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Abstract

We undertake an analysis of the dynamic behaviour of a discrete time nonlinear monetary dynamics
model with adaptive expectation that is a basic mechanism in a broad class of descriptive macro-
dynamic models. We consider in particular a variety of ways in which the adaptive expectations
mechanism may be formulated. These differ in the degree of rationality of the economic agents that
inhabit the model. We study in detail the local and global properties of the maps determining the price
dynamics.
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1. Introduction

Until the time of the rational expectations revolution in the early 1970s adaptive
expectations was a common mechanism for modelling expectations in many dynamic
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macroeconomic models. The change in viewpoint on expectations modelling sparked by
Sargent and Wallace (1973) and many subsequent authors caused the profession to regard
adaptive expectations as a totally unsatisfactory explanation of expectations formation. It
might even be fair to say that the concept itself was “excommunicated” from the economic
order.

The main reason for the strong rejection of adaptive expectations had much to do with
the linear framework in which it was applied. In that framework the dynamic models have
unique steady states that are either stable or unstable (except for borderline cases of measure
zero). Since instability in linear models can only lead to explosive outcomes, such cases
were usually excluded by assumption on the range of model parameters under consider-
ation. In the stable case economic agents would find themselves on either monotonic or
damped fluctuating paths moving towards the steady state. The argument of the Rational
Expectations School was that on such paths agents would realize that, even in the presence
of some background noise, their expectations were consistently wrong and would therefore
change their expectations formation scheme (of course to rational expectations).

What the arguments against adaptive expectations overlooked was the fact that the linear
models frequently used in economics are usually an approximation to some underlying
nonlinear model. If parameter sets for which the steady state is locally unstable are admitted,
then as the paths move sufficiently far from the steady state the linear approximation breaks
down and one needs to consider the nonlinear nature of the economic mechanism in order
to obtain a true picture of the dynamics. When one takes into account the fact that nonlinear
dynamical systems can produce dynamic paths that are not so regular and predictable, one
of the major arguments against adaptive expectations does not seem so strong. Points along
this line have been raised by George and Oxley (1985), Chiarella (1986, 1990), Oxley and
George (1994) and Flaschel and Sethi (1999).

Arguing from a different perspective Burmeister (1980) pointed to a number of concep-
tual difficulties raised by the rational expectations approach. It is worth noting also that
there is some evidence from experimental economics that economic agents do often adapt
in the lagged fashion suggested by adaptive expectations. See in particular Hommes et al.
(2000) who carried out experiments in the context of the cobweb model.

Advances in our understanding of nonlinear dynamic phenomena over the last decade
have made even more pertinent the critique against the too rapid rejection of adaptive
expectations by the earlier cited authors. These authors typically had in mind the possibility
of chaotic dynamics as the reason that agents would not be able to discern so easily that they
were consistently forming wrong expectations. Thanks to the work of Gumowski and Mira
(1980), Mira et al. (1996) and Abraham et al. (1997) we now appreciate that the underlying
nonlinear dynamical systems referred to above may display a range of other phenomena
such as coexisting attractors with non-connected basins of attraction and various types of
local and global bifurcations. This rich array of possible dynamic outcomes implies that
a nonlinear model in which agents use adaptive expectations, particularly in an economic
environment that is noisy, may not tend to paths along which agents can readily see that
they are consistently wrong.

The aim of this paper is to revisit one of the basic models of adaptive expectations in a
nonlinear framework and analyze its dynamics in light of the advances in our understanding
of nonlinear dynamic maps that has occurred over the last decade. The model that we take is
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essentially the original one considered by Sargent and Wallace and extended to a nonlinear
form by Chiarella (1986, 1990).

On the one hand the model is of historical interest as it is the one within which many
of the essential early ideas of the rational expectations revolution developed. On the other
hand it is of current interest as it is the basic expectations mechanism at work in the range of
descriptive macrodynamic models considered by Chiarella and Flaschel (2000) and Flaschel
et al. (2001).

In Section 2 we outline the nonlinear monetary dynamics model and in particular motivate
the nonlinear money demand function. In Section 3 we discuss the adaptive expectations
mechanism, focusing attention on the point in time when agents form expectations and
in particular on the information available to them. We also consider the consequences
of allowing the agents a certain degree of rationality in that they might know the price
formation rule of the market. In Section 4 we analyze the dynamic map that arises under
the various adaptive expectations schemes discussed in Section 3. It turns out that all cases
can be reduced to a study of the one two-dimensional map whose local and global stability
properties we analyze in detail. This analysis indicates arich array of dynamic outcomes such
as simple cycles, multistability and period doubling bifurcations. Section 5 discusses the
economic consequences of this rich array of dynamic behaviour. We trace out the impact of a
monetary shock. We also consider the impact of a noisy economic environment in particular
noise in the agent’s speed of adjustment of expectations. In the standard linear analysis such
noise does little more than add a little noise around the underlying monotonic or oscillating
price paths. However in the nonlinear model the underlying phenomena of multistability
and bifurcations lead to far more complicated paths along which agents would find that
expectation errors are unpredictable. Section 6 concludes. The appendices (available on the
JEBO website) contain lengthy technical derivations.

