repelling, and their further qualitative changes. In Sec.3 these sequences of bi-
furcations are shown through numerical explorations by using a family of symmetric
maps.

2 Qualitative description of the bifurcations

Let us consider a two-dimensional map T with a fixed point O which can lose stability
via a supercritical Neimark bifurcation, as well as via a supercritical flip bifurcation.
In other words, we assume that the local stability analysis of O has a stability region
in a two-dimensional parameter plane, which is bounded by a supercritical Neimark
bifurcation curve, say N, and a supercritical flip bifurcation curve, say F.

If the parameters are outside the stability region and close to the flip bifurcation
curve F, then the fixed point O is a saddle and an attracting cycle of period 2 ex-
ists, say with points Q1 and Q2. Instead, if the parameters are beyond the Neimark
bifurcation curve N, then the fixed point O is a repelling focus and a closed invari-
ant attracting curve exists around it. Thus, if we vary the parameters following a
bifurcation path connecting the two regions described above, outside the stability
region, the dynamic scenario must change from the former situation to the latter
one, and some global bifurcation must occur leading to the creation of the closed
invariant curve.

Before starting the qualitative description of some global bifurcations, let us
remind that the dynamics of the restriction of a map to a closed invariant curve
(attracting or repelling) is either quasiperiodic (i.e. the limit set of any trajectory on
the closed invariant curve is the curve itself), or periodic (i.e. the curve is formed by
a saddle-node or saddle-focus connection, as explained in Sec.1). However, generally
the dynamics on the closed curve is periodic, but of very high period, so that it is
numerically indistinguishable from a quasiperiodic one.

The appearance of a closed invariant curve far from a Neimark bifurcation is
necessarily something which is related to some global bifurcation. Often a pair of
closed invariant curves appear simultaneously, one attracting and one repelling, and
this can be considered as a kind of “saddle-node” bifurcation for closed invariant
curves (see e.g. [12]). However we remark that the true mechanism is probably
related with some pair of cycles, born by saddle-node bifurcation, followed by a
saddle-connection, i.e. an homoclinic connection. This is qualitatively illustrated
in Fig.1 by using cycles of period 4. Fig.1a shows a pair of cycles, and the stable
manifold of the saddle is not forming a closed invariant curve, however the unstable
branch issuing from one periodic point of the saddle is approaching the stable branch
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Figure 1: Qualitative picture of the mechanism causing the appearance of two in-
variant closed curves, one attracting and one repelling

issuing from another periodic point of the same saddle, and so on cyclically.

The bifurcation situation is shown in Fig.1b: Two branches merge cyclically and
a closed invariant curve is formed connecting only the points of the saddle cycle.
This structurally unstable situation gives rise to the stable one, shown in Fig.1c, in
which two closed invariant curves exist: one repelling (denoted Γ̃) and one attracting
(denoted Γ). The attracting one is formed by the saddle-node connection, that is, it
is made up by the unstable set of the saddle, and the closed invariant curve includes
the two cycles (a saddle and a node). Clearly the qualitative description of the
bifurcation shown in Fig.1 may work also with an attracting focus instead of an
attracting node. This is shown in Fig.2. Fig.2a illustrates a pair of 4-cycles, one
saddle and one attracting focus, which are not forming a closed connection. In the
region inside we have an attractor, which is here considered a closed invariant curve.
In fact, the sequence of bifurcations described in Figs.2-3 may be associated with
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Figure 2: Qualitative picture of the mechanism transforming an attracting closed
curve Γa into a saddle-focus connection. The bifurcation is associated with a pair of
cycles located “outside” the closed curve.

the transition of a pair of cycles from “outside” a closed invariant curve (Fig.2a) to
“inside” (Fig.3c). In Fig.2a the pair of cycles, saddle and attracting focus, exists
outside an attracting closed curve, denoted Γa. One branch (denoted ∪α2,i) of the
unstable set of the saddle tends to the stable focus cycle, while the other branch of
the saddle (denoted ∪α1,i) goes towards the attracting closed curve. As the closed
curve increases in size, it may merge with the unstable branches of the saddle and
the stable ones. That is, at the bifurcation, the unstable branches ∪α1,i and the
stable ones ∪ω1,i, i = 1, ...4, may form a homoclinic loop, as shown in Fig.2b, thus
creating a closed connection, while the invariant curve Γa no longer exists. After
the bifurcation, a saddle-focus connection between the 4-cycles exists (Fig.2c), thus
an attracting closed invariant curve still exists, given by the heteroclinic connection
formed by the unstable set of the saddle winding around the attracting focus. The
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bifurcation situation described in Fig.2b, which is the one frequently observed in
flows, is rarely observed in discrete models. In fact, in maps Fig.2b is more frequently
substituted by a homoclinic tangle, as qualitatively described in Figs.2d,e,f. That is,
a first tangency occurs between the unstable branches ∪α1,i and the stable ones ∪ω1,i

(Fig.2d), followed by their transverse crossing (Fig.2e) and by a second tangency
between the same manifolds ∪α1,i and ∪ω1,i (Fig.2f). Clearly, the homoclinic tangle
is associated with complex dynamics, as we know from the homoclinic theorem for
saddles (see e.g. [10], [16], [18], [6], [12]), in this situation a chaotic repellor exists,
made up of infinitely many (countable) repelling cycles, and uncountable aperiodic
trajectories.

