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In this paper we describe some sequences of global bifurcations involving attracting and repelling
closed invariant curves of two-dimensional maps that have a fixed point which may lose stability
both via a supercritical Neimark bifurcation and a supercritical pitchfork or flip bifurcation.
These bifurcations, characterized by the creation of heteroclinic and homoclinic connections or
homoclinic tangles, are first described through qualitative phase diagrams and then by several
numerical examples. Similar bifurcation phenomena can also be observed when the parameters
in a two-dimensional parameter plane cross through many overlapping Arnold’s tongues.
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1. Introduction

Several studies have been devoted to the super-
critical Neimark—Hopf bifurcation of fixed points in
two-dimensional maps. In particular, a typical and
well-known structure of the bifurcation diagram,
in a two-dimensional parameter plane, is given by
the so-called “Arnold’s tongues” issuing from a
Neimark—Hopf bifurcation curve. Such tongues do

*Author for correspondence.

not overlap as far as the parameters are close to
the bifurcation curve, while they may overlap when
the parameters are taken far enough from the bifur-
cation curve, denoting an increase of nonlinearity.
Inside a tongue, associated with a rotation num-
ber p/q, a periodic orbit of period ¢ exists such
that the iterations visit all the periodic points every
p turns around the fixed point (on this we refer
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to some classical texts, e.g. [Gumowski & Mira,
1980; Guckenheimer & Holmes, 1985; Mira, 1987;
Wiggins, 1988; Bai-Lin, 1989; Kuznetsov, 1998].
Other properties of the Arnold tongues have been
investigated by several authors, see e.g. [Aaronson
et al., 1982; Frouzakis et al., 1991, 1997; Maistrenko
et al., 1995; Maistrenko et al., 2003; Sushko et al.,
2003], to cite a few. In particular, it is well known
that the boundaries of a p/q tongue are saddle-
node bifurcation curves of a cycle of period ¢, and
inside the tongue we generally have an attracting
closed invariant set formed by a saddle-node con-
nection, that is, the unstable set of the saddle g¢-
cycle reaches the node g-cycle thus forming a closed
attracting curve. This is called an heteroclinic loop.
Similar closed invariant curves, but repelling, are
associated with a subcritical Neimark bifurcation.
In this case, the cycles involved are a saddle and
a repelling node, and the repelling closed invariant
curve is made up of the stable set of the saddle cycle,
issuing from the repelling node, so that it is again
an heteroclinic loop. It is worth noting that closed
invariant curves may also be associated with sad-
dle and focus cycles. The difference with respect to
the saddle-node connection only concerns the topol-
ogy of the closed invariant curve. In fact, a closed
invariant curve formed by a saddle-node connection
(unstable set of the saddle if attracting, stable set
of the saddle if repelling) is homeomorphic to a cir-
cle, whereas a closed invariant curve made up of a
saddle-focus connection (unstable set of the saddle
if attracting, stable set of the saddle if repelling) is
not homeomorphic to a circle (due to the infinite
spiraling of the manifolds around the focus).

In a discrete dynamical system, i.e. an iterated
map, the global bifurcations involving closed invari-
ant curves have been less investigated, and sev-
eral open problems are still present, as remarked
in [Kuznetsov, 1998]. The saddle-node bifurcations
of closed invariant curves (given by the merging
of two closed invariant curves, one attracting and
one repelling, followed by their disappearance, or
their creation if the movement of the parameters
is reversed), quite common in continuous flows,
are instead exceptions when we deal with two-
dimensional maps.

The main purpose of this paper is to show some
mechanisms associated with the appearance and
disappearance of closed invariant curves (attract-
ing or repelling). We shall see that a mechanism,
that may be considered as typical in some classes of
maps, is associated with a saddle-connection, also

called homoclinic loop defined as a closed invari-
ant curve formed by the merging of a branch of
stable set of a periodic point of a saddle cycle
with the unstable branch of another periodic point
of the same saddle, thus forming a closed connec-
tion among the periodic points of the saddle. This
is a structurally unstable situation, which causes
a bifurcation between two qualitatively different
dynamic behaviors. As this kind of bifurcation can-
not be predicted by a local investigation, it can
be classified as a global bifurcation. In particu-
lar, the unstable branch of the saddle involved in
the bifurcation exhibits different dynamic behav-
iors before and after the bifurcation, because it
reaches a different attracting set. A similar property
holds for the stable branch of the saddle involved
in the bifurcation: before and after the bifurcation
the preimages of the local stable set come from
different invariant repelling sets. Such homoclinic
loops of saddle are known to occur in the resonant
cases of the Neimark-bifurcation (see [Kuznetsov,
1998; Gicquel, 1996]), and recently they have been
observed in some families of maps in relation with a
subcritical Neimark bifurcation (see [Agliari et al.,
2003]). However, we shall see that its occurrence
is quite common also far from the Neimark bifur-
cation, and is related with several bifurcations of
closed invariant curves. As we shall see in the exam-
ples shown in this paper, when dealing with maps
this structurally unstable situation is often replaced
by the following sequence of bifurcations: first, a
cyclical heteroclinic tangency (or homoclinic tan-
gent bifurcation of nonsimple type, as we shall see
in the next section), followed by a parameter range
of transverse crossing between the stable and unsta-
ble sets of the saddle cycle, that gives rise to cyclical
heteroclinic points (or cyclical homoclinic connec-
tions), followed by a second cyclical heteroclinic
or homoclinic tangency. In other words, the simple
homoclinic loop of a saddle is more easily observed
in continuous flows, whereas for maps it is gener-
ally replaced by a range of parameters that give rise
to an homoclinic tangle of the saddle (and related
complex dynamics).

The paper is organized as follows. In Sec. 2,
we give a qualitative description of the bifurcations
which lead to the appearance of closed invariant
curves, attracting and repelling, and their further
qualitative changes. In Sec. 3, these sequences of
bifurcations are shown through numerical explo-
rations by using a family of symmetric maps. An
even more rich sequence of bifurcations is shown
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in Sec. 4, by using a family of nonsymmetric maps.
Finally, in Sec. 5 we consider a third family of maps,
given by polynomial maps with a cubic nonlinearity,
in order to stress that the bifurcations qualitatively
described in Sec. 2 are commonly observed in dif-
ferent kinds of two-dimensional maps.

2. Qualitative Description of the
Bifurcations

Let us consider a two-dimensional map 7' with a
fixed point O (that we shall call “basic fixed point”
in the following) which is stable inside a given region
of the space of the parameters of the map, and can
lose stability via a supercritical Neimark bifurca-
tion, as well as a supercritical pitchfork bifurcation
or a supercritical flip bifurcation. In other words,
we assume that the local stability analysis of the
basic fixed point reveals that its stability region is
bounded by bifurcation surfaces whose projection
in a two-dimensional subspace of the space of the
parameters gives one of the situations (or both) rep-
resented in Fig. 1, where P represents a supercrit-
ical pitchfork bifurcation curve, N a supercritical
Neimark bifurcation curve and F a supercritical flip
bifurcation curve.

If the parameters are outside the stability
region and close to the pitchfork bifurcation curve
P, then the basic fixed point O is a saddle and two
stable fixed points, say )1 and s, exist. Instead,
if the parameters are beyond the Neimark bifur-
cation curve N, then the basic fixed point O is
a repelling focus and a closed invariant attract-
ing curve exists around it. Thus, if we vary the
parameters following a bifurcation path like the one
indicated in Fig. 1(a), the dynamic scenario must
change from the former situation to the latter one,
and some global bifurcation must occur leading to
the creation of the closed invariant curve. Moreover,
the two stable fixed points (); must become unsta-
ble and merge with the basic fixed point through
another bifurcation, occurring when crossing the
curve P outside of the stability region, where two
repelling nodes merge into a saddle, thus disap-
pearing and leaving a repelling node alone. How-
ever, also the stable fixed points (); are expected to
become focuses while moving along that bifurcation
path, and become repelling focuses via a subcritical
Neimark bifurcation, after which they will become
repelling nodes before merging with O. Hence, in
this case the appearance of the two repelling closed
invariant curves involved in a subcritical Neimark
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Fig. 1. Qualitative representation, in a two-dimensional
subspace of the space of the parameters, of two hypothet-
ical stability regions of basic fixed point (the shaded area).
(a) The stability region is bounded by a supercritical Neimark
bifurcation curve, denoted by N, and a supercritical pitch-
fork bifurcation curve, denoted by P; (b) The stability region
is bounded by a supercritical Neimark bifurcation curve and
a supercritical flip bifurcation curve F.

bifurcation of (); must be explained. Indeed, we
shall see that this is typically associated with the
homoclinic bifurcations (or homoclinic tangles) of
the basic fixed point.
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Similar arguments apply to the case shown in
Fig. 1(b), where, again, on one side the stability
region is bounded by a supercritical Neimark bifur-
cation curve, whereas on the other side it is bounded
by a supercritical flip bifurcation curve. In this case,
if the parameters are outside the stability region
and close to the flip bifurcation curve F, then the
basic fixed point O is a saddle and an attracting
cycle of period two exists, say Cy = {Q1,Q2}. Thus
if we vary the parameters from this region to the
region close to the curve N, following a bifurcation
path similar to the one shown in Fig. 1(b), also in
this case we should explain the occurrence of some
global bifurcations leading to the appearance of the
closed invariant curve and the disappearance of the
stable cycle. However, if we consider the second iter-
ate of the map, i.e. T? = T oT, instead of T', we are
exactly in the same situation described above. In
fact, a flip bifurcation of T' corresponds to a pitch-
fork bifurcation of T2, and the stable periodic points
of the cycle Cy correspond to stable fixed points
of the map T?2. This implies that the same global
bifurcations are to be expected in the two cases,
involving the two periodic points of Co instead of
the two fixed points previously considered. So, in
the following we shall focus our attention on the
description of the bifurcations which are expected
to occur as we vary the parameters along the bifur-
cation path indicated in Fig. 1(a), and the same
results will also hold along the bifurcation path of
Fig. 1(b), with obvious changes.