2. The nonlinear monetary dynamics model

Economic agents are assumed to allocate their wealth between a physical good and
money. The good price adjusts with a lag to excess money demand according to

p=alm—p— f@] Sy

where p is the logarithm of the price level, m the logarithm of the money supply (here
assumed constant) and 7 the expected rate of inflation, or

(1) = E[p(0)]. @)

The function f is the logarithm of the demand for real money balances and because of

portfolio considerations (see Chiarella, 1990) is assumed to have the nonlinear form shown

in Fig. 1. This ensures that agents shift their portfolio allocation between money and the

physical good towards the physical good (money) as expected inflation tends to +00 (—00).
Agents are assumed to form expectations adaptively according to

mm=p—m (tr=>0), (3)
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Fig. 1. Nonlinear money demand function.

which when 7 =0 becomes the case of myopic perfect foresight, namely

T = p. “)
Chiarella investigated the continuous time system (1) and (3), relying on the fact that the
cases T=0 and 7=0" yield qualitatively similar dynamics. He was thus able to obtain
insights into the dynamics of the perfect foresight case that could not be obtained by
considering (1) and (4) directly. In particular he found that the perfect foresight limit is
characterised by relaxation cycles. Flaschel and Sethi further clarified the dynamics of
the continuous time price dynamics (1) under the perfect foresight assumption. Chiarella
also gave a brief analysis of a particular discrete time version of the perfect foresight case,
that is (1) and (4). However to our knowledge a complete analysis of the discrete versions
of (1) and (3) has never been undertaken, either in the case of perfect foresight, or in
the case of adaptive expectations. In a companion paper (Agliari et al., 2004) we give a
detailed analysis of the discrete time perfect foresight model. In this paper we analyze the
corresponding adaptive expectations models. We study not only local stability properties
but also give an analysis of the global dynamics.

In a certain sense the discrete time analysis of the monetary dynamics model under
adaptive expectations is richer than the continuous time analysis because a number of
discrete time maps may be obtained depending on what we assume about the information
set of agents. In the analysis below we consider a set of maps that can arise in the discrete
time setting. Most of these maps allow the agents to have some knowledge of the economic
environment that they inhabit (i.e. the model) when they form expectations and hence are
at least partially rational in the now traditional sense. We also formulate the map for the
case that we call traditional adaptive expectations: agents form expectations based solely
on knowledge of past prices (and past expectations). We shall see (what may be a surprising
result) that such a map is exactly the same as the one that we obtain assuming that the agents
are partially rational, when they are assumed to have some knowledge about the “rule” for
the price formation.
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We analyze in some detail the qualitative properties of the various maps. The main ques-
tion we seek to investigate is the extent to which the qualitative dynamics of the monetary
dynamics model change (or remain invariant) with the differing assumptions about the
information set of agents.

3. Adaptive expectations

The discrete time model for the price evolution is given by

pry1 =am+ (1 —a)p, — af (7w 141), (5)

where, as in the continuous time case, p; is the logarithm of the price level at time ¢, 7/ 41
the expected rate of inflation over the time interval (¢, £+ 1), m the logarithm of the money
supply (assumed constant), and « a positive constant, denoting the speed of adjustment of
the price to the excess money demand. In fact Eq. (5) can be rewritten as

Pr1 = pr +am — py — f(mwr41)),

and m? = pt + f(7s14+1) is the logarithm of the money demand at time ¢, which depends
on the expected rate of inflation for the next period. More precisely, let ;11 =p;+1 — pr be
the inflation rate at time #+ 1. At time ¢ the agents do not know the value of 1,,1, so they
have to consider some expected value of it, which we denote by ;1,1 in order to emphasize
that it is formed at time ¢ for the next time period 7+ 1, that is
Toarl = 1) = Ef(prat —

tr+1 +1 1(Pt+1 — Do) (6)
In the economics literature different mechanisms have been proposed by which agents
obtain the expected value in (6). The aim of this work is to analyze and compare the
different dynamic models that arise when the expectations mechanism is varied in ways to
be made precise below.

3.1. Traditional adaptive expectations—time sequencing

In the case of traditional adaptive expectations we assume that at time ¢ agents form their
expectations only making use of past observations of prices and expectations. Following this
interpretation, we assume that agents at time # know the price p;, the most recent inflation
rate I;=p; — p;—1 and the expectation they have made for I; in the previous period, i.e.
m:—1,+ The agents then calculate the new expectation for I;41, 7441, assuming the standard
adaptive expectations mechanism that takes a weighted average of the most recent inflation
rate and the most recent expectation, namely

Tt t4+1 = wl; + (1 — w)ﬂt—l,t @)
=w(pr — pi—1) + (1 — 011 4. (8

In this particular situation the agents modify their previous expectation (77;—1 ) taking into
account the forecast error observed (I; — m;—1,), weighting it with w, O<w < 1. It is well
known (e.g. Gandolfo, 1997) that by a process of continual back-substitution (7) is equivalent
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to a geometrically decreasing weighted average of past inflation rates. Obviously w=1 in
(7) gives the particular case known as the static expectations scheme:
Tri+1 = It = pr — pr-1. 9

Such a naive learning scheme implies that agents expect in the next period that the rate of

inflation assumes the same value as today, It(_i)] = 1.
Coupling the traditional adaptive expectations scheme (7) with the price adjustment
equation in (5) we obtain

11 = 0(pr — pr—1) + (1 — )1

(10)
pr+1 = am + (1 — o) pr — otf (71,141),
which by substituting the first equation into the second one may be written
b1 =w(p; — pi—1) + (1 — w)m;—
tt+1 (pr — pr—1) + ( MTe—1,t (11

Pyt =am + (1 —a)p; — af(@(pr — pr—1) + (1 — @)—1,1).

The model (11) is a three-dimensional map in p;—1, p; and m,—1; (as three values are
necessary to start the iterations and to proceed from one time step to the next), that is

Tro41 = F(Pr—1,1—1,1,P1)
Pt+1 = G(pt—la T[t—l,l,pt)a

where the functions F and G are defined by the right-hand sides of (11).
Note that when considering w=1 in (10) we obtain a two-dimensional model for the
static expectations scheme, namely

prv1 =am+ (1 —a)p, —af(pr — pr—1), (12)

in which the price at time ¢+ 1 depends on previous prices at time ¢ and ¢ — 1. The analysis
of the model (12) will thus be inserted into a more general setting, as a particular case of
the traditional adaptive expectations model.