The situation reached in Fig.2c is the starting point of a second bifurcation,
as shown in Fig.3a. The outer branches of the saddle, ∪α2,i and ∪ω2,i, approach
each other and they ultimately merge, causing a bifurcation of the saddle-focus
connection, as qualitatively shown in Fig.3b. After the bifurcation a closed invariant
curve (denoted Γb) surrounds the pair of cycles, and the saddle-focus connection
no longer exists (Fig.3c). As before, Fig.3b is more frequently substituted by an
homoclinic tangle, as qualitatively shown in Figs.3d,e,f: A first tangency occurs
between the unstable branches ∪α2,i and the stable ones ∪ω2,i (Fig.3d), followed by
their transverse crossing (Fig.3e) and a second tangency between the same manifolds
∪α2,i and ∪ω2,i (Fig.3f) leads to the disappearance of all the homoclinic points.
In the example described in the next section we shall see that the sequences of
bifurcations described above may occur several times.

3 A family of symmetric maps

The family of two-dimensional maps that we consider is the one already introduced
in [3], but at a different parameter regime. We consider

T :

{
x′ = ax + y
y′ = bx + cy + d arctan y

(1)

with a < 0 and d < 0. The map (1) has a fixed point in the origin O whose local
stability is obtained from the analysis of the eigenvalues of the Jacobian matrix
evaluated in O :

DT (O) =

[
a 1
b c + d

]
. (2)

Let P(z) = z2 − Trz + Det be the characteristic polynomial, where Tr and Det
denote the trace and the determinant of DT (O), respectively. Then the stability
region of O is determined by the following conditions: P(1) = 1 − Tr + Det > 0,
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Figure 3: Qualitative picture of the mechanism transforming a saddle-focus connec-
tion into an attracting closed curve Γb. At the end, the pair of cycle involved in the
bifurcation is “inside” the closed curve

P(−1) = 1 + Tr + Det > 0, Det < 1 (see e.g. [11], p. 159, or [15], p.52], or
any standard book on discrete dynamical systems). This region is represented by
the grey-shaded triangle in Fig.4a. Simple computations show that the pitchfork
bifurcation curve P, defined by P(1) = 0, has equation b = (1 − a)(1 − c − d), i.e.
a straight line in the (c, b) parameter plane, assuming a and d as fixed values, the
line P in Fig.4a. The flip bifurcation curve, defined by P(−1) = 0, has equation
b = (1 + a)(1 + c + d), again a straight line in the (c, b) parameter plane, denoted
by F in Fig.4a. The Neimark bifurcation curve, defined by Det = 1, corresponds to
b = a(c + d) − 1, another straight line in the (c, b) parameter plane, denoted by N.

The map (1) is symmetric with respect to the origin, because T (−x,−y) =
−T (x, y). This implies that any invariant set of T is either symmetric with respect
to O, or it admits a symmetric invariant set. In particular, this holds for the cycles
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of T . Thus any cycle of T of odd period necessarily coexists with a symmetric one
having the same characteristics. For the same reason, all the basins of attraction
are either symmetric with respect to O. We also notice that the map T can be

(b)

(c)
(d)

(a)

0.2   0.76   0   4a b c d

0.2   0.762   0   4a b c d0.2   0.762   0   4a b c d
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Figure 4: (a) Stability region of the fixed point O. (b) After the flip bifurcation
an attracting cycle of period 2 exists, as well as two attracting cycles of period 3,
appeared via saddle-node bifurcation together with two saddle cycles. The basins
of attraction of the attracting 3-cycles are represented in different grey tonalities.
(c) At a lower value of b, two attracting cycles of period 5 appear via saddle-node
bifurcation. (d) An enlargement of the previous figure shows that the basin boundaries
of the two cycles of period 5 are winding very closely.

invertible or noninvertible, according to the set of parameters considered. However,
the parameter values that we shall use in the examples of the following section
always belong to the region in which T is uniquely invertible.
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3.1 Appearance of cycles and two closed invariant curves

In the following we consider some sequences of numerical simulations obtained with
the fixed values a = −0.2, c = 0 and d = −4, while we gradually decrease the
parameter b, along the bifurcation path in Fig.4a. Let us start with a value of the
parameter b outside the stability region, not far from the flip bifurcation curve F,
so that the fixed point O is a saddle, and the 2-cycle Q1 − Q2 is stable, being the
only attractor at such a value of b.

