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Abstract

We undertake an analysis of the dynamic behaviour of a discrete time nonlinear monetary dynamics model under

perfect foresight expectations. The model derives its interest from the fact that it is a basic mechanism in a broad class of

descriptive macrodynamic models. Our analysis makes transparent the multivalued nature of the nonlinear perfect

foresight map governing price dynamics. This results in a number of possible discontinuous maps, all of whose

dynamics we analyze in response to an unanticipated monetary shock.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

An analysis of descriptive dynamic economic models under the assumption of perfect foresight (rational expecta-

tions in a stochastic setting) has been a feature of the economics literature for three decades. A common feature of many

such models is a saddle point structure which posed to early researchers the conundrum of how the economy could end

up on a non-divergent path, given that most initial conditions would otherwise place it on a divergent path. This

conundrum was resolved by the widespread adoption of the jump-variable technique, which relied upon the presumed

full-knowledge by agents of their economic environment. It was assumed that, armed with this knowledge and realizing

that the given initial values placed them on a divergent path, the agents would calculate the required change in initial

values that would place the economy on the stable branch of the saddle point, from where it would move towards the

equilibrium point. If there were some unanticipated change in some underlying economic parameter (e.g. change in the

money supply) that moved the economy to a new equilibrium point, then the agents would calculate the new jump

required in order to arrive on the stable branch of the new saddle point. Despite some misgivings about the conceptual

basis of this technique, see e.g. [1,2], it became standard practice in descriptive dynamic economic modelling. A good

recent exposition of the jump-variable technique is contained in [3].

The jump-variable technique originally arose in the context of the monetary growth dynamics model studied by

Sargent and Wallace [4] and further elaborated by Burmeister in [5]. The antecedent of this model is probably the work

of Cagan [6]. Whilst now-a-days the jump-variable technique is more likely to be encountered in models of exchange

rate dynamics (see e.g. [7]), it still warrants study in the context of the models of monetary growth as there the saddle

point structure implied by the perfect foresight assumption occurs in the lowest possible number of dimensions. This
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low dimensionality facilitates a study of the type of maps that arise in nonlinear perfect foresight models, which is the

aim of this paper. Conceptually one would expect that the economic behaviour we discover for the nonlinear monetary

dynamics model would carry over to nonlinear versions of other models, such as models of exchange rate dynamics.

However we must leave analysis of such models for future research for which the analytical framework of this paper

provides a conceptual basis.

In order to avoid the somewhat arbitrary nature of the initial jump imposed on prices by the jump-variable tech-

nique, Chiarella [8] proposed a nonlinear money demand function based on simple portfolio considerations. In this

setting when expected inflation becomes large positive (negative) the agents move towards holding all wealth in real

physical goods (money). If such a nonlinear money demand function is combined with sluggish price adjustment then,

in a continuous time setting, the economy is stabilized, with prices tending either to the steady-state point or to a

relaxation cycle. The nonlinear monetary dynamics model with perfect foresight being viewed as the limit of adaptive

expectations was analyzed fairly extensively in a continuous time setting in [9]. The analysis was taken further by

Flaschel and Sethi [10] who proposed a mechanism for overcoming an indeterminacy problem that can arise under

certain parameter constellations.

Since many economic applications involve use of a discrete time framework it is important to also fully understand

perfect foresight dynamics in this framework. In [9,11], Chiarella gave a very preliminary and incomplete analysis of the

adaptive expectations and perfect foresight mechanisms in discrete time. The discrete time framework poses a number

of problems compared to the continuous time one. Firstly in the discrete time framework it is not possible to proceed

via a continuous limiting process from adaptive expectations to perfect foresight, a procedure that helped considerably

to clarify the perfect foresight dynamics in continuous time. Secondly, in discrete time under perfect foresight the map

relating price at one time to price at the previous time may become multivalued. Economic agents thus face a number

of choices when calculating their expectation of the rate of inflation over the next period, any one of which results in

a discontinuous map for the price dynamics.

The aim of this paper is to undertake a complete analysis of the nonlinear monetary dynamics model under perfect

foresight expectations in discrete time. We discuss all of the discontinuous maps driving the price dynamics when the

aforementioned multi-valuedness occurs, and the different price dynamics that they imply. We also offer some rationale

for a choice between these various maps. In a companion paper [12], we analyze the corresponding discrete time adaptive

expectations mechanism.Whilst that framework does not pose the problem of multi-valuedness and discontinuous maps,

its main technical difficulty lies in the fact that the maps governing the price dynamics are multi-dimensional.

A better understanding of the dynamics of perfect foresight maps is relevant to the recent efforts of Chiarella and

Flaschel in [13] and Asada et al. in [14] to develop integrated disequilibrium macrodynamic models, in both open and

closed economics. The expectations processes contained in the models of these works have as their limiting behaviour

the perfect foresight maps studied in this paper. As such their properties may be one source of the rich dynamic

behaviour that the integrated disequilibrium macrodynamic models exhibit.