Before starting the qualitative description of
these global bifurcations, let us remind that the
dynamics of the restriction of a map to a closed
invariant curve (attracting or repelling) is either
quasiperiodic (i.e. the limit set of any trajectory
on the closed invariant curve is the curve itself),
or periodic (i.e. the curve is formed by a saddle-
node or saddle-focus connection, as explained in
Sec. 1. However, generally the dynamics on the
closed curve is periodic, but of very high period,
so that it is numerically indistinguishable from a
quasiperiodic one.

2.1. Creation of two closed invariant
curves, one attracting and
one repelling

We now start a qualitative description of the
sequence of bifurcations that are expected to occur
as the parameters of a two-dimensional map are
varied along a path like the one represented in

Fig. 1(a). As explained above, the fixed points Q;
from attracting nodes become attracting focuses,
and then they become repelling focuses via subcrit-
ical Neimark bifurcations. Thus we have to explain
the creation of the two repelling and disjoint closed
invariant curves, which are involved in the subcriti-
cal Neimark bifurcations. They constitute the basin
boundary of the immediate basin of attraction of
the fixed points @Q);. This dynamic situation is gen-
erally reached via two distinct global bifurcations: a
first one which gives a wide repelling closed invari-
ant curve I', inside which all the three fixed points
are located, then this repelling closed invariant
curve splits into two disjoint repelling closed invari-
ant curves, each one around a stable fixed point );
via a homoclinic bifurcation of the saddle O. Let us
first describe the appearance of I'. This is associ-
ated with a couple of cycles say of period ¢, born
by a saddle-node bifurcation, whose periodic points
are located around the three fixed points O and Q);.
This situation is qualitatively described in Fig. 2(a),
where for simplicity we have used rotation number
p/q = 4, with period ¢ = 4 and p = 1. A similar
situation is represented in the qualitative Fig. 2(d),
where the stable node of period 4 is replaced by a
stable focus with the same period. In these situa-
tions, one branch of the unstable set of the saddle
tends to the stable cycle, while the other branch of
the saddle goes towards the fixed points, as qualita-
tively shown in the Figs. 2(a) and 2(d). At the bifur-
cation, the unstable branches (Jo; ; and the stable
ones (Jwi i, © = 1,2,...,q, merge in a homoclinic
loop, as shown in Figs. 2(b) and 2(e), thus creating
a closed invariant curve. After the bifurcation, two
closed invariant curves exist [Figs. 2(c) and 2(f)]:
one repelling, T, and one attracting, I'. The latter
is the heteroclinic loop made up of the unstable
set of the saddle cycle that reaches the attract-
ing cycle, node or focus (see Figs. 2(c) and 2(d),
respectively).

2.2. From one repelling closed
invariant curve to
two disjoint ones

The repelling closed invariant curve I' surrounds the
two stable fixed points @); and the saddle O. The
stable set of O, W9(0O), formed by the union
of the preimages of any rank of the local stable
set, turns around infinitely many times approach-
ing the repelling curve I, as qualitatively shown
in Fig. 3(a). W95(O) constitutes the boundary
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Fig. 2. Qualitative representation of a sequence of global bifurcations leading to the creation of two closed invariant curves,
one attracting (I') and one repelling (I'). In the sequence (a)—(c) a saddle-cycle and a stable node-cycle of the same period
are considered, whereas in the sequence (d)—(f) the same bifurcations are described for a saddle-cycle and a stable focus-cycle.
The blue curves represent the stable set of the saddle, whose two branches are labeled by w; and ws, and the green curves

represent the unstable set of the saddle, whose two branches are labeled by a7 and as.
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(e)

Fig. 3. Qualitative representation of a sequence of global bifurcations leading to the creation of two disjoint repelling closed
invariant curve starting from a situation with a unique repelling closed invariant curve. The blue curves represent the stable
set of the saddle O, W*(0), and the green curves represent the unstable set of the saddle O, WY (0). W(O) constitutes the
boundary that separates the basins of )1 and Qs.
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that separates the basins of @1 and Q2. As the
parameters are varied along the path, the repelling
closed invariant curve I' shrinks in the proximity
of the saddle O, and consequently the stable and
unstable sets of the saddle approach each other,
until I' disappears or, more precisely, becomes a
chaotic repellor at the homoclinic tangency [see
Fig. 3(b)] at which the unstable set of O, WY(0),
has a contact with the stable one. This homoclinic
tangency is followed by a transverse intersections
of the two manifolds, WY (0O) and W*(0), and a
dynamic scenario like the one shown in Fig. 3(c)
is obtained. Thus the two invariant manifolds form
the standard homoclinic tangle, and from the homo-
clinic theorem for saddles (see e.g. [Guckenheimer &
Holmes, 1985; Mira, 1987; Wiggins, 1988; Bai-Lin,
1989; Kuznetsov, 1998]) we know that in this situa-
tion a chaotic repellor exists, made up of infinitely
many (countable) repelling cycles, of any period,
and uncountable aperiodic trajectories. This chaotic
repellor, associated with the infinitely many Smale
horseshoes existing in the homoclinic tangle, is the
limit set of the stable set of the basic fixed point
O. Then another homoclinic tangency occurs [see
Fig. 3(d)] leading to the disappearance of all the
homoclinic orbits of O and of the chaotic repel-
lor: now WY(0) is completely outside of the sta-
ble set. After this tangency the stable and unstable
sets are again disjoint, WY (0) N W*9(0) = (), and
the preimages of the local stable manifolds reach
two disjoint closed invariant curves which have been
created around the two stable fixed points Q;, see
Fig. 3(e).

In all the pictures of Fig. 3 at least another
attracting set exists outside the repelling closed
invariant curve I, for example, the stable cycle
shown in Fig. 2, whose periodic points are on the
attracting closed invariant curve created together
with T, or some other attractor. Notice that
before the homoclinic tangency the two branches
of WY(0) tend to the two stable fixed points
Q;. During the transverse homoclinic loop some
points of WY (0) tend to Q; and some points tend
to the external attractor. After the second homo-
clinic tangency, when no homoclinic point of O
exists, the whole unstable set of O tends to the
external attractor. Before the first homoclinic tan-
gency an infinite number of periodic orbits appear,
and they disappear after the second homoclinic
tangency.

During the whole sequence described above (the
homoclinic tangle) the stable set W (O) persists in

being the separator between the basins of the two
attracting fixed points J;, and it has the chaotic
repellor as limit set.

2.3. From one attracting
closed invariant curve
to a wider one

In this section we show a mechanism that causes the
transition from an attracting closed invariant curve,
say I'y, with a pair of cycles outside it, a saddle
Sq = USq,i (where the Sy ;, i =1,...,q are the peri-
odic points) and an attracting one, Cy = (JCy 4, into
another wider attracting closed invariant curve, say
I'y, with that pair of cycles inside it. This transition
takes place via the occurrence of two homoclinic
loops of the saddle S, first with the merging of
the unstable branches W(S;) = Jai,; and the
stable ones W(S;) = Jwi,; and then via the
merging of the unstable branches WY (S,) = Jaz,;
and the stable ones WQS (Sq) = Uwa,;. However,
more frequently in maps, this transition may occur
via two separate homoclinic tangles of S;, a first
one through a homoclinic tangle of W (S,) and
W (S,), which includes a tangency between the two
manifolds, followed by transverse crossings, and a
tangency again of W (S,) and W7 (S,), and a sec-
ond one through a homoclinic tangle of W/ (S,) and
WS(S,).

We note that, when dealing with a saddle, we
use indifferently the term heteroclinic loop (tangle)
or homoclinic loop (tangle) because there is sub-
stantially no difference. In fact, if we consider the
saddle cycle S, as made up of ¢ fixed points S ;
of the map T'? then we have a cyclical heteroclinic
loop (tangle) between the fized points Sq;, and if we
consider the cycle S, of T" we may say homoclinic
loop (tangle) of the cycle Sy.