We must take care in interpreting the model in (10), in particular with respect to the
information set of the agents when they form the expectation 7, ;. From the given initial
values (p_1, m—1,0, po) at time =0 the system evolves according to

(wo,1, p1) = (1,2, p2) = -+ = (W1, Pr1) = (Tig1,042, Prg2) —> -+

that is, at time ¢ agents are assumed to know the actual price py, that of the previous period
pi—1, and the old expectation m;—1,, then they first compute the next expectation ;s
after which the next price p+1 evolves according to the “market rules” that may be totally
unknown to the agents.

A different assumption may be made, leading to what may seem a different model.
Assuming that at time ¢ agents observe the price p; and have formed the expectation 741,
then the next price ps1 evolves according to the “market rules” after which they form the
next expectation 741 r4 taking into account the new price, that is, assuming that the agents
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“know the market rules” (i.e. the price formation mechanism). The model, in the following
denoted as the forward looking adaptive model, can be written as

Pir1 =am+ (1 —o)p, — af (7wy441)

(13)
Tit1,042 = O(Pry1 — pr) + (1 — @)1 141,
or also, substituting the first equation into the second one,
=am+ (1 —o)p —af(r
Pi+1 ( )Pr — otf (e p41) (14)

41,042 = wa(m — p; — af(ﬂt,t+1)) + (1 - W)TT1141.

The model in (14) is a two-dimensional map in p; and 7, s1. From the given initial values
(po, m12) at time ¢=0 the system evolves according to

(p1.m12) = (P2, m2,3) = -+ = (Pr, Tpt1) = (Prtl, Trp1,e42) —> -

When the expectations scheme is viewed in this way agents seem to have “more informa-
tion” than one assumes in the traditional adaptive expectations scheme. To some extent the
difference in viewpoint arises because we imagine in one scheme that the agent stands at
the beginning of the time interval, but at the end of the time interval in the other scheme.

The two models (10) and (13) so obtained mathematically also differ in order (the first
model being a three-dimensional map and the second one a two-dimensional map). We
may expect some relation between the two models when the initial conditions p_; and pg
at time #=0 are suitably chosen. In fact, if in (10) the price py is fixed according to the law
of price formation, po=am+ (1 —a)p_; —af(w_1 ), then the two models behave in the
same way. For that reason it is natural to conjecture that their dynamics are correlated in
spite of the different dimension of the phase space. However, in Section 4 we shall see a
stronger result: that the two models are essentially the same. In fact, we shall see that given
arbitrary initial conditions (p_1, w—_1.0, po) (10), in one iteration the agents learn the market
rules: the computed value 7o =w(Po —p—1)+ (1 —w)mw_1 o with the initial condition pg
gives rise to the same sequence of values that is obtained with the model (13) with the initial
conditions (po, 7o,1). Thus, as we shall see in Section 4, we ultimately only have to study
a two-dimensional map in order to analyze the traditional adaptive expectation scheme.

3.2. Delayed adaptive expectations

The difference in the adaptive expectation learning schemes of the previous subsection
is due to the sequential structure of the model. In other words, the two models we have
introduced differ in the sequence of computations: in the traditional adaptive model we
first compute the expectation and then the price; in the forward looking adaptive model
the process is inverted, first we obtain the price and then the expectation. This difference
is avoided if we introduce a different assumption on the price formation mechanism. Let
us assume that the agents know the actual price py, the price of the previous period p;_1
and the last expectation m;—;, Then the next price p;1 evolves according to the “market
rules”, using the known expectation, and agents form the next expectation ;141 taking into
account only known data, so that the model becomes (note the use of ;_;, in the money
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demand function f)

pir1 =am+ (1 —a)p, — af(w-1.1) (15)
Tri+1 = o(pr — pr—1) + (1 — @)w—1 4,
where agents use the adaptive expectations mechanism:
Tt t41 = wl; + (1 — w)ﬂt—l,t (16)
=w(p: — pi—1) + (I — )11 a7

It is immediate to see that it is unimportant which one of the two equations in (15) is
computed first. The resulting model, which we call delayed adaptive expectations, is a true
three-dimensional map.

We note that the same model also describes a different assumption on the adaptive
expectation scheme, that is, we may assume that the known data at time ¢ are the actual
price py, the price of the previous period p;—1, and the expectation ;1. Then the next price
pi+1 evolves according to the “market rules” using the known expectation, and agents form
the next expectation 7,41,,42 taking into account only known data:

Prr1 = am + (1 —a)pr — af (7r141) (18)
Tit1,042 = O(pr — pi—1) + (1 — @) 141,
where agents now use the delayed adaptive expectations mechanism:
Tiyt42 = 0l + (1 — ) 141 = o(pr — pi—1) + (1 — @) 141. 19

It is clear that mathematically the two models, in (15) and in (18) are the same; they only
differ in the “economic interpretation” of one state variable (the expectation). In fact, let us
denote by R; the “known” expectation at time ¢, and by R the new “computed” expectation,
then both models read as

pry1 =am+ (1 —a)p, — af (Ry), Riyi=w(p;—p—1)+ 0 —w)R; (20)
where
Riy1 = ol + (1 — 0)R; = w(p; — pr—1) + (1 — w)R;.

The difference between the two models is that in (15) R, is taken to be 7,1 ; and in (20) to be
7 1+1- A study of the dynamical behaviour of this three-dimensional map is given in (Agliari
et al., 2002), who in particular analyze the dynamic consequences of its noninvertibility
property.