The structure of the paper is as follows. In Section 2 we review the model of monetary dynamics and set it up in

discrete time under perfect foresight expectations. We analyze the perfect foresight map that governs the price

dynamics. In Section 3 we discuss briefly a generalization of our analysis to the case of partial perfect foresight, which

may be considered as one way to capture bounded rationality. Section 4 concludes and makes suggestions for future

research.
2. The nonlinear monetary dynamics model under perfect foresight

The continuous time version of the nonlinear model of monetary dynamics consists of the price adjustment equation
_p ¼ a½m� p � f ðpÞ�; ð1Þ
where p is the logarithm of the price level, m is the logarithm of the money supply (here assumed constant) and p is the

expected rate of inflation i.e.
pðtÞ ¼ Et½ _pðtÞ�: ð2Þ
According to Eq. (1), the rate of change of price in the goods market depends on the excess demand for real bal-

ances. The function f is the logarithm of the demand for real money balances, which on the basis of portfolio con-

siderations explained in [9], is assumed to have the nonlinear form shown in Fig. 1.

If expectations are formed adaptively they would evolve according to
s _p ¼ _p � p ðsP 0Þ: ð3Þ
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Fig. 1. Nonlinear money demand function.
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In the special case s ¼ 0, Eq. (3) reduces to myopic perfect foresight, according to which
p ¼ _p: ð4Þ
Chiarella investigated the continuous time system (1) and (3), showing in particular that the cases s ¼ 0 and s ¼ 0þ

yield qualitatively similar dynamics. An advantage of viewing perfect foresight as the limiting case of adaptive

expectations in this way is that it makes clear how the perfect foresight dynamics become a relaxation cycle in the phase

plane of ðp; pÞ. An analysis starting from the lower dimensional perfect foresight model does not easily allow one to see

this feature. Chiarella also gave a brief analysis of a particular discrete time version of the perfect foresight case i.e. (1)

and (4). However a complete analysis of the discrete versions of (1) and (3) has never been undertaken, at least to our

knowledge. Such an analysis is the aim of this work.

In a certain sense the discrete time analysis of the nonlinear monetary dynamics model (1) and (4) is richer than the

continuous time analysis because a number of discrete time maps may be obtained depending on what we assume about

the information set of agents. In the analysis below we consider a family of maps that can arise in the discrete time

setting.

The discrete time version of the price evolution equation (1) is given by
ptþ1 ¼ amþ ð1� aÞpt � af ðpt;tþ1Þ; ð5Þ
where now pt denotes the logarithm of the price level at time t. In Eq. (5) the money demand function at time t depends
on the rate of inflation expected for the next period. More precisely, let Itþ1 ¼ ptþ1 � pt be the inflation rate at time t þ 1.

At time t the agents do not know the exact value of Itþ1 so that they have to form some expected value of it, which we

shall denote pt;tþ1, in order to emphasize that it is formed at time t for the next time period t þ 1. Thus
pt;tþ1 ¼ I ðeÞtþ1 ¼ Etðptþ1 � ptÞ: ð6Þ
To close the model given in (5) we shall here consider the perfect foresight case, in which agents are assumed to be

able to forecast at time t the exact value of the future inflation rate Itþ1 ¼ ðptþ1 � ptÞ, i.e.

pt;tþ1 ¼ Itþ1: ð7Þ
The perfect foresight hypothesis leads to a one-dimensional map in implicit form for ptþ1, namely
ptþ1 ¼ amþ ð1� aÞpt � af ðptþ1 � ptÞ; ð8Þ
obtained by substituting (7) in (5).

The perfect foresight map (8) will be studied in this section. Moreover we will show that the model (8) can be also

obtained by assuming that agents calculate pt;tþ1 from their knowledge of the mechanism of price formation. They are

assumed to know Eq. (5) from which they form
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Etðptþ1 � ptÞ ¼ am� apt � af ðpt;tþ1Þ;
i.e. they calculate pt;tþ1 according to
pt;tþ1 ¼ am� apt � af ðpt;tþ1Þ: ð9Þ
Solving (9) for pt;tþ1 as a function of pt the agents can then determine the price evolution equation by substituting (9)

into (5). The full details of this procedure are discussed in Section 2.1.