Let us consider first the situation described in
Fig. 4. In Fig. 4(a) we have an attracting closed
invariant curve I'; (which may also follow from the
situation described in Figs. 2(c) and 2(f) as we shall
see in the examples shown in the next section),
and a pair of cycles that have been created via
a saddle-node bifurcation outside I',. Such exter-
nal cycles do not form an heteroclinic connection,
whereas the stable set of the saddle S; bounds the
basin of attraction of the related attracting fixed
points Cy; of the map T'9. The unstable branches
aq; of Sy ; tend to the attracting curve Iy, while the
unstable branches as; of S, ; tend to the attracting
cycle.
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Fig. 4. Qualitative representation of two possible mechanisms that cause the transition from an attracting closed invariant
curve Iy (a) to a wider attracting closed invariant curve (c). The first mechanism is related to the occurrence of two homoclinic
loops of a saddle-cycle (b), the second mechanism, more common when dealing with maps, occurs via two separate homoclinic
tangles of the saddle-cycle (sequence (d)—(f)).
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At the bifurcation [Fig. 4(b)] we may have that
the closed invariant curve I', merges with the unsta-
ble branches W(S,) = Jai,; and with the sta-
ble ones W (S,) = Jw1, as well, in a homoclinic
loop of the saddle S, causing the disappearance of
the attracting closed invariant curve I',, and leaving
another closed invariant curve, see Fig. 4(c), which
is now the heteroclinic cycle involving the saddle S,
and the related attracting cycle Cj. After the bifur-
cation of the homoclinic loop a closed curve still
exists, but differently from I' it includes the two
cycles on it [Fig. 4(c)].

More frequently in maps, the simple homoclinic
loop of the saddle shown in Fig. 4(b) is replaced
by a homoclinic tangle of the saddle. That is, from
Fig. 4(a) a tangency between the unstable branch
WY (S,) = Uai; with the stable one W7(S,) =
Jwii occurs [Fig. 4(d)], followed by transverse
crossings of the two manifolds [Fig. 4(e)], further
followed by another tangency of the same mani-
folds, but on opposite sides, as qualitatively shown
in Fig. 4(f), after which the situation of Fig. 4(c)
follows.

As already noticed, the saddle cycle S, corre-
sponds to ¢ fixed points S, ; of the map 7', and the
homoclinic tangle shown in Fig. 4(e), which may be
considered associated with ¢ distinct fixed points
Sq,i of the map T, has the same dynamic proper-
ties as the homoclinic tangle associated with only
one saddle fixed point. This homoclinic bifurcation
is also called a cyclical heteroclinic connection in
the sense of Birkhoff (see [Birkhoff & Smith, 1928]),
who first showed that the same properties occur
when the stable and unstable manifolds of a saddle
fixed point intersect transversely, or when there are
two saddle fixed points, say S,; and S, ;, such that
W3(S,:) NWY(S,;) # 0, thus giving cyclical hete-
roclinic points that form an heteroclinic connection
(see also [Gardini, 1994]). In such a case, the trans-
verse intersections of WY (S,) and W¥(S,) for the
saddle cycle S, = (JS, called homoclinic points of
nonsimple type in [Birkhoff & Smith, 1928], gives
the same properties as the homoclinic points of a
saddle fixed point (called homoclinic points of sim-
ple type in [Birkhoff & Smith, 1928]). Thus the
occurrence of a transverse homoclinic orbit of a
saddle cycle is enough to prove the existence of
chaotic dynamics, because it is possible to prove
that in the neighborhood of any homoclinic orbit
there are infinitely many repelling cycles and an
invariant “scrambled set” on which the restriction
of the map is chaotic in the sense of Li and Yorke
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(see for example in [Gavrilov & Shilnikov 1972a,
1972b; Wiggins, 1988]).

Before the bifurcation [Fig. 4(a)], the two
branches of the stable set of S, are both out-
side the closed curve I'. After this bifurcation, the
stable branches |Jw;; are inside the closed curve
while the stable branches |Jws; are outside, and
approach the unstable branches (Jas; [Fig. 4(c)].
Starting from this situation [reported in Fig. 5(a)],
a second homoclinic loop [Fig. 5(b)] or tangle
[Figs. 5(d)-5(f)] may be formed. The heteroclinic
connection turns into a homoclinic loop in which
the unstable branches WY (S,) = Jaa; merge with
the stable ones W4 (S,) = Jwa; [see Fig. 5(b)].
After the bifurcation a new closed attracting curve
exists, say [y, and the two cycles are both inside
I'y [Fig. 5(c)]. The stable set of the saddle S, sep-
arates the basins of attraction of the ¢ attracting
fixed points of the map T9. The unstable branches
(Jau i tend to the attracting cycle while the unstable
branches (Jag; tend to I'y.

As mentioned before, in the case of maps the
dynamic behaviors more frequently observed indi-
cate that the homoclinic loop of Fig. 5(b) is often
replaced by a homoclinic tangle of the outer man-
ifolds WY (S,) and W (S,). That is, a tangency
occurs between the two manifolds [Fig. 5(d)] fol-
lowed by transverse intersections [Fig. 5(e)] and a
tangency again on the opposite side [Fig. 5(f)] after
which all the homoclinic points of the saddle S,
created before the first homoclinic tangency, are
destroyed.

It is worth noticing that all the unstable peri-
odic points associated with the first homoclinic tan-
gle, due to WY (S,) N\W(S,) # 0 [Fig. 4(e)], are in
the region interior to the set of periodic points of
the saddle S;, whereas in the strange repellor asso-
ciated with the second homoclinic tangle, in which
WY (S,) N W5(S,) # 0 [Fig. 5(e)], all the unstable
cycles are “outside” the saddle cycle Sj,.

Notice also that before the homoclinic loop
(tangle) of Fig. 4 we have two distinct attracting
sets: I', and the stable g-cycle outside it; after the
homoclinic loop (tangle) of Fig. 5, we have again
two distinct attractors: I'y, which is wider than I'y,
and the g-cycle inside it.

It is plain that this process may be repeated
many times. In fact, by a saddle-node bifurcation
a new pair of cycles may appear outside I, so
that we are again in the situation of Fig. 4(a), and
the sequence of bifurcations described in Figs. 4
and 5 may repeat. Indeed, this repeated occurrence
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Fig. 5. Starting from the situation in Fig. 4(c), reported in (a), two possible mechanisms that cause the transition to a wider
attracting closed invariant curve, represented in (c), are shown. In (b) the transition occurs via a homoclinic loop, in (d)—(f)
via homoclinic tangles.
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will be seen in the numerical examples of the next
sections.

We remark that also the homoclinic loops rep-
resented in Figs. 2(b) and 2(e) may be replaced
by homoclinic tangles, like the ones shown in
Figs. 4(d)-4(f) and 5(d)-5(f).

We finally remark that the sequence of bifur-
cations here described, that cause the transition
of a pair of cycles from outside to inside a closed
invariant curve, may occur through different mech-
anisms when the map is noninvertible. In fact,
in noninvertible maps the invariant curve may
intersect the critical set LC_;', and when this
occurs the periodic points of a cycle may be
part inside and part outside the closed invariant
curve (see [Mira et al., 1996; Frouzakis et al.,
1997]).

2.4. Coexistence of two closed
invariant curves and two
cycles in between

In the situation described in Fig. 5(c) we may
also have a repelling closed curve I' inside (as in
fact it occurs if the bifurcation follows from the
sequence in Fig. 2, as seen in the examples). Thus
the resulting picture in Fig. 5(c) may be that of
two closed invariant curves, say the attracting I’
outside and the repelling I inside, and a pair of
cycles between them, a saddle S; and the related
attracting cycle Cj.

A different mechanism, which may lead to
the same qualitative results is obtained starting
from the situation described in Figs. 2(c) and
2(f), where we have an attracting heteroclinic con-
nection surrounding the repelling closed curve I'
(created via the homoclinic loop/tangle of the man-
ifolds (Jai ; and (Jw; ;) and we are also in the situa-
tion described in Fig. 5(a). Thus another attracting
set may be created via a homoclinic loop/tangle in
which the unstable branches | Jas; merge with the
stable ones (Jws; (see Fig. 5(b), or Figs. 5(d)-5(f)).
After the bifurcation [Fig. 5(c)] a new attracting
closed invariant curve exists, say I', and the two

cycles of period ¢ are both between the two closed
curves I' and I'. The stable set of the saddle cycle S,
separates the basins of attraction of the ¢ attracting
fixed points of the map T9. The unstable branches
(Jau i tend to the attracting cycle, while the unsta-
ble branches (Jag,; tend to I'.

2.5. Coexistence of several
repelling closed invariant
curves

In this section we show a mechanism which may
cause the appearance of cyclical closed invariant
curves. This mechanism is known in the literature,
see e.g. [Mira, 1987; Kuznetsov, 1998|, however
we give here its description in order to com-
ment what may happen when a pair of cycles,
a saddle S; and the related stable cycle Cy, are
located between the closed invariant curves I'
and I' already seen in the situations described
before. For example, let us consider the situa-
tion shown in Fig. 6(a). When the stable cycle
is an attracting focus, we may observe an homo-
clinic loop in the invariant manifold of the sad-
dle, in which the branch «j; merges with wy;,
for each i, i.e. in each periodic point of the
saddle S, [Fig. 6(b)]. After the bifurcation ¢
repelling closed invariant curves appear around
the cycle focus, which constitute the boundary
of the immediate basin of attraction of the ¢
attracting fixed points of the map 77 [Fig. 6(c)].
Now both the unstable branches of the saddle
Sy tend to the attractor outside, i.e. the closed
curve I'.