4. Analysis of adaptive expectations maps

In this section we analyze in detail the characteristics and the dynamic behaviour of the
adaptive expectations maps that we set up in Section 3.
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4.1. The traditional adaptive expectations map

Let us rewrite the traditional adaptive expectations model in (11) as a three-dimensional
map, simplifying the notation by using 7, to denote 7y s.1.
Thus we define the map M as
qi+1 = Pr
M: Qw1 =o(pr—q) + (1 — o) . 2D
pr+1 =am + (1 —o)p; — af (o(pr — g1) + (1 — w)my)
From the Jacobian matrix DM of M, given by

0 0 1
DM = —w 1l—w w ,
aof'(r) —a(l —w)f'(r) 1—a—awf'(7)
it is easy to see that for any vector (g, 7, p) the Jacobian determinant vanishes, detDM(gq,
7, p) =0, which implies that in any point of the phase space one eigenvalue is equal to zero.

From this consideration it follows that there ought to exist a two-dimensional invariant
surface on which the dynamics will take place. We can in fact state

Proposition 1. The set A={(x,y,am+ (1 —a) x — af(y)): (x, y) € R?} is a trapping set for
the map M: M (A) C A.

Proof. The assertion follows by showing that P’ = M(P) € A for any P € A.

Let P=(x, y, am+ (1 — &) x — af{y)), then the first and the second components of P’ are

P, =am+ (1 —a)x — af(y),
P;za)oz(m—x—f(y))—i—(l — )y,

and the third one is
P, =am+ (1 — a)am + (1 — a)x — af ()] — af(@a(m — x — f(y)) + (1 — w)y)
= am + (1 — @) Py — af(P)).

We conclude that P’ = (Py, P;, om+ (1 —a)P, — af(P;)) cA.

An example of the two-dimensional surface in R which follows from Proposition 1 is
shown in Fig. 2. The function f used to calculate this surface is described in Appendix A.
The trajectories starting in A belong to it forever, while any point not belonging to A is
mapped into A in one iteration.

The dynamics in the set A are given by the restriction of the map M to A, that is by the
map

{xm = am + (1 — a)x; — af () )

Vit = wa(m —x; — f(y) + (1 — o)y
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Fig. 2. The trapping set A when f{rr) is the function described in Appendix A.

which is exactly the map in (14), with x = p; and y = 7; 1 However in the three dimensional
map the variables are either x = g; = p;_1 and y = 7y, or x = g;+1 =p; and y = 7411 as we shall
explain below.

It follows from the proof of Proposition 1 that on the two-dimensional surface A the map
M in (21) can be rewritten as

gr+1 = am + (1 — a)gr — af (m;)
My : § 71 = walm — q; — f(m) + (1 — o), (23)
pre1 = om + (I — a)gr1 — of (Te41)
The Jacobian matrix of M is
l—«o —af'(m) 0

—oo 1 — o — waf'(7) 0

(1= )M gy L (1 gy Ly L

dq aq o o
Now it is easy to see, on comparing J with the Jacobian matrix of the two-dimensional map
in (22) (as we shall see also in the next subsection), that the eigenvalue associated with the
transverse direction to the set A is exactly the eigenvalue 0, which is an attracting direction.
More precisely, any point of the three-dimensional space belonging to a one-dimensional

0
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manifold issuing from a point (x, y) of the surface A, tangent to the eigendirection associated
with the eigenvalue zero in (x, y), is mapped onto (x, z) in one iteration.

In other words, let us consider a generic initial condition for the map in (21), say (p_1,
T_10,po)attimet= 0,! then the first computed value 7w 1 = w(po — p—1) + (1 — w)mw_1 o with
the other initial condition pg being such that the three dimensional model can be studied with
the two-dimensional map in (22) with the initial conditions (p, ) = (po, 70,1 ). Alternatively,
given any initial condition (p_1, 7_1,0, po) in (21) at time #=0 belonging to the surface A
(so that it is true that po=am+ (1 —a)p_1 —afimr_19)=am+ (1 —a)qo — af(r_1p)) then
the same sequence of values of the three-dimensional map can be obtained from the two-
dimensional map in (22) with the initial conditions (p, 7)=(p—1, T—1,0).

From the above arguments we conclude that the dynamical properties of the map M are
the same as those of the map 7 below, which gives the dynamics on the trapping set A. The
analysis of the two-dimensional map will be the object of the next subsection.

4.2. The forward looking adaptive expectations maps

We consider the two-dimensional model in (13), which we rewrite, for the sake of

/o

simplicity, using the advancement operator “’”” as
'=am+ (1 — —af(m
T p/ am + (1 —a)p — af(r) (24)
7 =waim—p— f(m)+ 1 —-w)r

where o >0, 0 <w < 1 are the parameters of the model, and f{7) is a generic function whose
qualitative shape is given in Fig. 1. To study the model given in (14) we set (p, w)=(p;,
Tier1) and (p/, ') = (Pt1, a1 142), While in the study of the map given in (21) this two-
dimensional map (24) governs the dynamics on the invariant two-dimensional surface A so
that given any initial condition (p_1, 7_10, po) in (21) at time #=0, then either it belongs
to A (so that it is true that po=am+ (1 —a)p_1 — af(m_10) and the dynamics are studied
by the map in (24) with the initial conditions (p, m)=(p—1, T—1)), or not (in which case
the first computed value is 7 1 = w(po —p—1) + (1 — w)mw_1 o and the dynamics are studied
by the map in (24) with the initial conditions (p, ) = (pg, 70,1))-

In this section we consider the dynamic properties of the map 7 in (24) and in the local
and global bifurcations eventually arising in the phase plane.

