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Transition from a smooth basin boundary to a fractal

one in a class of two-dimensional endomorphisms

Anna Agliari, Laura Gardini and Christian Mira

Abstract

This paper is devoted to the study of a family of two-dimensional noninvertible

maps, depending on two parameters. The family is topologically semiconjugated

to the complex quadratic map Z for a particular parameter value. The variation

of this parameter value permits a full identification of one of the possible bifurca-

tion mechanisms leading to the fractalization of a basin boundary from a smooth

situation. It will be shown that the bifurcations occurring at the points on this

boundary have the fractal structure of box-within-a-box type generated by the

one-dimensional Myrberg’s map x
′ = x

2 − c. Besides the transition of a smooth

boundary to a fractal one, it will be shown also one example of transition from

a fractal boundary to an half fractal one. This last transition occurs due to the

existence of smooth arcs which recur in a fractal way in the boundary of a simply

connected basin.

1 Introduction

Some bifurcation mechanisms leading to a fractal basin boundary generated by a two-
dimensional noninvertible map has been already considered in Agliari et al. 2003 and
references therein. The present paper considers a simpler form of maps family, which
makes more transparent the transition to a fractal basin boundary.

The two-dimensional noninvertible map considered here is given by

T :

{

x′ = x2 + y − c
y′ = γy + 4x2y

(1)

T divides the plane into three regions: Zi, i = 0, 2, 4, a point of Zi having i real rank-
one preimages (Mira et al. 1994, 1996,a,b). Inside Zi the plane can be considered as
made up of i sheets, each one being related to a well defined rank-one preimage, this
constituting the (Riemann) foliation of the plane (see Gumowski and Mira 1980, Mira
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et al. 1996a,b, Abraham et al. 1997). Two sheets join at a critical curve LC, separating
the regions Zi, and locus of points having two coincident preimages on the curve LC−1,
T (LC−1) = LC. In the case of a smooth map such as T , LC−1 is defined by |J | = 0,
where |J | denotes the Jacobian determinant of the map.

The family T generates different mechanisms of basin boundary fractalization when
the parameter c is fixed with γ varying γ < 0, γ = 0, γ > 0. The paper study is
limited to one of them, that is, we fix c = −0.15. In this case only one attractor exists,
a stable fixed point, whose basin of attraction, say B, remains simply connected. The
complementary set of the closure B of B gives the plane region B∞, the points of which
have divergent trajectories.

The main feature of the map (1) is that for γ = 0, in the invariant half-plane
Π− = {(x, y) : y < 0} , there exists a semiconjugacy between the map T and the complex
quadratic map Z ( z′ = z2 − c), c being a real parameter, z = x+ jy, j2 = −1. That is
a semiconjugacy in Π− between T and the real two-dimensional map TZ

TZ :

{

x′ = x2 − y2 − c
y′ = 2xy

(2)

which allows to get a boundary whose complex structure is particular and well known.
This basic property permits to identify the routes to a fractal basin boundary, and
the fractalization type, showing some interesting bifurcations governing the transition
smooth ↔ fractal, and the one fractal ↔ half fractal, of the frontier ∂B. Note that,
following Mira et al. 1996b, we call “half fractal” a frontier made up of infinitely many
smooth arcs having a fractal limit set. As shown in section 4, the transition fractal ↔
half fractal in our family T is associated with the Riemann foliation of the phase plane.
This is not the only possible mechanism, because such a transition may also occur via
the appearance on the fractal frontier of smooth arcs not directly related to the plane
foliation, but associated with the stable set of some saddle cycles, or with the unstable
set of repelling nodes or foci, not directly related with the critical curves of the map
(examples may be found in Narayaninsamy 1992, and in Mira et al. 1996b). In the case
of the family T this transition also gives rise to smooth arcs, belonging to the stable set
of some saddle cycle, and interfering in an initially “fully fractal” basin boundary. The
basic difference lies in a bifurcation of the critical curve LC and thus in a qualitative
change of the plane foliation.

The plan of the work is as follows. Section 2 is devoted to some introductory prop-
erties and to the plane foliation. Section 3 deals with the transition of basin boundary
from smooth to fractal as the parameter γ decreases in the interval 1 > γ ≥ 0, in the
particular case corresponding to c = −0.15. As said above the only attractor is a stable
fixed point, its basin B being a simply connected basin. It will be shown that the route
to fractalization of the basin boundary ∂B occurs via sequences of local and global bi-
furcations of the cycles located on ∂B. Such a sequence of bifurcations has the fractal
“box-within-a-box” structure associated with the cycles belonging to ∂B. That is, the
bifurcations sequences are strictly related to the one generated by the one-dimensional
Myrberg’s map x′ = x2 − c, −1/4 ≤ c ≤ 2 (topologically conjugated with the standard
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logistic map), as described in Gumowski & Mira 1980 and Mira 1987 (see also Mira et
al. 1996b). Section 4 deals with the transition fractal ↔ half fractal of the frontier ∂B
of the basin B. It will be shown that the basic mechanism is related with the phase plane
foliation which gives rise to infinitely many smooth arcs on the frontier ∂B, having as
limit set a strange repellor Λ.