To close this section we remark that also in this
case the homoclinic loop qualitatively represented
in Fig. 6(b) may be replaced by an homoclinic tan-
gle between the two manifolds WY(S,;) = UJai,;
and the stable one Wg(S,) = Uwa;: a tan-
gency, followed by transverse crossings that gives
homoclinic points of the saddle S;, followed by
a second tangency between the same manifolds
at which the transverse homoclinic points of S,
disappear.

LA specific feature of noninvertible maps is the existence of the critical set LC, defined as the locus of points having at
least two coincident rank-1 preimages, located on the set of merging preimages denoted by LC_;. For a continuously differ-
entiable map LC_1 belongs to the set of points where the Jacobian determinant vanishes. Segments of LC are boundaries
that separate different regions Zj, whose points have k distinct rank-1 preimages, see [Gumowski & Mira, 1980; Mira et al.,

1996].
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Fig. 6. Qualitative representation of a mechanism which
may cause the appearance of cyclical closed invariant curves.

3. A Family of Symmetric Maps

The first family of two-dimensional maps, that
we propose for a numerical exploration of the
bifurcations described in Sec. 2, is:

' = ax +
T:{ 4

, (1)
Yy =br+cy+d-arctany

where we assume 0 < a < 1 and d > 0. Maps
which exhibit the same qualitative properties of (1)
can be easily found in applications, see for example
[Herrmann, 1985; Lorenz, 1992; Bischi et al., 2001;
Dieci et al., 2001; Bischi et al., 2003]. It is worth
noticing that also changing the function arctan(-)
with any other function having an S-shaped graph,
we obtain the same kind of bifurcations as those
described in this section.

The map (1) has a fixed point in the origin O,
and two more fixed points, say @)1 and (s, exist if
the parameters satisfy the condition:

(I-c)(1—a)—0b

m = a0 —a) <1 (2)

and have coordinates (x;,v;), i = 1,2, where x; =
yi/(1 —a) and y; are the nonzero solutions of the
equation my — arctan(y) = 0. The stability region
of the fixed point O is obtained from the analy-
sis of the eigenvalues of the Jacobian matrix of T,
given by

a 1
DT (z,y) = L C+1jy2 :
evaluated in O:
[a 1
DT(0) = b et : (3a)

Let P(z) = 2% — Trz + Det be the characteristic
polynomial, where Tr and Det denote the trace and
the determinant of DT(O) respectively. Then the
stability region of O is determined by the follow-
ing conditions (see e.g. [Gumowski & Mira, 1980,
p. 159] or [Medio & Lines, 2001, p. 52], or any stan-
dard book on discrete dynamical systems): P(1) =
1 —Tr+ Det > 0, P(—1) = 1+ Tr + Det > 0,
Det < 1. This region is represented by the
gray-shaded triangle in Fig. 7(a). Simple compu-
tations show the pitchfork bifurcation curve P,
defined by the equation P(1) = 0, has equation
b=(1-a)(1l—c—d), ie. a straight line in the
(c,b) parameter plane, assuming a and d at fixed
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(a) (b)

(c)

Fig. 7. For the map (1), with @ = 0.2 and d = 4, in (a) the stability region of the basic fixed point O = (0, 0), is represented
in the space of the parameters ¢ and b by a gray-shaded triangle, bounded by the pitchfork bifurcation curve P, the flip
bifurcation curve F and the Neimark bifurcation curve N. (b) For a = 0.2, d = 4, ¢ = —0.1 and b = —0.7, the basins B(Q1)
and B(Q2) of the two stable focuses @1 and Q2 are numerically obtained, represented by gray and red regions, respectively.
The blue curve represent the stable set WS(O) of the saddle O, the green curve represents the unstable set WY (0). (c) For the
same values of the parameters a, d, ¢ as in figure (b), and with b = —0.75, a stable cycle of period 6 exists, whose numerically
computed basin of attraction is represented by pale blue regions.
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values, see the curve P in Fig. 7(a). The flip bifur-
cation curve, defined by P(—1) = 0, has equation
b= (14 a)(l+ c+ d), again a straight line in
the (¢, b) parameter plane. The Neimark bifurcation
curve, defined by Det = 1, corresponds to b = a(c+
d) — 1, another straight line in the (¢, b) parameter
plane.

The map (1) is symmetric with respect to the
origin, because T'(—z, —y) = —T'(z,y). This implies
that any invariant set of T is either symmetric with
respect to O, or it admits a symmetric invariant
set. In particular, this holds for the fixed points
and cycles of 1. Thus the two fixed points @),
when they exist, are in the symmetric positions with
respect to O, and any cycle of T' of odd period nec-
essarily coexists with a symmetric one having the
same characteristics. For the same reason also all
the basins of attraction are either symmetric with
respect to O or another basin also exists in sym-
metric position.

We also notice that the map 1" can be invertible
or noninvertible, according to the set of parameters
considered. In fact, looking for the preimages of a
point (2/,y') we get x = (¢/ — y)/a where y is the
solution of the equation:

ay —bx’  b—ac
ad ad

y = arctan(y) (4)

Equation (4) admits a unique solution for any
(«',y') (i.e. any point (z/,y') has a unique preim-
age) when (b—ac)/ad < 0 or (b—ac)/ad > 1, while
in the case 0 < (b—ac)/ad < 1,1.e. ac < b < ac+ ad,
(4) may admit one or three solutions depending on
(«',y') (which means that both points (2/,%') with
one preimage and points (z,y’) with three preim-
ages exist). Moreover, from the Jacobian determi-
nant det DT'(x,5) = (ac — b) + ad/(1 + 3?) we see
that it vanishes on two straight lines of the plane,
y = £y/ad/(b — ac) — 1, when the following condi-
tion holds:

ad
b—ac

—-1>0. (5)

Thus, when the parameters are taken in the strip
ac < b < ac+ ad of the (¢, b) parameter plane, then
map 71" is noninvertible of type Z; — Z3. Following
the terminology of [Mira et al., 1996] this means
that as (2/,y’) vary in the phase plane, Eq. (4)
can have one or three real solutions. However, the
parameter values that we shall use in the examples
of the following sections always belong to the region
in which T is invertible.

In the following, we consider some sequences of
numerical simulations obtained with fixed values of
a =02, ¢c = —0.1 and d = 4, and we gradually
decrease the parameter b.

3.1. Appearance of cycles and two
closed invariant curves

Let us start with a value of the parameter b out
of the stability region, not far from the pitchfork
bifurcation curve P, so that the fixed point O is
a saddle, and the two fixed points )1 and Q) are
stable. The two branches of the unstable set of the
saddle O tend to these fixed points, while the stable
set of O separates their basins of attraction. This
is the situation shown in Fig. 7(b), obtained with
b = —0.7, where the basin B(Q) is represented
by the gray region and the basin B(Q2) is the red
region. The evident convolutions of the stable set
W5(O) (the blue line) suggest that a pair of cycles is
going to appear by saddle-node bifurcation. Indeed,
in Fig. 7(c), obtained for b = —0.75, we can see that
besides the two basins B(Q;), separated by W*(O)
another attractor exists: a 6-cycle Cg, whose basin is
made up of 6 disjoint areas (the pale-blue regions)
bounded by the stable set W9(Ss) of the 6-cycle
saddle Sg born with Cs. In Fig. 7(c) we can also see
that the stable set W“(0) has many oscillations,
and a further decrease of b causes the creation of
another pair of cycles. In fact, in Fig. 8(a), besides
the basins B(Q1), B(Q2) and B(Cg), we see also
the basin B(Cig) (yellow) of an attracting cycle
of period 10, which is born together with a sad-
dle Syg whose stable set W*(S1g) gives the bound-
ary of the basin B(C1p). B(Cg) becomes wider as
b decreases, as shown in Fig. 8(b), where B(Q1)
and B(Q3) have thin tongues, bounded by W*(0),
inside the B(Chyp).

Up to now we have four coexisting attractors
but no closed invariant curves (all the stable sets
are basins separators, and the unstable branches
WY (S,) and WY (S,), ¢ = 6,10, have different limit
sets). However in the enlargement of a portion of
Fig. 8(b), shown in Fig. 8(c), we can see many con-
volutions of W9(O) in the region close to the cycle
S10- This is a sign that something is going to appear
as b is further decreased, and in fact in Fig. 9(a)
(and its enlargement, Fig. 9(c)) we can see that a
pair of closed invariant curves exist, say I' (attract-
ing) and T (repelling). Now W*5(O) cannot exit the
region bounded by T (i.e. the preimages of the local
stable manifolds of W*(0) have T as limit set). The
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-10 X 10

(b) (c)

Fig. 8. (a) With b = —0.764, the basins B(Q1), B(Q2) and B(Cg) are represented by gray, red and pale blue, respectively,
like in Fig. 7(c), together with the yellow basin B(C1g) of an attracting cycle of period 10. (b) For b = —0.7649 the basins
B(Q1) and B(Q2) have thin tongues inside B(C1p). (¢) Enlargement of a portion of figure (b).
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Fig. 9. (a) For b = —0.76494 an attracting closed invariant curve I' exists, whose basin, represented by green color, is bounded
by a repelling closed invariant curve I and the stable set W2 (S1¢). (b) Enlargement of a portion of figure (a). (c) b = —0.76494,
(d) enlargement of a portion of figure (c).
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basin of the new attractor I' (the green region in
Fig. 9) is bounded by I on one side and by the stable
set of the saddle S19, W*9(S1), on the other side.
That is, W9(S10) separates the yellow basin of the
cycle C1g from the green basin of I', and T separates
the basins of )1 and Q2 (gray and red respectively)
from the green basin of I'. The bifurcation that
leads to the appearance of the two closed invariant
curves I" and I' may be a saddle-node bifurcation for
closed curves, however it is more likely that (as it
occurs in the other examples) the mechanism is the
one shown in Fig. 2, with homoclinic loop/tangle,
associated with a cycle of very high period, and
all occurring in a very narrow range of the
parameter b.