4.2.1. Fixed point and local stability
As usual, the fixed points of the map T are obtained by looking for the solutions of the
system (24), such that p’=p=p" and 7’ = =7":

{p* =am+ (1 — a)p* — af(n*)

= wa(m — p* — f(@*)) + (1 — w)7*.

! For the sake of clarity, in the following comments we maintain the full notation of indices in the expectations,
as used in Section 2.
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It is easy to see that the map 7 has a unique fixed point given by
P* = (m = £(0),0). ()

Observe that if the function f(r) is symmetric with respect to the point (0,f(0)), then the map
T in (24) is a symmetric map with respect to the fixed point. In fact the map 7 is topologically
conjugate to the map

[P =0 —op—a(m - 70)
51\ 7' = —walp+ (F(0) — FON) + (1 — )’

via the homeomorphism ¢ (p, )= (p +m+£(0), ), and the map Ts, which has the fixed
point (0, 0), is symmetric with respect to it since

Is(—p, —m) = [-(1 —o)p — a(f(—m) — f(0)), —wa(—p + (f(—m) — f(0)))
—(1 — o)) = [ — @) pFa( f(m)— £(0)), wa(p + (f(m)— f(0))) — (1 — w)7],
= —TS(p» JT)

In order to study the local stability of the fixed point, we use the Jacobian matrix of 7, given
by

(26)

J(p’”)zll_a —af'(7) 1

—wa  —owaf'(m)+1—ow

(note that the Jacobian matrix does not depend on m). Evaluating J at the fixed point we
obtain

1— —af’(0
JF = J(P*) = * o0 :
—wa  —waf'(0)+1—w
so that det/" =(1 — ) (1 — &) — waf’(0), trJ" =2 — o — w — waf (0). The local stability

conditions are thus given by
@l —trJ*+detJ* =wa >0
O 1+trJ*+detJ* =2 —a)2—w) —2waf (0) >0 27)
(©) 1 —detJ* = —wa+ a+ o+ waf'(0) > 0.

Since condition (27a) is always satisfied, the stability conditions of the fixed point P* reduces
to the region of the parameter plane («,w) in which (27b) and (27¢) hold. Thus the stability
region is bounded by the two hyperbolas

[(1 =2 (0D — 2] = 2(c - 2), [(1 = f(0)a — o = a. (28)

A qualitative sketch of the stability region in the parameter plane (¢, ) is given in Fig. 3,
and we can see that a stable fixed point may become unstable either via a flip bifurcation
when the parameters (o, w) cross the first hyperbola (the dark grey curve whose equation is
given in (28a)), or via a Neimark—Hopf bifurcation (with complex eigenvalues) when the
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Fig. 3. Stability region of P* when the function £ is the one described in Appendix A, with b=1, g=4.5 and
n=04.

parameters (o, ) cross the second hyperbola (the light grey curve whose equation is given
in (28b)).

Proposition 2. The flip bifurcation arising when the curve
2 — )2 — w) — 2waf'(0) =0

is transversely crossed is of subcritical type.

A proof of Proposition 2 is given in Appendix B.

As we shall see in the numerical examples, the unstable 2-cycle, which must be of saddle
type when the parameters are close to the flip bifurcation curve, plays an important role in
the global dynamics as its stable set bounds the basin of attraction of the stable fixed point.

4.2.2. Invertibility of T

In the study of the global properties of the map 7, an important role is played by the
invertibility of the map 7. In fact, if the map is noninvertible, some global bifurcations
can be explained by the folding action of the map on the plane. In particular, the global
bifurcations, also called “contact bifurcations” (e.g. Mira et al., 1996) and arising when the
frontier of a basin or the boundary of an attractor has some contact with the critical lines
of the map, cause important changes in the topological structure of the basin (in the first
case) or in the attractor (in the second case). This happens because the critical lines separate
zones of the plane whose points have a different number of rank-1 preimages,? and then

2 Given a n-dimensional map F: R" — R" and a positive integer r we say that the point y is a rank-r preimage
of the point x if F" (y)=x, that is if y is mapped into x in r iterations.
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after the occurrence of each contact a set, say H, of points of a basin (or of an attractor)
belongs to a different zone. Then the points of the set H have a different number of rank-1
preimages; that is, preimages may appear or disappear. These preimages, which have the
same asymptotic behaviour as the points of H, may be located far from H, creating, for
example, new disconnected components of a basin or holes in some old basin, thus causing
the transition of a basin into a disconnected or a multiply-connected set.

In order to study the invertibility of the map 7 in (24), we have to find the preimages of
a given point (u, v), that is, to look for the solutions (p, ) of the system

u=oam+ {1 —a)p—af(r)
v=wa(m—p— f(@)+ (1 —ow)r

which is equivalent to

v l—w
p=u——-+ b/ 4
w w
29)
1— 1-—
fm) = 7( X a)n'—i— h(u, v)
wo
where
1—
h(u,v) =m —u — av.
wa

From the second equation in (29) we see that the number of preimages depends on the
number of intersections between the graph of the function f{r) and the straight line whose
equation is given on the right side, with slope % Thus we deduce that the map may
be invertible (for example when (1 — w) (1 — ) >0, as then only one solution exists for any
point (u, v)), or three solutions may exist, at least in some region of the phase plane. This
means that for a suitable choice of the parameters (¢, w) the map is non-invertible and of
type Z1—Z3—Z1, that is; in the phase plane there is a zone of points with three preimages,
Z3, while a unique preimage exists in Zj. Such zones are separated by the critical line LC,
the locus of points having merging rank-1 preimages.