In passing we note that the framework of this section could be extended to allow a consideration of a type of

bounded rationality. In particular it could be assumed that the expectations are given by a weighted average of the

perfect foresight prediction and the previous expectation, i.e.
pt;tþ1 ¼ xItþ1 þ ð1� xÞpt�1;t ð10Þ
¼ xðptþ1 � ptÞ þ ð1� xÞpt�1;t; ð11Þ
where x is a positive constant, 06x6 1. This scheme could be interpreted as assuming that the agents are not fully

confident about their knowledge of the model, as they are in the perfect foresight case. Thus x could be interpreted as

the degree of uncertainty in the perfect predictor, so that x ¼ 1 means they are fully certain (giving the perfect foresight

model), whilst x ¼ 0 indicates a complete lack of confidence, in which case they remain with the previous prediction.

Eq. (10) in association with the price evolution (5) leads to the dynamic system for price and expectations given by
ptþ1 ¼ pt þ aðm� pt � f ðpt;tþ1ÞÞ;
pt;tþ1 ¼ xðptþ1 � ptÞ þ ð1� xÞpt�1;t;

�
ð12Þ
which is a two-dimensional map in implicit form for ptþ1 and pt;tþ1. We shall refer to (12) as the partial perfect foresight

model. This map will be discussed further in Section 3, though its full analysis is left for future research.

2.1. The perfect foresight map

If we assume the perfect foresight hypothesis then, as we have seen, we obtain the implicit model given in (8) for the

price dynamics, which we rewrite for convenience, as
ptþ1 ¼ amþ ð1� aÞpt � af ðptþ1 � ptÞ: ð13Þ
Rearranging (13) in order to try to make explicit the variable ptþ1 we obtain
ðptþ1 � ptÞ þ af ðptþ1 � ptÞ ¼ aðm� ptÞ
and defining the function
V ðxÞ ¼ xþ af ðxÞ ð14Þ
we can write
ptþ1 ¼ pt þ V �1½aðm� ptÞ� � F ðptÞ: ð15Þ
In (15) V �1 denotes the inverse function of V when V is invertible, or a suitable function defined by using one of the

inverses of V when V is not uniquely invertible.

It is also possible to arrive at the map (15) by assuming that agents calculate pt;tþ1 by using their knowledge of the

price formation mechanism, i.e. according to Eq. (9), namely
pt;tþ1 ¼ am� apt � af ðpt;tþ1Þ;
from which we obtain
pt;tþ1 þ af ðpt;tþ1Þ ¼ am� apt;
which may be written
V ðpt;tþ1Þ ¼ am� apt; ð16Þ
where V is the function defined in (14). Making explicit pt;tþ1 in (16) and substituting that expression in the law of price

dynamics (5), we obtain the one-dimensional map
ptþ1 ¼ amþ ð1� aÞpt � af ðV �1ðam� aptÞÞ: ð17Þ
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The model (17) is equivalent to the one (15). In fact, adding and subtracting to the left side of (17) the quantity

V �1ðam� aptÞ we have
1 Re

interva
ptþ1 ¼ amþ ð1� aÞpt þ V �1ðam� aptÞ � ðV �1ðam� aptÞ þ af ðV �1ðam� aptÞÞÞ
¼ amþ ð1� aÞpt þ V �1ðam� aptÞ � V ðV �1ðam� aptÞÞ ¼ pt þ V �1ðam� aptÞ;
which is exactly the map F of Eq. (15).

We shall refer to the one-dimensional map F in (15) as the perfect foresight map. In this section we study the

dynamical properties of the one-dimensional map (15), which depends on the shape of the function F , which in turn

depends on the invertibility of the function V . Some comments on the related dynamics shall also be given.
2.2. Graph of V and invertibility condition

It is clear from (15) that the properties of the map F will be very much determined by the properties of the function

V , and in particular on its inverse. So we turn first to a study of this issue.

In order to study the graph of the function V defined in (14), let us denote by uþ and u� the horizontal asymptotes

of the function f , whose qualitative graph is shown in Fig. 1, i.e.
uþ ¼ lim
p!þ1

f ðpÞ; u� ¼ lim
p!�1

f ðpÞ; ð18Þ
where we have uþ < u�, and let a be the absolute value of the minimum value of the first derivative of f , i.e.
min
p

f 0ðpÞ ¼ �a: ð19Þ
Regarding the function V , it is simple to see that the two parallel straight lines
y ¼ pþ au� as p ! �1;

y ¼ pþ auþ as p ! þ1
are its asymptotes.

The first derivative of V is 1þ af 0ðpÞ, so that when
a6
1

a
ð20Þ
the function V is an increasing function, and thus uniquely invertible. Its inverse V �1 is an increasing function with

asymptotes
y ¼ p� au� as p ! �1;

y ¼ p� auþ as p ! þ1:
A qualitative graph of V and its inverse when condition (20) is satisfied is shown in Fig. 2.