3.2. Transition to cycles between
two closed invariant curves

As b is further decreased, the closed attracting curve
I' approaches the saddle cycle Sip, as shown in
Figs. 9(b) and 9(d), and the two bifurcations that
we have qualitatively described in Figs. 4 and 5 are
now going to occur. First, the merging of I' with
the homoclinic connection of the saddle cycle Sig
(probably via an homoclinic tangle) causes the dis-
appearance of the attracting set I', leaving a saddle-
focus connection between the cycles Cqy and Sig.
This is the situation in Fig. 10(a), where the green
basin no longer exists. In the enlargement shown
in Fig. 10(b) we can see that the yellow basin
of the cycle Cp is shared amongst the 10 fixed
points Cig; of the map T 10 represented by dif-
ferent colors in order to stress that the branches
of the manifolds WY (S19) and W5'(Sig) are very
close, so that we are moving towards the occur-
rence of the bifurcation qualitatively described in
Fig. 5.

In fact, if b is slightly decreased another attract-
ing closed invariant curve is created outside the
cycle Cyg, whose basin (yellow) is a narrow strip
[see Fig. 11(a)] and the basin of the new attrac-
tor I' (green region) is bounded on one side by the
stable set WW9(Sg) (that separates green and blue)
and on the other side is bounded by the stable set
W*(S1) (that separates green and yellow). In the
enlargement shown in Fig. 11(b) we can see that,
according to the qualitative description of Fig. 5,
both the cycles Cqy and Sy, as well as the whole
stable set W(S19), belong to the strip between the
closed invariant curves I' and T', WY (S10) tends to
the cycle C1g while WY (S10) tends to T.

3.3. Transition from one repelling
closed curve to two disjoint
repelling curves

Continuing to decrease the parameter b, starting
from the situation in Fig. 11, the cycle Cig disap-
pears (via a saddle-node bifurcation, merging with
the saddle Syp), and the basin B(I") is separated
from the two basins B(Q;) by the closed repelling
curve I', which is the a-limit set of the saddle O.
However, the closed repelling curve I shrinks near
the origin (see Fig. 12) and the homoclinic bifur-
cation of O, qualitatively described in Fig. 3, is
going to occur. In order to see what happens in the
range of b where the homoclinic tangle develops, in
Fig. 13 we show some enlargements of the numerical
explorations obtained by decreasing the parameter
b starting from the value used in Fig. 12.

In the enlargement of the region around the
saddle fixed point O, shown in Fig. 13(a), we can
see the first homoclinic tangency between WU (O)
and W*(0). The whole branch of unstable set on
the right belongs to the red basin and tends to the
fixed point ()2, the symmetric one belongs to the
gray region and tends to the fixed point (1. Both
are represented as a whole in Fig. 14(a), at the same
parameter value. The stable set W(O) already has
a complex structure: the closed invariant repelling
curve I' is replaced by a strange repellor, which
separates the two basins B(Q;) from B(I") (yellow
points).

Figure 13(b) shows the transverse crossings
between W9(0) and WY (O). Such intersections are
homoclinic points of O. The stable set W (O) still
is the separator between the two basins B(Q);) and
now its limit set is a chaotic repellor, associated
with the infinitely many periodic points existing
close to the homoclinic trajectories (i.e. the scram-
bled repelling sets associated with the Smale horse-
shoes of the homoclinic tangle). In Fig. 13(b) we can
notice that the unstable set WY (0O) now includes
points in the basin of the closed attracting curve I'
(the green points inside the yellow region) as well
as points belonging to the basins of the two fixed
points (green dots in the red or gray regions). The
whole picture of WY (0), for the same set of param-
eters as in Fig. 13(b) is shown in Fig. 14(b).

As b is further decreased, more and more points
of WY(O) enter the yellow region, and when the
tangency on the other side occurs, as shown in
Fig. 13(c), the w-limit set of WY(O) no longer
includes the steady states, but only the closed
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Fig. 10. (a) Basins and attractors for b = —0.765. (b) Enlargement of a portion of figure (a) where different colors are used
to represent the basins of the 10 fixed points for the map Tlo, separated by WS(Slo).
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Fig. 11. (a) For b = —0.7655 an attracting closed invariant curve, whose basin is green, exists around the cycle C1g, whose
basin is yellow. (b) Enlargement of a portion of figure (a).
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Fig. 12.

attracting curve I', as shown in Fig. 14(c). This
closes the homoclinic tangle. After this tangency
WUY(0)NW*(0) = 0, that is no homoclinic points
of O survive, and also the chaotic repellors disap-
pear, leaving two disjoint repelling closed invariant
curves I'; as basin boundaries of the fixed points
Q;. After the homoclinic tangle of O the preim-
ages of the stable set have as limit set the two
disjoint closed invariant curves I'; while the unsta-
ble set tends to I'. An example of the surviv-
ing attracting sets and their basins is shown in
Fig. 15(a), obtained after a further decrease of the
parameter b.

3.4. Transition from attracting closed
tnvariant curves to wider ones

In Fig. 15(a) we have a saddle cycle Sg such that its
stable set W (Sg), represented in blue in Fig. 15(b),
separates the basin of the stable cycle Cg (pale
blue region) from the basin of the attracting closed
curve I' (yellow region). Moreover, we can see that
the six disjoint portions of B(Cg) are approach-
ing each other as b is decreased, which means that
the branches W (S) and W{(Sg) are approach-
ing (the unstable set WY (Sg) of the saddle cycle

b = —0.791468.

is represented in green in Fig. 15(b)) and also
the attracting curve I' is approaching the stable
set W(Sg) of the saddle. As b is decreased, the
occurrence of the homoclinic tangle qualitatively
described in Fig. 4 is numerically observed [see
Figs. 15(c) and 15(d)]. Indeed, the enlargement
shown in Figs. 15(e) and 15(f), puts in evidence the
first homoclinic tangle, as W (Sg) N W (Sg) # 0.
At the end of the tangle, i.e. after the second tan-
gency, the attracting curve I' no longer exists. The
attractors are the cycle Cg and the two fixed points
Q;. Figure 15(g) shows the situation after this first
homoclinic tangle, and the colors refer to the basins
of the 6 fixed points for the map T, and Fig. 15(h)
shows the stable and unstable sets of the saddle
S, which are without intersections, i.e. no homo-
clinic points of the saddle survive. A closed invariant
curve still exists, formed by the saddle-focus connec-
tion, or heteroclinic connection, of the cycles Sg and
Cs. The two branches of the unstable set of the peri-
odic points of Sg reach two different periodic points
of the cycle Cg (green curve in Fig. 15(h)), while
the stable set W{°(S6) (blue curve in Fig. 15(h))
separates the 6 basins and approaches the repelling
closed invariant curves, that is, the boundaries of
the two basins B(Q;).
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Fig. 13.

Figure 16 presents a similar situation at a
lower value of b. Differently from the case of
Fig. 15, we no longer have the basins of the fixed
points @Q;, because in that range of b the repelling
closed invariant curves at the boundary of the
two basins B(Q;) shrank and collapsed into the
two fixed points through a subcritical Neimark

(a) b = —0.791468, enlargement of a portion of Fig. 12. (b) b = —0.7918, the homoclinic tangle develops.
c) b=-0. , the tangency on the other side occurs.
b 0.79283, th he other sid

bifurcation, after which @); are two repelling focuses.
In Fig. 16(a) the stable and unstable sets W(Sg)
and WUY(Sg) are represented by blue and green
curves respectively. This figure shows that W°(Sg)
and WY (Sg) are quite close, and this suggests
that the bifurcation described in Fig. 5 is going to
occur. The enlargement of Fig. 16(b), where the 6
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-8 X 8

Fig. 14. The whole picture of WY (0). (a) b = —0.791468, (b) b

as in Figs. 13(a)-13(c), respectively.

basins of the stable fixed points Cp; of map T' 6 are
represented during the homoclinic tangle by differ-
ent colors, WY (Sg) N W5'(Ss) # 0 [see Fig. 16(c)].
During the tangle the closed heteroclinic connection
of the 6-cycle no longer exists, and the 6 basins of
the map 7% are intermingled in the outer part of

= —0.7918, (c) b = —0.79283, i.e. the same set of parameters

the cycle. In Fig. 16(b) two more attracting cycles
exists: a cycle Cyy (yellow basin) and a cycle Cog
(black basin). Figure 16(d) shows, after a very small
change of b, that we are close to the second tangency
between WY (Sg) and W5 (Se), after which another
attracting closed invariant curve will appear outside
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the cycle Cg, as shown in Fig. 17(a), where the
6-cycles no longer give an heteroclinic connection,
whereas an attracting curve I' exists outside that
cycle, with a yellow basin.