The preimages of the points of LC belong to the critical line of rank-0, LC_1, which in
our case, given the differentiability of the map T, is the set

LC_; ={(p,m) : |J(p,m)| =0}

where |J (p, m)| is the Jacobian matrix determinant. By straightforward computations, from
(26) we obtain that LC_ exists, with equation 7 =k (a constant), when the equation

oy~ (=@ =)
wo

has a solution k.

From the properties of the function f, we deduce that the map T is noninvertible if

(I-o)1-ao
—A< e <
w

0

where —a is the minimum of the derivative of f.
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Noninvertibility

- / region

Noninvertibility
region

9 0 I

(a) (b)

Fig. 4. Noninvertibility and stability region in the case (a): f'(0)> —% and (b) f (0)<— % The darker grey region
is the subset of the stability region in which the map is noninvertible.

Fig. 4 shows both the noninvertibility region and the stability region in the case f(0) > — %
(Fig. 4a) and the case ' (0) < —% (Fig. 4b).
Using as a specific example the class of functions f{7) introduced in Appendix A, the
critical line LC_ is obtained by looking for the solutions of the equation
gue M (I -w)l -0

C(b4enm? wa

(30)

which exist if
sK (I-w)(a—1)
4b o '
In such a case straightforward computations show that there exist two solutions of Eq. (30),
given by
1. =2b(1 — )1 — w) — guaw + /A
n
m (11—l —w)

lln —2b(1 — a)(1 — w) — gpaw — A
w (1—a)l —ow)

where A = gu (gu + 4b%), so that LC_; is given by the union of two vertical

lines

LC_; = LC® ULC®) = {r = 11} U {7r = m2)
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Fig. 5. The subcritical flip bifurcation.

and, as a consequence, the critical line LC is given by two distinct branches, being
LC = T(LC_;) = TLCY) U T(LC®) = LC® uLC®),

These lines are indicated in Fig. 5 (as well as in Figs. 6 and 7).

With the same class of functions we have investigated some aspects of the dynamic
behaviour of the map. As we know from the properties of the stability region, the fixed
point may become unstable either via a flip bifurcation or via a Neimark—Hopf bifurcation.
Examples of both these situations is briefly described below. These examples are obtained
with T symmetric (i.e. with b = 1), but analogous dynamics can also be found in the generic
case.
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Fig. 7. Sequence of period doubling bifurcations.

4.2.3. Crossing the flip bifurcation curve

In the previous subsection we have seen that the flip bifurcation is of sub-critical
type: when the fixed point P* is stable there exists also an unstable 2-cycle so that
after the flip bifurcation, locally (in a neighbourhood of the fixed point) we have no
attracting set. The asymptotic behaviour of the points starting in a neighbourhood of
the unstable fixed point depend on the global properties of the map. The trajectories
may be divergent or convergent to some attractor existing far from the fixed point, but
this case may occur only when close to the flip bifurcation curve the stable fixed point
coexists with a different attractor. However, in our simulations we have always found
the first situation; that is, close to the flip bifurcation value the dynamics are diver-
gent (although it may occur that far from the bifurcation curve some other attracting set
appears).
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An example of the global dynamics, as the parameters are varied, is shown in Fig. 5. In
Fig. 5a, with the parameters b=1, g=4.5, £ =0.4 (so that |/ (0)| =a=0.45), m=1, a=2.1,
w=0.8, we are inside the stability region. The basin of attraction of the stable fixed point,
B(P"), is given by the connected white region. The grey points denote the states having
divergent trajectories. The 2-cycle C is a repelling node, and the two periodic points belong
to the grey region. In Fig. 5b (¢ =2.115) we can see that the 2-cycle C belongs to the
boundary of the basin of attraction of the fixed point, and it will belong to this boundary
also for higher values of «, up to the flip bifurcation. The local bifurcation causing the
transition of the 2-cycle from repelling node (in Fig. 5a) to saddle (in Fig. 5b) is associated
with a 4-cycle saddle existing on the frontier of the basin in Fig. 5a, which undergoes a flip
bifurcation, merging (and disappearing) with the 2-cycle C, which then becomes a saddle
and whose stable set gives the frontier of the basin B(P).In Fig. 5¢ (@ =2.8) we can see that
the basin B(P") becomes smaller and smaller as the flip bifurcation curve is approached,
reducing to a thin strip. At the flip bifurcation value the 2-cycle merges with P*, leaving a
saddle fixed point, and after this bifurcation in our numerical simulations the trajectories
have been found to be divergent.

4.2.4. Crossing the Neimark—Hopf bifurcation curve, and multistability

We describe here some of the possible dynamic outcomes that may occur after the
Neimark—Hopf bifurcation, when the fixed point is a repelling focus. For parameter values
close to the bifurcation curve, the unstable focus is surrounded by an attracting closed
invariant curve, which means that the bifurcation is of supercritical type.

As the parameters are varied, we have found different situations of multistability between
different cycles or between the closed curve and other cycles. Figs. 6 and 7 show examples
of such situations. The examples are associated with the function f, with © =2, g=3 and
b=1 (so that |/ (0)| =a=1.5), and the parameters m =1 and « =2.5 while the value of w is
varied. When w is smaller than the bifurcation value (& ~ 0.47619), the fixed point P* is
the unique attracting set of the system with a wide basin of attraction. After the crossing
of the bifurcation curve, the attracting closed invariant curve that appears around P is the
w-limit set of a large portion of points of the plane (white points in Fig. 6a). The grey points
in Fig. 6 denote points having divergent trajectories. For w = 0.6 we see a first multistability
situation between cycles: two attracting cycles of period nine appear due to a saddle-node
connection on the invariant closed curve that gives rise to the appearance of two attracting
cycles and two saddle cycles of the same period. The appearance of a pair of cycles is typical
of symmetric maps, and this is the case we are considering since the function fis symmetric
(because b = 1). The basins of attraction of the two cycles (in different colors) are separated
by the stable manifold of the saddle cycles (see Fig. 6b).