If condition (20) does not hold, the function V is no longer uniquely invertible and we have to decide how to

choose the branches of the inverses in order to have a well defined function. The general form of V in this case is

shown in Fig. 3, in which we have a maximum VM at p2ðVM ¼ V ðp2ÞÞ and a minimum vm at p1ðvm ¼ V ðp1ÞÞ. In the

same figure we have also indicated (to be used below) the point pe
2 which is the other preimage of V ðp2Þ and pe

1, the

other preimage of V ðp1Þ. Furthermore we note that pe
1 < p2 < p1 < pe

2. It is thus evident that V �1ðyÞ includes three

distinct points when vm < y < VM while it only includes one point for y < vm and y > VM. For this reason we say,

using the language of [15], that V is a function of type Z1 � Z3 � Z1,
1 whose inverse function is made up of one-three-

one branches, as qualitatively shown in Fig. 3. In order to obtain a well defined model we have to decide how to

choose V �1ðyÞ for vm < y < VM. If we choose the lower branch we would obtain for V �1 an increasing function,
call that the notation Zi ði ¼ 1; 3Þ denotes intervals whose points have the same number i of distinct rank-1 preimages; such

ls are separated by the critical points vm and VM.
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discontinuous at VM, with a jump of width ðpe
2 � p2Þ, as shown in the qualitative picture in Fig. 4a. If we choose the

upper branch we would obtain for V �1 an increasing function, discontinuous at vm, with a jump of width ðp1 � pe
1Þ as

shown in the qualitative picture in Fig. 4b. If we choose the middle branch we would obtain for V �1 a non-monotone

function, with two points of discontinuity, one at vm with a jump (p1 � pe
1Þ, and the other at VM with a jump

ðpe
2 � p2Þ, as shown in the qualitative picture in Fig. 4c.
2.3. The map F(p)

Having established the properties of the function V we now turn to a study of the map F . Recall that the function

F is defined in (15) according to
F ðpÞ ¼ p þ V �1ðaðm� pÞÞ:
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Thus F is obtained by adding p to the composition of V �1 with the decreasing function aðm� pÞ. The properties of

F can be deduced from those of V �1 considered in the previous subsection, so that F ðpÞ is a continuous function when V
is invertible, while it is a discontinuous function when V is not uniquely invertible.

It is easy to see that
lim
p!�1

F ðpÞ ¼ �1 if a < 1;
�1 if a > 1

�

and that F has the straight lines
y ¼ ð1� aÞp þ aðm� u�Þ;
y ¼ ð1� aÞp þ aðm� uþÞ

ð21Þ
as asymptotes, for p ! þ1 and p ! �1 respectively. These asymptotic properties hold independently of whether F
is continuous or discontinuous.

When the function F is continuous it has only one fixed point, given by
p� ¼ m� f ð0Þ; ð22Þ
since F ðpÞ ¼ p holds iff V �1ðaðm� pÞÞ ¼ 0; that is iff aðm� pÞ ¼ V ð0Þ, or alternatively iff aðm� pÞ ¼ af ð0Þ. When F has

some points of discontinuity, then the fixed point may not exist. However, when it exists it is given by (22).

Moreover, by using the properties of inverse functions, we obtain, in any point p in which F is continuous,
F 0ðpÞ ¼ 1� a
1þ af 0ðV �1ðaðm� pÞÞÞ ; ð23Þ
and in particular at the fixed point we have
F 0ðp�Þ ¼ 1� a
1þ af 0ð0Þ :
Proposition 1. If a < 1
1þa then the function F ðpÞ is strictly increasing.

If 1 < a < 1
a then the function F ðpÞ is strictly decreasing.

Proof. We note that F 0ðpÞ > 0 iff f 0ðV �1ðaðm� pÞÞÞ > 1� 1
a or f

0ðV �1ðaðm� pÞÞÞ < � 1
a. Since f

0ðpÞP � a for any p, it
follows that a sufficient condition to have F 0ðpÞ > 0 for any p is �a > ð1� 1

aÞ, that is, a < 1
1þa.

On the other hand F 0ðpÞ < 0 iff � 1
a < f 0ðV �1ðaðm� pÞÞÞ < 1� 1

a and a sufficient condition to have F 0ðpÞ < 0 for any

p is to have ð1� 1
aÞ > 0, that is, a > 1 and � 1

a < �a, that is, a < 1
a. h

While Proposition 1 gives sufficient conditions to obtain a strict monotone map F , the following proposition

enunciates conditions under which the fixed point is stable or unstable, and the global dynamics also stable or divergent.
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Proposition 2. If a6 1
a then

(a) F ðpÞ is a continuous function with F 0ðpÞ < 1 for any p;
(b) its unique fixed point, p� ¼ m� f ð0Þ, is globally stable for a < ba, where ba ¼ 2