From Fig. 17, we see the basin of a pair of cycles
of period 5 (red and violet regions, respectively),

that appeared via saddle-node bifurcations, outside
I'. We recall that the map T considered in this
section is symmetric, hence a cycle of odd period
cannot exist alone, as also a symmetric one must
exist. In the case shown in Fig. 17(a) the basins
of the two 5-cycles, say C5 and Cf, are bounded

10 10 ..-;;1;./
y
-10
-10
10
-10
-10 X 10 -10 X 10
(c) (d)
Fig. 15. (a) b= —0.8, basins and the attractors. (b) For the same set of parameters as in figure (a) WY (Sg) and W7 (S) are
represented in green and blue, respectively. (c) b = —0.8071, basins and the attractors. (d) For the same set of parameters as

in figure (b) WY (Ss) and W (Ss) are represented in green and blue, respectively. (¢) Enlargement of a portion of figure (c).
(f) Enlargement of a portion of figure (d). (g) b = —0.8, different colors are used to represent basins of the fixed points of the
map T, separated by W*(Ss). (h) For the same set of parameters as in figure (g) W (Sg) and Wi (Sg) are represented in

green and blue, respectively.
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Fig. 15.

by the stable sets of their related saddles, W*(S5)
and W¥(S%), while the two unstable branches have
different limit sets.

In Fig. 17(a) we are again in the situation qual-
itatively described in Fig. 4(a), and the two tan-
gles (of Figs. 4 and 5) are going to occur again
by decreasing b, as we have just seen in relation
with the cycle Cg. Figure 17(b) shows the basins

(Continued )

at a lower value of b, evidencing that W (S5) and
Wy (S%) are approaching to each other, and also
the attracting curve I' is approaching the stable set
W5 (S5 U SL) of the saddle. It is worth noting that
even if we have two disjoint cycles of period 5, both
are involved in giving a unique attracting closed
invariant curve, that is a saddle-node or a sad-
dle focus heteroclinic connection, as qualitatively
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Fig. 16. (a) b = —0.87, W (Sg) and W7 (Sg) are represented in green and blue, respectively. (b) b = —0.8711, enlargement of
the 6 basins of the stable fixed points Cp ; of map 7% during the homoclinic tangle. (c) b= —0.8711, as in figure (c), W3/ (S)
and W3’ (Sg) are represented in green and blue, respectively. (d) b = —0.8712, W&/ (Ss) and W5 (Sg) are represented in green

and blue, respectively.

shown in Fig. 18, where the period of the two cycles
has been taken equal to 3 in order to simplify the
picture. The first homoclinic tangle appears after a
small decrease of b with respect to the value used to
get Fig. 17(b), and it is clearly visible in Fig. 17(c)
and in its enlargement, Fig. 17(d) (we are in the
situation qualitatively represented in Fig. 4(e)).

Just after the homoclinic tangency (on the other
side) of the two manifolds W (S5) and W (SL),
the attracting curve I' no longer exists whereas a
saddle-focus connection between the cycles S5, SE,
C5 and Cf exists, as evidenced in Fig. 19(a) (the
unstable branches of S5 and S§ reach the cycles
Cs and Cf, as qualitatively shown in Fig. 18(b)).
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Basins of four coexisting attractors. (a) b = —0.88 (b) b = —0.895 (c¢) b = —0.8987. (d) Enlargement of a portion of

Fig. 17.
figure (c).

Figure 19(b) shows that the manifolds WY (S5)
and W (SL) are close to each other and the sec-
ond homoclinic tangle (qualitatively described in
Fig. 5) is going to occur, giving rise to a wider
attracting closed invariant curve I', clearly visible
in Fig. 19(c), with the two cycles C5 and C inside
it, whose basins are separated by the stable set of

the saddles S5 and S§, and the two branches of the
unstable sets have different limit sets: the cycle and
I'. In that figure we also see the 6-cycle Cp still
attracting, and its basin of attraction is bounded
by the stable set of the saddle Sg. The yellow region
denotes the basin of I'; and in that region another
cycle is going to appear as b decreases. In fact, in
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Fig. 18.

Fig. 20(a) we see an attracting cycle C14 born by
saddle-node bifurcation, whose basin (in green) is
bounded by the stable set of the saddle S14, and
whose unstable branches have different limit sets:
the cycle and I'. We also note that in this last inter-
val of b-values another homoclinic bifurcation of the

Qualitative representation of (a) a saddle-node heteroclinic connection, (b) a saddle-focus heteroclinic connection.

6-cycle Sg has occurred, with the merging (or homo-
clinic tangle) of the branches W3'(Sg) and W (Sg)
giving rise to 6 repelling closed invariant curves
which bound the 6 basins of the periodic points
Cs,i, as shown in the enlargement of that figure
[Fig. 20(b)].
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Fig. 19.

X 23

(a) b = —0.898, a saddle-focus connection between the cycles Sy, S, C5 and Cf exists. (b) b = —0.92, the second

homoclinic tangle (qualitatively described in Fig. 5) is going to occur. (¢) b = —0.925, an attracting closed invariant curve I'
has been created, whose basin is represented by the yellow region.

Clearly, on further decreasing b, the basins
of the 14-cycle will increase, the two manifolds
WY (S1) and W(S14) will approach each
other and also the closed attracting curve I’
will approach such manifolds, and the homoclinic

tangles will occur, first with WY (S14) N
WP(S14) # 0 and then with W (S14) N
Wy (S14) # 0, creating a wider closed invari-
ant curve outside, and so on...the process is
repeated several times.
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27

(b)

Fig. 20. (a) b = —0.93, an attracting cycle C14 exists, whose basin is represented in green. The yellow region represents the
basin of the attracting closed curve I', and the other colors represent the basins of stable cycles of period 6. (b) Enlargement
of a portion of figure (a).
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4. A Family of Asymmetric Maps

In order to prove that the bifurcations described
qualitatively in Sec. 2 and shown by the numerical
examples of Sec. 3 are not related to some symme-
try property of the map (1), in this section we shall
consider the following nonsymmetric perturbation
of the map (1):

¥ =ax+vy
T bx + cy + d - arctany ify>0
: /
= d
br + cy + B-arctan(ﬂy) ify<o0

(6)

where we assume 0 < a < 1, d > 0 and § > 0.
Again, T has a fixed point in the origin O,
and two more fixed points exist, say again Q1
and (9, if the parameters satisfy the condi-
tion given in (2), the only difference being that
now the y-coordinate of the fixed point Qq,
located in the half-plane y >0, is the positive
solution of the equation my — arctany = 0,
while the y-coordinate of the fixed point )9, located
in the half-plane y < 0, is the negative solution
of the equation my — arctan(fy)/f = 0. Now @
and Q9 are no longer in symmetric positions with
respect to O.
The Jacobian matrix of 7" is

a 1
d , fory >0
b c+——> Y
L 14y
DT (z,y) =< _
a 1
d , fory <0
b v
L C+1+ﬁ2y2

and it becomes identical to the matrix in (3a) when
computed in the basic fixed point O. Thus the sta-
bility region of O is the same as the one determined
in Sec. 3 [see Fig. 7(a)].

As the Jacobian determinant is given by

d
(ac—b)—i—lj_yQ y=>0
det DT = g
(ac—b) + — 5 Y <0
1+ B2y

it vanishes on two straight lines of the plane (one
in the half-plane y > 0, and one in the half-plane

y < 0) of equation

1/ ad 3
v= BV b—ac

if the condition (5) holds. Thus, also in this case,
when the parameters are taken in the strip ac <
b < ac + ad of the (¢,b) parameter plane, then
map 71" is noninvertible, of type Z; — Z3. However,
the parameter values used in the following always
belong to the region in which T is invertible. In
fact, we fix the parameters a = 0.2, ¢ = —0.1,
d = 4 and 8 = 2, while b is decreased, start-
ing from values close to the pitchfork bifurcation
curve, where we have the two stable fixed points
Q;, each with its own basin of attraction. This is
the situation shown in Fig. 21(a), where the two
basins B(Q);) (gray and red regions) are separated
by W*(O) (blue lines) while the two branches of
WY(0) (green lines) tend to the attracting fixed

points Q;.