As the parameter w is further increased the two attracting cycles merge with the saddles,
so disappearing and leaving again an invariant attracting closed curve I (see Fig. 6¢), but
another bifurcation now occurs: in fact at w =0.603 we find the coexistence of the curve
I" with a cycle C of period 4, whose points are denoted Cy, Ca, C3, C4 in Fig. 6d. This
cycle seems to be born via a saddle-node bifurcation, associated with a saddle 4-cycle,
whose stable manifold separates the basins of the two attractors at finite distance. As the
parameter w increases, the basin of attraction of the cycle C becomes wider and wider
because larger portions of its points enter the Z3 region (the region between LC® and LC®
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and its boundary approaches the closed curve I, as in Fig. 6e). When the boundary of B(C)
has a contact with the curve I", we have a so-called contact bifurcation between the stable
set on the boundary of B(C) and the attracting closed curve I", whose effect is to destroy the
attracting set I'. In Fig. 6f, after the bifurcation, we observe that the points having bounded
trajectories are now almost all converging to the 4-cycle C; only looking at the transient
part of a trajectory can we find traces of the “old” attracting set. In fact the trajectory of the
points previously belonging to the set B(I"), “recalls” the shape of the curve I" (“ghost of
the attractor”) before approaching its w-limit set.

Also the surviving cycle undergoes several bifurcations, as we can see in Fig. 7. In fact,
for w=0.7, in Fig. 7a, we note the coexistence of two attracting cycles A={Aj, A, A3,
A4} and B={Bj, By, B3, B4} of period 4: they are born from the cycle C via a pitchfork
bifurcation of the cycle C, which now is a saddle cycle with stable manifold separating the
basins of attraction of A and B. If we compare Figs. 6e and 7a, we can observe that now
the frontier of the basins is much more complex; this is due to the presence of the chaotic
repeller “ghost of the attractor” surviving from the curve I as described above. As the
parameter w increases, the two cycles undergo a flip bifurcation after which the w-limit set
of bounded trajectories is given by two attracting 8-cycles (see Fig. 7b), but the structure
of the basins of attraction remains similar. This first flip bifurcation opens the classical
route toward chaos; a sequence of period doubling bifurcations is now observable for larger
values of w, giving rise to cycles of period 4 x 2X, for any k, and concluding in some chaotic
attractors. In Fig. 7c we observe a 4-piece chaotic attractor as the unique attracting set
of the dynamical system and, finally, in Fig. 7d a chaotic attractor surrounding the fixed
point P”.

4.3. Static expectations

As we have seen in Section 2.3, the naive case in which the expectations are static is
given by
Ttt+1 = Iy = pr — pi1.
This is obtained as a particular case, with w=1, in the traditional adaptive expectation
scheme, that is,
Prr1 = am + (1 —o)py — af (1)
Ty = Pt — Pt—1,

or equivalently,

Prr1 = am + (1 —o)py — af ()
M1 = Pry1 — pr = a(m — p, — f(m1)),

which corresponds to the two-dimensional map (24) with w = 1. It follows that this particular
case can be analyzed making use of the results of Section 4.2. For example, from Fig. 3
we deduce the stability region of the fixed point on the line w= 1, realizing that the only
possible bifurcation occurs crossing the Neimark—Hopf curve, so that after this bifurcation
the state variable p; has cyclical dynamics around the unstable fixed point.
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5. Some economic considerations

The analysis of Section 4 has laid out quite clearly the very rich structure of the nonlinear
monetary dynamics model under adaptive expectations, certainly much richer than one
would be able to anticipate merely by analyzing the linearized version of the model. In this
section we consider some of the economic consequences of the rich dynamic structure of
the model.

Consider first the issue that economic agents would recognize that they are making
consistent forecast errors. Clearly this depends on the parameter constellation. Suppose
the economy were operating with a parameter set corresponding to Fig. 7c or 7d. Here the
agents would observe chaotic time series for their expectational error (see Fig. 8) and would
be hard pressed to realize that they are using the “wrong” expectational scheme.

Consider next the issue of a noisy economic environment. It is in this context that the phe-
nomenon of multistability becomes important. Suppose for example that the speed of expec-
tations adjustment w varies stochastically on a small interval around some average value.

05<w <07
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Fig. 9. Expectational error when the parameter w is allowed to vary in the range [0.58, 0.62] following a uniform
distribution; (a) time series, (b) frequencies.
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This could be explained by the fact that agents adjust their expectations more or less aggres-
sively around the average value of w according to the random arrival of good or bad news. To
see the impact of this phenomenon we have allowed w to vary uniformly on the interval [0.5,
0.7] with other parameters being those relevant to Fig. 6. What essentially happens in this
situation is that in every period there may be a switching among the different regimes that are
influencing the dynamics. Fig. 9 displays the expectational error and its distribution. Here
again we see that, at least at first glance, this appears to be a random process, though detailed
statistical analysis may reveal some structure. The important point here is that agents do
not so easily see that their expectations are wrong in some predictable way. This behaviour
should be contrasted with what the agents would see in a linearized model with a noisy .
Provided that @ moves in a range that does not disturb the stability of the steady state the
expectational error would display a strong predictable component with some noise around it.