1�2f 0ð0Þ;
(c) if a > 2 then F 0ðpÞ < �1 for any p, and the dynamics are divergent.
Proof. We recall from Section 2.2 that a6 1
a implies that V is invertible, moreover the same condition a6 1

a implies that

06 1þ af 0ðpÞ < 1 holds for any p, which implies that F 0ðpÞ < 1 for any p; and statement (a) follows. In particular the

condition F 0ðpÞ < 1 is satisfied at the fixed point, thus the stability condition given in (b) follows from F 0ðp�Þ > �1;
which holds iff
a < ba; where ba ¼ 2

1� 2f 0ð0Þ ð24Þ
so that ba denotes a flip bifurcation value for the fixed point. Statement (c) is obtained noticing that a sufficient condition

to have F 0ðpÞ < �1 for any p is a > 2, in which case every trajectory of the one-dimensional map p0 ¼ F ðpÞ is divergent,
except for the unstable fixed point. h

The following proposition is proved in Appendix A.

Proposition 3. At a ¼ ba ¼ 2
1�2f 0ð0Þ the map F ðpÞ undergoes a supercritical flip bifurcation.

2.4. Dynamic analysis of the map F(p)

Having clarified in the previous subsection the properties of the map F , we now turn to study the behaviour that

is implied for the price dynamics. We need to distinguish several cases.

2.4.1. F(p) continuous

Let us first consider the case in which F ðpÞ is continuous, occurring when V is invertible, i.e. when the condition a6 1
a

is satisfied.

For a6 1 we may distinguish several intervals for the parameter a in which the qualitative shape of the function F ðpÞ
is known, and thus also its possible dynamic behaviour:

• 1 < a6 1
a; then F 0ðpÞ < 0 for any p and F is a decreasing function (see Fig. 5a), thus the only possible attractors are

a fixed point, a 2-cycle, or a 2-cycle at infinity, that is divergence.

The fixed point p� ¼ m� f ð0Þ is stable if a < ba: The flip bifurcation value ba belongs to the interval ð1; 1aÞ for

� 1
2
< f 0ð0Þ < 1

2
� a. For example when 0 < a < 1

2
then 1 < ba < 1

a, while for 1
2
< a < 1 then ba > 1

1þa may be in any

interval. When p� is unstable ða > baÞ the attracting set is a cycle of period two as long as a 2-cycle exists at finite

distance, otherwise the dynamics are divergent. For a > 2 we have F 0ðpÞ < �1 for any p, so that all the trajectories

are divergent, except for the unstable fixed point.

• a ¼ 1; then F is a decreasing function (see Fig. 5b). If ba > 1 (which occurs if f 0ð0Þ > � 1
2
) then the fixed point is glob-

ally stable. If ba < 1 (which occurs if f 0ð0Þ < � 1
2
) then the fixed point is unstable and the attracting set is a 2-cycle

(globally attracting, except for the fixed point).

• 1
1þa < a < 1; then F is no longer a monotone function and its shape is illustrated in Fig. 5c. If ba < 1 (which occurs if

f 0ð0Þ < � 1
2
) then the fixed point may be stable or unstable. When it is unstable the more persistent attracting set is a

2-cycle, globally attracting, except for the fixed point. This is due to the fact that, if after the flip bifurcation the usual

period-doubling sequence of bifurcations occurs, also a reverse sequence of bifurcations, ending with a stable 2-cy-

cle, must take place. In fact, quite far from the flip bifurcation value, one periodic point of the 2-cycle becomes smal-

ler than the local maximum of F and the other periodic point higher than the local minimum of F , and the 2-cycle is

stable, because in these intervals we have the derivative 0 < F 0ðpÞ < 1.

• a < 1
1þa; then F 0ðpÞ > 0 for any p and F is an increasing function (see Fig. 5d), and since F 0ðpÞ < 1 the fixed point

is globally stable.

In the case a > 1 we have that 1
a < 1, and the invertibility of V occurs only in two intervals for a, in which the same

properties described above hold, that is:
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Fig. 5. The continuous map F . (a) a > 1, (b) a ¼ 1, (c) 1=ðaþ 1Þ < a < 1, (d) a < 1=ðaþ 1Þ.
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• 1
1þa < a6 1

a; F is not a monotone function and its shape is illustrated in Fig. 5c. Then the fixed point may be stable or

unstable. When it is unstable then the more persistent attracting set is a 2-cycle, globally attracting, except for the

fixed point.

• a < 1
1þa; F

0ðpÞ > 0 for any p and F is an increasing function (see Fig. 5d), with a globally attracting fixed point.