4.1. Appearance of cycles and of
closed invariant curves

On decreasing the parameter b, several cycles
appear. In Fig. 21(b) we show, besides the two
basins B(Q;), separated by W9(0), the basin of
a 6-cycle C (pale blue region) bounded by the sta-
ble set W9 (Sg) of the saddle Sg born with C. As b
is further decreased, other cycles appear, again via
saddle-node bifurcations: a pair of 8-cycles, a pair
of 9-cycles and a pair of 10-cycles. In Fig. 21(c) the
basins of the stable cycles are represented by dif-
ferent colors: B(Q;) in red and gray, B(Cg) in pale
blue, B(Cg) in green, B(Cy) in violet, B(C}g) in
dark blue, see also the enlargement in Fig. 21(d). No
closed invariant curves exist, and the two branches
of the unstable set have different attractors as limit
sets. In the enlargement we can see that the inner
branches of the saddle Sig are close to each other,
and that the tongues of the basins B(Q);) are very
thin and close to the stable set W*°(S10). In fact, we
are close to the bifurcation qualitatively described
in Fig. 2: as b is further decreased, W (S1g) and
W (S10) merge and switch, giving rise to an inner
repelling closed invariant curve I' (limit set of
W5(0)) and a closed invariant attracting curve is
created by the saddle-focus heteroclinic connection
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10 | X 10 35 X 2

() (d)

Fig. 21. Asymmetric map (6), we fix the parameters a = 0.2, ¢ = —0.1, d = 4 and 8 = 2. (a) For b = —0.7 the basins of
the two stable fixed points @Q; are represented by gray and red regions, separated by the stable set WS(O) of O = (0,0) (blue
curves), whereas the two branches of WY (0) (green curves) tend to the attracting fixed points Q;. (b) b = —0.76, a 6-cycle
Cg also exists, whose basin is the pale blue region. (¢) b = —0.76775, also a stable 8-cycle Cg, a stable 9-cycle Cy and a stable
10-cycle C1o exist, whose basins are represented by different colors: B(Cg) in green, B(Cy) in violet, B(C1g) in dark blue.
(d) Enlargement of a portion of figure (c).

of the two cycles S1p and Cig. This situation is  be followed by the bifurcation described in Fig. 6,
shown in the enlargement of Fig. 22(a). However,  In fact, homoclinic points of the second homoclinic
we are already close to the second homoclinic tan-  tangle, due to WY (S10) N W5(S19) # 0, are visi-
gle represented in the qualitative Fig. 5, which will ~ ble in Fig. 22(b), where the yellow points converge
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0 P

-2 . X -2

(c) (d)

Fig. 22. (a) b= —0.7678. Enlargement of the basins B(Cg) in green, B(Cy) in violet, B(C1g), B(Q1) in gray, B(Q2) in red.
(b) b = —0.76785, the bifurcation qualitatively described in Fig. 2 is going to occur, the yellow region represents the basin
of attraction of a stable cycle of high period that exists during the homoclinic tangle. (¢) W{ (S10) and Wy (S10) merge and
switch, giving rise to an inner repelling closed invariant curve I' and a closed invariant attracting curve I', whose basin is
represented by the yellow region. (d) b = —0.76807, after the bifurcation 10 repelling closed invariant curves are created, which
bound the basins of the stable focuses C19; (dark blue).

to an attracting cycle existing during the tangle. basin is represented by the yellow region. The 10-
In Fig. 22(c), obtained just after the tangency, a  cycles belong to the strip bounded by the two closed
new attracting closed invariant curve I' exists out-  curves I' (attracting) and I' (repelling). I' bounds

side the invariant manifolds of the 10-cycles. Its  on one side the basin B(I") (yellow) and is also the



Global Bifurcations of Closed Invariant Curves in Two-Dimensional Maps 1317

limit set of the basin B(C}g) (dark blue), while on
the other side it is the limit set of the two basins
B(Q;) (gray and red). Inside the strip bounded by
I and T' the basin B(Cyp) is made up of 10 dis-
joint sectors, each one bounded by the stable set
WS(SlQi) for ©+ = 1,...,10. The unstable branch
WY (S10) tends to the attracting focus Cjg while
the unstable branch W{(Sg) tends to the closed
curve I'. However, on decreasing the parameter
b, we observe that WY (S10) approaches W5 (S1o),
and the homoclinic loop qualitatively described in
Fig. 6 occurs, probably via an homoclinic tangle.
The result, after the bifurcation, is that 10 repelling
closed invariant curves are created, which bound
the basins of the stable focuses Co; (dark blue)
as shown in the enlargement of Fig. 22(d). These
closed repelling curves will decrease in size as b
decreases and will merge with the cycle via a sub-
critical Neimark bifurcation creating a repelling
focus C1p.

In Fig. 23(a) we show the situation at a lower
value of the parameter: the 10-cycles (a saddle
and a repelling focus) merged with the closed
repelling invariant curve T’ giving rise to a repelling
saddle-focus invariant curve, that bound the basins

3,

of the stable fixed points (); on one side (red and
gray points) and the basin B(I') on the other side
(vellow). In the enlargement shown in Fig. 23(b),
we can also see that the basin B(I') approaches
WY (Sg), and W;¥(Sg) which are close to each other.
This suggests that we are near the homoclinic tan-
gle described in Fig. 4, which will destroy the
attracting closed curve I', leaving a closed invariant
curve made up of the saddle-focus connection of the
9-cycle, as shown in Fig. 23(c).

If we continue to decrease the parameter b, sev-
eral homoclinic tangles of different cycles occurs,
giving wider and wider closed invariant curves.

4.2. Homoclinic bifurcation of the
origin

Continuing to decrease the parameter b, starting
from the situation of Fig. 23, we can see that the
repelling closed invariant curve I', which continues
to be the limit set of the saddle O, shrinks near
the origin (Fig. 24), and the homoclinic bifurcation
of O (qualitatively described in Fig. 3) is going to
occur. During the range of b in which the homo-
clinic tangle occurs, the wide picture of the basins

(b)

Fig. 23. (a) b = —0.769, a repelling saddle-focus invariant curve bounds the basins of the stable fixed points Q; on one side
(red and gray regions) and the basin B(I") on the other side (yellow). (b) Enlargement of a portion of figure (a). (c) b = —0.77,
the closed curve I' no longer exists, and the violet region represents the basin of a closed invariant curve made up of the

saddle-focus connection of a 9-cycle.
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Fig. 23.

(Continued )

Fig. 24.

b= —0.79145.




Global Bifurcations of Closed Invariant Curves in Two-Dimensional Maps

is always the same as that shown in Fig. 24 (at
that scale): the attracting closed curve is formed by
a saddle-focus heteroclinic connection of a 7-cycle
(yellow basin) and the pair of 6-cycles still exists
outside (the basin of the stable one is represented
by the pale blue regions, bounded by the stable set
W9(S6)). Instead, the pair of 8-cycles is inside the

1319

closed curve, with basin (green points) bounded by
the stable set W°(Sg), while the two branches of
WY (Sg) have different limit sets.

We show the dynamic behaviors of the sta-
ble and unstable sets of O in the enlargements of
Figs. 25 and 26, where an homoclinic tangle is sim-
ilar to the one observed in the previous section

(c)

Fig. 25. Behavior of the stable set of O, W*(O) (blue) and its unstable set WY (0) (black) during the homoclinic tangle.
(a) b = —0.79145, like in Fig. 24. (b) b= —0.7925. (c) b = —0.792841.
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Fig. 26. The whole picture of WY (0). (a) b = —0.79145, (b) b

as in Figs. 25(a)-25(c) respectively.

for the symmetric map. In the enlargement of a
neighborhood of the origin shown in Fig. 25(a)
we can see the first homoclinic tangency between
WY(0) (black line) and W*(O) (blue line). The
whole branch of the unstable set visible on the
right belongs to the red basin and tends to the

= —0.7925, (c) b = —0.792841, i.e. the same set of parameters

fixed point @2, whereas the other branch belongs
to the gray region and tends to the fixed point
Q1. Both are represented as a whole in Fig. 26(a),
at the same parameter values as in Fig. 25(a). In
Fig. 25(a) we can see that the stable set W°(O) has
already a complex structure: the closed invariant
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repelling curve T' is replaced by a strange repel-
lor, which separates the two basins B(Q;) (gray
and red) from B(C7) (yellow) and B(Cg) (green).
Figure 25(b) shows the transverse crossings between
W9(0) and WY(0), which are homoclinic points
of O. The stable set W5(0) still is the separator
between the two basins B(Q;) and its limit set is a
chaotic repellor. During the tangle, the unstable set
of the origin, WY(0), includes segments of points
belonging to B(C7) (yellow points) and B(Cg)
(green points) alternated with intervals of points
belonging to the red and gray regions, and converg-
ing to the two fixed points. The whole picture of
WY (O) at this set of parameter values is shown in
Fig. 26(b).

The tongues of the two manifolds move on the
other side with respect to the initial situation: more
and more points of WY (0) belong to the yellow and
green regions, and when the tangency on the other
side occurs, as shown in Fig. 25(c), the whole unsta-
ble set of O tends to I', as shown in Fig. 26(c).

This closes the homoclinic tangle. After this
tangency WY(0) N W9 (0O) = 0, that is no homo-
clinic points of O survive, and with them also
the chaotic repellor disappears, leaving two disjoint

8
y
-7
-7 X 8
(a)
Fig. 27.

repelling closed invariant curves I'; as basin bound-
aries of the fixed points @Q; (see Fig. 27). In Fig. 27
we also see that the 8-cycle has disappeared, the
7-cycle forms a closed invariant curve via a saddle-
focus heteroclinic connection, and the 6-cycle has
the inner stable and unstable manifolds which are
approaching each other.