Finally consider the effect of an unanticipated monetary shock. Here again take
0.5 <w <0.7 so that only the phenomenon of multistability plays a role, but rather than
being moved amongst different regimes, now the economy may move to a different basin
of attraction. Suppose for example the parameters are such that the economy is operating
in Fig. 6e and initial points are in the white region so that the curve I", which implies
quasi-periodic attractors, is the long run outcome of the economy. A change in the money
supply m is equivalent to moving the steady state to a new point in Fig. 6e, so it causes
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Fig. 10. Time series resulting from a monetary shock occurring at time #=1632. The parameter m, initially 1,
becomes 1.14.
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a change in initial values. This could result in the initial point being moved to the other
basin of attraction, and hence the 4-cycle becomes the long run outcome of the economy.
Such an outcome is shown in Fig. 10 when a money supply shock of 15 percent occurs
at time 7=1632. Of course in this situation the expectation error on the four cycle would
be predictable and agents would then likely change behaviour; however we do not model
this situation here. The point we want to emphasize is that a monetary shock could lead to
a different dynamic attractor. Because of the multistability phenomenon a wide range of
attractor shifts is possible, from quasi periodic to periodic (as discussed above) and vice
versa, from periodic to periodic with a change in the periodic points.

6. Conclusion

We have analyzed a discrete time nonlinear monetary dynamics model under various
adaptive expectations schemes. These schemes differ according to the information set of
agents and the knowledge they are assumed to have about the market price setting rule.
These schemes ultimately result in the same map driving prices and expectations. We have
studied in detail the local and global dynamic behaviour of the dynamics. We have found
that the dynamics displays a rich array of possible outcomes from stable fixed point to
periodic, quasi periodic and chaotic fluctuations, as well as situations of multistability (i.e.
coexistence of multiple attractors) with connected and non-connected basins of attraction,
we have discussed the economic significance of these various dynamic phenomena for the
expectational error of the economic agents in the model. In particular we have shown that
there are many situations (especially if the economic environment is noisy) in which the
expectational error would appear to the agents as a stochastic process with no particular
structure that could be exploited for prediction purposes. There also exist situations in which
the expectational error would be predictable, such as periodic cycles.

Overall our analysis shows that there can be a wide range of situations in which adaptive
expectations does not necessarily tend to a situation of consistent prediction errors. Hence
the jettisoning of it as a useful expectations scheme may have been premature. Our analysis
also sits comfortably with some empirical economics literature that finds that economic
agents often display adaptive type expectations.
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Appendix A. A possible choice for function f(r)

In this appendix we describe a possible choice for the function f{r) (whose qualitative
graph is shown in Fig. 1), which is the function used in our numerical simulations. The
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function f{r) we consider is defined as

_ &

b+enr’

where the parameters g, b and w are positive.
The function f'is defined in R, and it is always positive if g/b< 1.
Its two horizontal asymptotes are

fm)=1- 31)

p-=1 asx —> —o©

¢+=1—%, asx — +o0.

The function f'is decreasing, since its derivative is given by

fl(m) = _Lﬂmz.
(b + e H7)
Furthermore it has an inflection point at
_ Inb
7Tf = —7

Then the minimum value of f/(7r) in absolute value is
il — S
a=|f(msl 1
and the absolute value of the derivative at O is

/ _ 8
rol= s

Moreover we can observe that the function f(x) is symmetric with respect to the point (0,
£(0)) iff b=1; in fact the symmetry condition f{) — f{0) =f{0) — f{rr) for any 7 reduces to

(b — 1) +e M —2) =0,

which is true for any 7 iff b=1.

Appendix B. Proof of Proposition 2

We seek the conditions for the existence of a 2-cycle C={(p, 1), (¢, 72)}. Recalling
the definition of the map 7, the points of C must be such that

g=am+ 1 —a)p—af(r)
= wa(m — p — f(71)) + (1 — w)my,
p=oam+ (1 —a)g —af(r2)
w1 = wa(m — g — f(m2)) + (1 — w)m.

(32)

The second and the fourth of these equations can be rewritten as

m =w(g— p)+ (1 — o),
1 = —w(q— p)+ (1 —w)mr,
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and it is immediate to see that w, = —m; must hold; we denote by 7 this common value.
Then the system in (32) becomes

g=am+ (1 —-a)p—af(-m)

p=oam+ (1 —a)g —af(r)

2 —w)r=wlg—p)
which for o # 2 is equivalent to

(1 —a)f(m) + f(—mn) (1 —a)f(—=m)+ f()

m + ; =m+ ’
oa—2 oa—2
(2 — o)t = w(g — p).

q:

Finally, substituting the value of p and ¢ into the last equation, we obtain the condition on
7 that guarantees the existence of a 2-cycle, namely

)
wo

7 = f(m) = f(=mn). (33)

Eq. (33) admits the solution r =0 (the fixed point P* is a solution of the system (32)), but
it may also have two extra solutions, which are symmetric, one positive and one negative.
These two further solutions exist if the function defined on the left side of (33), which is
a straight line issuing from the origin, intersects in two more points (besides the origin)
the function defined on the right side (which is a symmetric function with respect to the
origin, decreasing with two horizontal asymptotes). Thus the conditions are that the slope
% of the straight line be negative and greater than the slope at O of the tangent to
the function on the right side of (33) (see Fig. 11).
It follows that the conditions for the existence of a 2-cycle are
2-a)2—-w) - Q-2 —-w)

0, > 2f(0). 34)
wa wa

Fig. 11. Existence of the 2-cycle.
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We see immediately that the second condition in (34) is exactly the same condition given
in (27b) defining the stability region. Summarizing, we have demonstrated that a 2-cycle
exists when the fixed point is stable, merging onto it at the bifurcation value, because the
three solutions merge into the origin when the slope C=0)C=0) of the straight line becomes
equal to the slope, 2f7(0), of the tangent in 0.
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