We can thus state the following:

Proposition 4. Let a6 1
a then the dynamics of the continuous map ptþ1 ¼ F ðptÞ are as follows:

• for a < ba every trajectory converges to the fixed point;
• for ba < a < 2 every trajectory, except for the fixed point, converges to a 2-cycle, or to a more complex attractor (cycle

of period 2i, i > 2, or chaotic set), but this occurs in a small range of a values;
• for a > 2 every trajectory, except for the fixed point, is divergent.
2.4.2. F(p) discontinuous

Let us now consider the case in which V is not invertible, that is a > 1
a. Then the map F is no longer continuous and

the points of discontinuity may be one or two (as occurs for the function V �1). Now the fixed point may also not exist,

in which case the attracting set is something more complex, we may have a cycle of any period, or also cyclical chaotic

intervals. When the fixed point exists, it may be stable or unstable (via a flip bifurcation), and now when it is unstable

the attracting set may be a 2-cycle, or a cycle of different period, or also cyclical chaotic intervals. Moreover, differently

from what occurs when V is invertible, now it is possible to have two coexisting attractors.

Let us consider first the case in which the function V �1 is defined as an increasing function with a discontinuity. Here

we study the case in which the discontinuity is in VM ¼ V ðp2Þ, the point where V attains its maximum, but analogous

results can be obtained in the case of discontinuity in the point where V attains its minimum, vm. In such a case we obtain
lim
p! m�V ðp2 Þ

a

� �þ
F ðpÞ ¼ m� V ðp2Þ

a
þ p2;

lim
p! m�V ðp2 Þ

a

� ��
F ðpÞ ¼ m� V ðp2Þ

a
þ pe

2
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and F has asymptotes given in (21). Moreover we can observe that
Fi
lim
p! m�V ðp2Þ

a

� �þ
F 0ðpÞ ¼ lim

p! m�V ðp2Þ
a

� �þ
1

�
� a
1þ af 0ðV �1ðaðm� pÞÞÞ

�
¼ lim

y!V ðp2Þ�
1

�
� a
1þ af 0ðV �1ðyÞÞ

�

¼ lim
y!V ðp2Þ�

1

�
� a
V 0ðV �1ðyÞÞ

�
¼ �1
so that the map F cannot be an increasing function. We distinguish two cases.

• a > 1; then the function F is decreasing, since its derivative is always negative, see Fig. 6. If p� exists and is unstable,

then for a > 2 every trajectory is divergent while for 1 < a < 2 the x-limit set of the map is a stable 2-cycle which

persists also when p� disappears as a varies. This is due to the fact that after the flip bifurcation, the periodic points

of the 2-cycle belong to intervals where �1 < F 0ðpÞ < 0.

• 1
a < a < 1; then the function F is no longer monotone, having in a right neighborhood of m� V ðp2Þ

a a minimum point,

as shown in Fig. 7. On the left of the discontinuity point, the function F can be increasing or not, depending on the

value of f 0ðpe
2Þ. If p� exists and is unstable, then the more persistent x-limit set of the map is a stable 2-cycle which

persists also if p� disappears. This is due to the fact that, if after the flip bifurcation the usual period-doubling se-

quence of bifurcations occurs, also a reverse sequence of bifurcations, ending with a stable 2-cycle, must take place.

In fact, quite far from the flip bifurcation value, one periodic point of the 2-cycle becomes smaller than the local

maximum of F and the other periodic point higher than the local minimum of F , and the 2-cycle is stable, because
( )π
αα

2V
m −( )π 2V

m −

*p

(a) (b)

g. 6. The map F as a discontinuous decreasing function. (a) The fixed point p� exists. (b) The fixed point does not exist.

( )π
α

2V
m −

Fig. 7. The map F as a non-monotone, discontinuous function.
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in these intervals we have the derivative 0 < F 0ðpÞ < ð1� aÞ < 1. While if p� disappears when it is stable then cycles

of higher period may appear, or cyclical chaotic intervals, and also two coexisting attractors may occur.

Let us now consider the case in which V �1 is defined as a non-monotone function, so that F has two points of

discontinuity in p1 ¼ m� V ðp1Þ
a and p2 ¼ m� V ðp2Þ

a with
lim
p!pþ

1

F 0ðpÞ ¼ þ1;

lim
p!p�

2

F 0ðpÞ ¼ þ1:
For p1 < p < p2 we always have F 0ðpÞ > 0 (i.e. an increasing branch). In the external intervals F may be decreasing

(when a > 1, since the slope of the asymptotes is ð1� aÞ < 0) (see Fig. 8), while for a < 1, since the slope of the

asymptotes is ð1� aÞ > 0 we may have increasing branches or non-monotone branches (see Figs. 9 and 10).

Regarding the dynamic behaviour, as in the previous case, when the fixed point is unstable or does not exist we may

have several different attractors. In addition two coexisting attractors may exist, depending upon the value of a.
As an example, let us consider the case in which the function f is defined as in Appendix B, and we fix the following

values of the parameters:
m ¼ 1; b ¼ 0:07; g ¼ 5; l ¼ 2
while the parameter a is varied.
1
p

2
p

Fig. 8. The map F with three monotone branches: two decreasing and one increasing.