4.3. Transitions with homoclinic
tangles

In Sec. 4.1 we have described several transitions
from closed invariant curves to wider ones with
several double homoclinic tangles (with the inner
branches first and with the outer ones after), and
many such situations occur for values of b ranging
from the situation of Fig. 23 to that of Fig. 24.
Usually the homoclinic tangles take place in a nar-
row interval of b-values. However, here we comment
in detail one more transition because each step of
the bifurcations qualitatively described in Fig. 4,
with the homoclinic tangles both of the closed curve
I' (here represented by the saddle-focus connec-
tion of the 7-cycle in Fig. 27) and of the external
saddle cycle (here the 6-cycle in Fig. 27), can be

-7 X 8

(b)

(a) b = —0.798, basins of a 7-cycle C7, yellow, a 6-cycle Cg, pale blue, the fixed points Q1 and Q2 (red and gray,

respectively). (b) For the same set of parameters as in figure (a), seven different colors are used to represent basins of the fixed
points C7 ; of the map T7, separated by W (S7). (c) Invariant manifolds WY (Sg) (violet) and W*(Sg) (blue). (d) Invariant

manifolds WY (S7) (violet) and W*(S7) (blue).
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Fig. 27.

described in detail, as all of them occur in a wider
range of b values. As already remarked in Sec. 2,
it is possible that the homoclinic tangles associ-
ated with the closed curve I' and the ones associ-
ated with the saddle cycle, involving the manifolds
WY (S,) and W{(S,) require two different descrip-
tions. This can be seen in this example, because
the closed curve I' is a simple saddle-focus con-
nection of a 7-cycle. Figure 27(b) is performed at
the same parameter value of Fig. 27(a), but using
7 different colors for the basins of the fixed points
C+ ., of T7, bounded by the stable set W*(S7). This
suggests that the invariant manifolds WY (S7) and
W*(S7), represented in Fig. 27(d), are close to an
homoclinic tangency. Also the invariant manifolds
WY (Ss) and W9(Sg), represented in Fig. 27(c), are
approaching each other, but their homoclinic tan-
gle will occur later. That is, we first observe an
homoclinic tangle between two branches of the sets
WY(S;) and W¥(S7), causing the appearance of
homoclinic points to S7, thus causing the destruc-
tion of the closed invariant curve, even if the cycle
C7 persists in being attracting, as well as the cycle
Ce. This is shown in Figs. 28(a) and 28(b), where
we can deduce that the cycle Sg is very close to
its tangent homoclinic bifurcation, as clearly shown
by the invariant manifolds WY (Sg) and W*(Ss)

(Continued )

represented in Fig. 28, while the transverse crossing
of the 7-cycle S;7 has already occurred, and homo-
clinic points of WY (S7) N W*(S7) are clearly visi-
ble in Fig. 28(d). Figures 28(e) and 28(f), obtained
with a lower value of b, show that now the man-
ifolds WU (Ss) and W{(Sg) intersect transversely.
At the parameter value of Figs. 28(e) and 28(f)
and, after a further decrease of b, in Fig. 29, the
basins B(C7) and B(Cg) are quite intermingled, and
we are within the homoclinic tangle of both cycles.
Figure 29(a) shows the basin of C; (yellow), while 6
different colors are used for the basins of Cs ;, whose
boundary is given by the stable set W5 (Sg) shown,
together with WY (Sg), in Fig. 29(b), where homo-
clinic points of Sg are clearly visible, and homo-
clinic points of WY (S7) N W9(S7) are shown in
Fig. 29(c).

On decreasing b, the first tangency is one of 7-
cycle, leaving 7 disjoint basins. However, the homo-
clinic points of the saddle cycle Sg still exist, so that
the basins of attraction are still intermingled with
the basin of the 6-cycle Cg. Figure 30 shows the
situation in this case: the yellow region represents
the basin of C7, while 6 different colors are used for
the basins of Cg;, considered as stable fixed points
of T%, whose boundary is given by the stable set
W5(Sg). This is shown, together with WY (Sg), in
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g | X 7 -7 | X 7
(c) (d)

Fig. 28. (a) b = —0.8, basins of a 7-cycle C7, yellow, a 6-cycle Cg, pale blue, the fixed points @1 and Q2 (red and gray,
respectively). (b) for the same set of parameters as in figure (a), seven different colors are used to represent basins of the fixed
points C7 ; of the map T7, separated by W (S7). (c) Invariant manifolds WY (Sg) (violet) and W*(Sg) (blue). (d) Invariant
manifolds WY (S7) (violet) and W9 (S7) (blue). (e) Basins for b = —0.802. (f) For the same values of the parameters as in
figure (e), the invariant manifolds WY (S7) (violet) and W9 (S7) (blue) are represented.
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8
y
7
7
Fig. 28. (Continued)
Fig. 30(b), where homoclinic points of Sg are still However, as suggested by Fig. 30(c), a further

visible. Instead, no homoclinic points of the saddle  decrease of b causes the second homoclinic tangency
Sy exist, WY(S7) N W5 (S7) = 0, as can be seen in  of the manifolds W (Sg) and W(Se), after which
Fig. 30(c). the closed curve, saddle-focus connection between

(a) (b)

Fig. 29. (a) b = —0.81, the basin of C7 is the yellow region, and six different colors are used for the basins of Cf ;. (b) For the

same set of parameters, the stable set WS(SG) and the unstable set WU(Sg) are represented by blue and violet, respectively.
(c) For the same set of parameters W (S7) and WY (S7) are shown in blue and violet, respectively.



Global Bifurcations of Closed Invariant Curves in Two-Dimensional Maps 1325

Fig. 29. (Continued)

(a)

Fig. 30. b= —0.82, the basin of C7 is the yellow region, and six different colors are used for the basins of Cg ;. (b) For the

same set of parameters, the stable set W (Se) and the unstable set WU(SG) are represented by blue and violet, respectively.
(c) For the same set of parameters W (S7) and WY (S7) are shown in blue and violet, respectively.
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)

Fig. 30.

Cs and Sg, will appear (for example, it exists at
b = —0.823), and all the basins of attraction have
smooth boundaries.

5. A Family of Polynomial Maps

In order to show that the bifurcations described in
Sec. 2 and in the examples of Secs. 3 and 4 are
not related to some peculiarity of the maps defined
by an S-shaped function, in this section we shall
briefly consider the following two-dimensional poly-
nomial map:

¥ =ar+vy
T:{,_ . (7)
Y =br+cy+dy

We fix the values of the parameters a = 0.2, ¢ = 2.1,
d = —1, and the parameter b is let to decrease below
—0.5. The origin O is a fixed point, whose stabil-
ity triangle in the (¢, b) parameter plane is similar
to the one shown in Fig. 7(a), and a supercritical
Neimark bifurcation occurs as well as a supercrit-
ical pitchfork bifurcation, giving rise to two fixed
points, say )1 and Q2. Like in the case of map
(1), this family of polynomial maps is symmetric
with respect to the origin. However the bifurca-
tions shown in this section are not related to this

(Continued )

symmetry property (indeed, they can be observed
also in the asymmetric maps obtained from (7) by
adding the term, pxy to the second component).
As in the previous examples, we start from a
value of b in which the two fixed points @)1 and Q-
are stable and the stable set of the saddle O sep-
arates their basins of attraction. This is shown in
Fig. 31(a), using gray and red colors for the two
basins B(Q1) and B(Q2) respectively. In this figure
we can also see a dark blue region which is the set
of points having divergent trajectories, that is, the
basin of infinity, and its basin boundary includes the
stable set of some saddle cycle. As Fig. 31(b) shows,
as b is decreased the two basins B(Q);) exhibit more
and more convolutions around the origin, leading
to the creation of closed invariant curves, as shown
in Fig. 31(c). In this figure, besides the attracting
curve I' (whose basin is yellow), and the repelling
curve I, which is the limit set of the basins B (Qi),
we can also see that the stable set of the origin
shrinks towards O, and then an homoclinic tangle
will occur. Indeed, the enlargement in Fig. 31(d)
clearly shows that the stable and unstable sets of
O intersect each other, and we are inside the homo-
clinic tangle. After the second tangency the homo-
clinic points disappear leaving two closed invariant
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Fig. 31. Polynomial map (7) with parameters a = 0.2,
¢ =21,d= —1. (a) For b = —0.6 the basins of the sta-
ble fixed points Q1 and Q)2 are represented by the gray and
red regions, respectively, whereas the dark blue region rep-
resents the basin of infinity. (b) b = —0.685. (c) b = —0.69,
besides the two stable fixed points 1 and Q2 an attracting
closed curve I exists, whose basin is yellow. (d) b = —0.6934,
enlargement of a neighborhood of the saddle fixed point
O, the black line is the unstable set WY (0), the bound-
ary between the yellow, red and gray regions is given by the
stable set W2 (0). () b = 0.7, after the second tangency two
closed invariant repelling curves exist, that form the bound-
aries of the basins B(Q;), together with a closed attracting
curve, whose basin is represented by the yellow region, and
a stable 8-cycle, whose basin is green.
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repelling curves which are the boundaries of the
basins B(Q);), shown in Fig. 31(e). In Fig. 31(e) the
yellow region denotes the basin of the attracting
curve I while the green points represent the basin
of attraction of an 8-cycle born by a saddle-node
bifurcation.

In this family of maps, different from the pre-
vious ones, we are not trying to show the details of
the bifurcation mechanisms leading to the dynamic
situations described above, however, we believe that
they are similar to those observed in Secs. 3 and 4,
and qualitatively described in Sec. 2, even if they
occur in a very narrow interval of values of the
parameter b.
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