(a) (b)

(c) (d)

0.2   0.7624525   0   4a b c d 0.2   0.762485   0   4a b c d
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Figure 5: (a)Two invariant closed curves have appeared: A repelling closed invariant

curve Γ̃ is bounding, on one side, the basin of attraction of the stable 2-cycle, while,
on the other side, it is the boundary of the basin of a new attractor, a closed invariant
curve Γ. (b) An enlargement at a different value of b shows that the basins of
attraction of the two 5-cycles are approaching each other and the attracting closed
curve, now denoted by Γa. (c) After the global bifurcation qualitatively described in
Fig.2, the curve Γa disappears. (d) An enlargement of the previous figure.
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As the value of b is decreased, a pair of cycles of period 3 appears by saddle-node
bifurcation, and being of odd period also the symmetric ones exists. The stable node
3-cycles then turn into foci, and at b = −0.76 the basins of the three attractors in
the phase space are shown in Fig.4b. As the value of b is further decreased, another
pair of cycles of period 5 appears via saddle-node bifurcation, and being of odd
period also the symmetric ones exists. The stable node 5-cycles then turn into foci,
and at b = −0.762 the basins of the five coexisting attractors in the phase space
are shown in Fig.4c. The enlargement in Fig.4d shows that the basin boundaries
of the 5-cycles are winding very closely. A bifurcation is going to occur. In fact,
at a lower value of b we can see, in the enlargement in Fig.5a, that a pair of closed
invariant curves have appeared: A repelling closed invariant curve Γ̃ is bounding,
on one side, the basin of attraction of the stable 2-cycle, while, on the other side, it
is the boundary of the basin of a new attractor, a closed invariant curve Γ. Thus, in
this situation there are several coexisting attractors: a 2-cycle, a pair of 3-cycles, a
pair of 5-cycles and Γ.

3.2 Transitions between two closed invariant curves

The enlargement in Fig.5b shows that the basins of the 5-cycles are approaching each
other, as well as the closed invariant curve, now denoted Γa. The 5-cycles existing
outside this closed curve Γa in Fig.5b are going to move inside, as shown in Fig.6c,d,
following the sequence of bifurcations described in Figs.2,3. The first bifurcation,
due to the merging of the inner branches of the saddles of period 5, causes the
disappearance of the closed curve Γa, leaving a new closed curve connecting the 5-
cycles. That is, the two attracting cycles of period 5 together with the two saddles of
period 5, form an attracting closed invariant curve: a saddle-focus connection (Fig.5c
and its enlargement in Fig.5d). As b is further decreased the second bifurcation
(qualitatively shown in Fig.3) occurs. In the enlargement of Fig.6a we can see
that the outer branches of the 5-saddles are approaching each other and Figs.6b,c,
after the bifurcation, show that a closed attracting curve Γb exists surrounding the
5-cycles and the saddle-focus connection no longer exists.

It is quite difficult to see, in the above sequence of bifurcations, whether the
bifurcations in Fig.2b and Fig.3b occur as saddle-connections or with the homoclinic
tangles. However, as b is further decreased, another sequence of bifurcations similar
to the previous one occurs, causing the transitions of the cycles of period 3 from
outside a closed curve Γa to inside a closed curve Γb, and now the homoclinic tangles
are clearly visible. This example is shown in Fig.7. The closed attracting curve Γa

approaches the saddle cycles of period 3, as shown in Fig.7a, and the first bifurcation
that we have qualitatively described in Fig.2 is going to occur. The merging of Γa
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Figure 6: (a) An enlargement of the basins of the two cycles of period 5 shows that
a bifurcation is coming. (b) After the bifurcation qualitatively described in Fig.3, the
saddle-focus connection no longer exists and an attracting closed curve Γb exists. (c)
An enlargement of the previous figure shows that the cycle of period 5 are “inside” Γb.

with the inner branches of the saddle 3-cycles, via an homoclinic tangle, causes the
disappearance of the attracting set Γa, leaving a saddle-focus connection between
the 3-cycles. This is the situation in Fig.7d, and the homoclinic tangle occurring
during the bifurcation is shown in Fig.7b and its enlargement in Fig.7c.

On further decreasing the parameter b the outer branches of the 3-cycles saddle
approach each other, as shown in Fig.7e, and the second bifurcation qualitatively
described in Fig.3 (via homoclinic tangle) is going to occur, which will cause the
disappearance of the saddle-focus connection. The situation after the bifurcation is
shown in Fig.7f: A wider closed attracting curve exists, Γb, surrounding the cycles
of period 3, and a pair of cycles of period 10 (a saddle and a stable focus) already
exists outside, and as b decreases the bifurcation mechanisms start again.
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Figure 7: (a) The attracting closed curve Γa approaches the saddle cycles of period 3.
(b) The intermingled portion of the basin denotes the existence of a chaotic repellor,
due to a homoclinic tangle. (c) An enlargement of the previous figure shows the
oscillations of the stable set of the saddle cycles. (d) At the end of the homoclinic
tangle the closed curve Γa disappears, leaving a saddle-focus connection between
the cycles of period 3. (e) The outer branches of the stable sets of the saddle cycles
approach each other and a new bifurcation is going to occur. (f) After the bifurcation
an attracting closed curve Γb surrounds the cycles of period 3. A pair of cycles of
period 10 (saddle and node) already exists outside and as b decreases the bifurcation
mechanisms starts again.
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