1
p 2

p

Fig. 9. The map F with three increasing branches.



2
p

1
p

Fig. 10. The map F with three branches, two of them non-monotone.
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For a ¼ 0:35 the graph of F ðpÞ is qualitatively similar to that of Fig. 10, and we have the fixed point which is globally

attracting (see Fig. 11a). As a increases the fixed point will disappear (when p� merges with the discontinuity point p2)
after which we may have several kinds of attractors. A stable cycle of period 6 is shown in Fig. 11b for a ¼ 0:39, a stable
cycle of period 11, as shown in Fig. 11c for a ¼ 0:392, a cycle of high period (or chaotic intervals) as shown in Fig. 11d,

a cycle of period 5 and so on.
Fig. 11. Some attracting cycles occurring in the case of two discontinuity points. We fix m ¼ 1, b ¼ 0:07, g ¼ 5, l ¼ 2 and let a vary.

(a) Globally attracting fixed point. (b) An attracting cycle of period 6. (c) A stable cycle of period 11. (d) A cycle of high period

(or chaotic intervals).
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a+1

1
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decreasing or
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2

a

1 1
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1
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2
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Fig. 12. Summary of the different shapes of F , The dotted bold line denotes the interval in which the map F is uniquely defined. (a)

a < 1, (b) a > 1.
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Summarizing, the map F ðpÞ can assume different shapes, depending on the value of a: Fig. 12 gives an illustration

of the possibilities that may arise. Its dynamics are generally quite simple, either a fixed point or a 2-cycle. However, as

we have seen above, more complex dynamical behaviour may arise when the map is discontinuous.
3. A partial perfect foresight model

Let us consider the partial perfect foresight model (12), which we rewrite using the simpler notation pt instead of

pt;tþ1 as
ptþ1 ¼ pt þ aðm� pt � f ðptÞÞ;
pt ¼ xðptþ1 � ptÞ þ ð1� xÞpt�1:

�
ð25Þ
This is a two-dimensional map, in fact if we assume that at time t the price pt and the expected inflation rate pt�1 are

given by the model (25) we obtain the price ptþ1 of the next period and the expectation pt.

Substituting the second equation of (25) into the first one we get
ptþ1 ¼ pt þ aðm� pt � f ðxðptþ1 � ptÞ þ ð1� xÞpt�1ÞÞ; ð26Þ
which is an implicit equation from which we obtain ptþ1 as a function of pt and pt�1; with this value of ptþ1 we then

obtain pt.

Alternatively: substituting the first equation of (25) into the second one we get
pt ¼ xam� xapt � xaf ðptÞ þ ð1� xÞpt�1
from which
pt þ xaf ðptÞ ¼ xðam� aptÞ þ ð1� xÞpt�1 ð27Þ
that is
VxðptÞ ¼ gxðpt; pt�1Þ;
where VxðptÞ ¼ pt þ xaf ðptÞ and gxðpt; pt�1Þ ¼ xðam� aptÞ þ ð1� xÞpt�1. Observe that the function gx is linear in

pt and pt�1. Now, if VxðptÞ is invertible, then from (27) we can write pt as
pt ¼ V �1
x ðgxðpt; pt�1ÞÞ ¼ V �1

x ðxðam� aptÞ þ ð1� xÞpt�1Þ
which, coupled with the equation for the price ptþ1 obtained indifferently by the first or the second equation of (25),

yields the explicit two-dimensional map, i.e.
pt ¼ V �1
x ðxðam� aptÞ þ ð1� xÞpt�1Þ;

ptþ1 ¼ amþ ð1� aÞpt � af ðV �1
x ðxðam� aptÞ þ ð1� xÞpt�1ÞÞ

�
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or
pt ¼ V �1
x ðxðam� aptÞ þ ð1� xÞpt�1Þ;

ptþ1 ¼ pt � 1�x
x pt�1 þ 1

x V
�1
x ðxðam� aptÞ þ ð1� xÞpt�1Þ:

�
ð28Þ
In particular, we consider the case x ¼ 1. Since V1ðptÞ ¼ pt þ af ðptÞ ¼ V ðptÞ of Section 3, from (28) we can immediately

see that the model reduces to the map
pt ¼ V �1ðam� aptÞ;
ptþ1 ¼ pt þ V �1ðam� aptÞ

�
ð29Þ
which is the perfect foresight model. In fact the second equation of (29) is exactly the one-dimensional model (15) and

the first one the corresponding value of the expected inflation rate. The map (28) provides us with one way to study

price dynamics with boundedly rational expectations (at least in the sense discussed in this paper). It also provides us

with a higher dimensional map from which the one-dimensional perfect foresight map may be obtained via a con-

tinuous limiting process, namely x ! 1. It may be that an understanding of this high dimensional map and its x ! 1

limiting behaviour may give us some insights into how to choose between the various perfect foresight maps in the

discontinuous case. This task we leave to future research. We recall that in continuous time, the consideration of perfect

foresight as the limiting case of a higher dimensional model led to insights that were not possible in the lower

dimensional perfect foresight model.
4. Conclusion

We have set up a discrete time version of the nonlinear monetary dynamics model of Chiarella [8,9], and Flaschel

and Sethi [10] under perfect foresight expectations. We have made explicit the map driving the perfect foresight

dynamics and studied in detail its local and global dynamic features. Depending upon parameter constellations a fixed

point or a 2-cycle is generally the outcome. We have also proposed a more general boundedly rational perfect foresight

model that is more in keeping with the view that the limited information and computational ability of agents need to be

taken into account. This framework would be of particular use in incorporating bounded rationality into the open

economy integrated disequilibrium macrodynamic models in [14]. This task we leave to future research.
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Appendix A

Proof of Proposition 3. Looking for the existence of the 2-cycles of the map F ðpÞ, let us denote the periodic points by

p1 and p2, then, by using the definition of the function, these points must satisfy the equations
p2 ¼ p1 þ V �1ðaðm� p1ÞÞ;
p1 ¼ p2 þ V �1ðaðm� p2ÞÞ

ðA:1Þ
and thus also
V �1ðaðm� p1ÞÞ þ V �1ðaðm� p2ÞÞ ¼ 0:
In order to simplify the analysis, let us assume that V �1 is a symmetric function, satisfying V �1ð�zÞ ¼ �V �1ðzÞ. In this

case the condition given above is satisfied when
V �1ðaðm� p1ÞÞ ¼ V �1ð�aðm� p2ÞÞ;
that is, when 2m ¼ p1 þ p2 and substituting into (A.1) we have that the periodic points must satisfy the conditions:
p2 ¼ 2m� p1;
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2ðm� p1Þ ¼ V �1ðaðm� p1ÞÞ:
We note that we may rewrite the second condition as
2

a
aðm� p1Þ ¼ V �1ðaðm� p1ÞÞ
or
2

a
z ¼ V �1ðzÞ: ðA:2Þ
A 2-cycle exists when Eq. (A.2) has three solutions (the two periodic points and the fixed point). The graph of the

function V �1ðzÞ intersects the straight line from the origin with slope 2
a in two more points besides the origin only when

this slope is higher than the slope of the asymptotes of the function, and lower than the slope of the tangent in the

origin, that is when a satisfies
1 <
2

a
<

1

1þ af 0ð0Þ : ðA:3Þ
The conditions (A.3) correspond to the flip bifurcation condition (i.e. the two-cycle exists after the flip bifurcation of

the fixed point), a > 2
1�2f 0ð0Þ ¼ ba and to the non-divergence condition a < 2.

In the cases in which the function V �1ðzÞ is not symmetric, the computations are more complex, however similar

reasoning hold and similar conditions exist, in fact the conditions for the existence of a 2-cycle are found by looking for

the solutions different from zero of the equation
2� a
a

y ¼ f ð�yÞ � f ðyÞ:
In any case, whichever is the function V �1ðzÞ we note that
ba <
1

a
iff f 0ð0Þ < 1

2
� a;

ba > 1 iff f 0ð0Þ > � 1

2
:

Appendix B

In this appendix we describe a possible choice for the function f ðpÞ, whose qualitative graph is shown in Fig. 1,

which is the function used in our numerical simulations. The function f ðpÞ we consider is defined as
f ðpÞ ¼ 1� g
bþ e�lp

; ðB:1Þ
where the parameters g, b, l are positive. This f is defined in R and it is always positive if g=b < 1, and its two

horizontal asymptotes are
u� ¼ 1 if x ! �1;

uþ ¼ 1� g
b

if x ! þ1:
The function f is decreasing, since its derivative is given by
f 0ðpÞ ¼ � gle�lp

ðbþ e�lpÞ2
:

Furthermore f has an inflection point at
pf ¼ � log b
l

:

Then the minimum value of f 0ðpÞ in absolute value is
a ¼ jf 0ðpf Þj ¼
gl
4b

;
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and the absolute value of the derivative at 0 is
jf 0ð0Þj ¼ gl

ðbþ 1Þ2
:

Moreover we can observe that the function f ðpÞ is symmetric with respect to the point ð0; f ð0ÞÞ iff b ¼ 1; in fact the

symmetry condition f ðpÞ � f ð0Þ ¼ f ð0Þ � f ð�pÞ for any p reduces to
ðb� 1Þðelp þ e�lp � 2Þ ¼ 0;
which is true for any p iff b ¼ 1.
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