2 Some properties of the map T .

For the map T the x-axis is a trapping set and the restriction of T to that axis reduces
to the well known Myrberg’s map (conjugate to the logistic map)

x′ = x2 − c

Thus, at c = −0.25 a saddle-node bifurcation occurs, and for c > −0.25 T admits two
fixed points on the x-axis, say P ∗ and Q∗ :

P ∗ =

(

1−
√
1 + 4c

2
, 0

)

, Q∗ =

(

1 +
√
1 + 4c

2
, 0

)

.

The fixed point Q∗, which corresponds to the repelling fixed point of the Myrberg’s map,
is always unstable for the map T, a saddle or a repelling node as it is easy to see from
the Jacobian matrix

J (x, y) =

[

2x 1
8xy γ + 4x2

]

. (3)

The eigenvalues of J(Q∗) are S1 (Q
∗) = 1 +

√
1 + 4c with eigendirection r1 = (1, 0)

and S2 (Q
∗) = γ +

(

1 +
√
1 + 4c

)2
with eigendirection r2 = (−1, 1 +

√
1 + 4c). The

eigenvalues of J(P ∗) are S1(P
∗) = 1−

√
1 + 4c with eigendirection r1 = (1, 0) (i.e. it is

the eigenvalue of the restriction of T to the x−axis) and S2 (P
∗) = γ +

(

1−
√
1 + 4c

)2

with eigendirection r2 = (1,
√
1 + 4c− 1).

Summarizing, in the interval −1/4 < c < 3/4 the fixed point P ∗ is attracting for the
restriction on the x−axis, and a flip bifurcation (S1 = −1) occurs at c = 3/4. No other
cycles exist on the x−axis besides the two fixed points P ∗ and Q∗. For 3/4 < c < c1s '
1.401155189 the restriction of T to the x-axis generates period 2i cycles for any i, c1s
being obtained when i = ∞. The interval c1s < c < c∗1 = 2 leads to the generation of
period-k2i cycles, k = 3, 4, 5, ..., i = 0, 1, 2, 3, .... For c = c∗1 = 2 all the possible cycles
and their limit set have been created on the x-axis. These cycles and their increasing
rank preimages constitute a real set (E), occupying the whole interval [−2 ≤ x ≤ 2],
the derived set (set of limit points) (E ′) of which is perfect. The preimages of any
point of (E) are everywhere dense on (E ′). From this situation the bifurcations inside
c(1)0 = −1/4 ≤ c ≤ c∗1 have a fractal structure of box-within-a-box type (Gumowski &
Mira 1980, Mira 1987, Mira et al. 1996b).
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Moreover, at γ = 1 another saddle-node bifurcation occurs, so that for γ < 1, the
map T admits two more fixed points:

R∗ =

(

−
√
1− γ

2
, c− 1− γ

4
−
√
1− γ

2

)

S∗ =

( √
1− γ

2
, c− 1− γ

4
+

√
1− γ

2

)

At the bifurcation value γ = 1 the two fixed points R∗ = S∗ = (0, c) belong to the
curve LC−1 of rank-one merging preimages defined above (the Jacobian determinant
|J (x, y)| = 0) with multipliers (eigenvalues) S1 = 1 and S2 = 0. Then the local stability

analysis of the fixed points is straightforward. We note that for c = 1−γ

4
−

√
1−γ

2
and

0 < γ < 1 (resp. γ < 0), the fixed point S∗ merges with P ∗ (resp. Q∗) with the

eigenvalue S2 (P
∗) = +1 (resp. S2(Q

∗) = +1), whereas for c = 1−γ

4
+

√
1−γ

2
the fixed

point R∗ always merges with P ∗, with S2 (P
∗) = +1.

The map T is symmetric with respect to the axis x = 0, i.e. T (x, y) = T (−x, y) .
This means that points symmetric with respect to the y-axis have the same asymptotic
behavior, giving rise to the same trajectory, then the basins are symmetric sets. Moreover
when the preimages of a point P of the phase plane exist, by pair they are symmetric
with respect to the y-axis.

Being T a noninvertible map, the Riemann foliation of the phase plane is at the origin
of some fundamental properties of the solutions generated by this map. The Jacobian
determinant |J (x, y)| = 2xγ + 8x3 − 8xy, vanishes on two curves, the y−axis and a
parabola, constituting the set LC−1, LC−1 = La

−1 ∪ Lb
−1 (see Figure 1a) where

La
−1 : x = 0 , Lb

−1 : y =
γ

4
+ x2 (4)

The rank-one image of these two curves gives the critical curve LC, made up of two
branches, LC = La ∪ Lb (see Figure 1, b,c,d) where

La : y = γ (x+ c) , Lb :

{

y =
(

x+ c+ γ

4

)2

x ≥ γ

4
− c

(5)

In the phase plane the critical curve LC separates regions Zi, each point of which has i
rank-1 preimages, i = 0, 2, 4. These regions are bounded by the following arcs of LC:

• a straight line La with positive (resp. negative) slope if γ > 0 (resp. γ < 0)
intersecting the x-axis in the point (−c, 0) (x = −c is the rank one critical value
of the Myrberg’s map),

• a branch of parabola Lb, tangent to La in the cusp point C =
(

−c+ γ

4
, γ

2

4

)

, and

for γ < 0 Lb is tangent to the x-axis in its vertex V =
(

−c− γ

4
, 0
)

.
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In the particular case γ = 0, La reduces to the x-axis and is tangent to the Lb in the
point (−c, 0).

The region Z0 always exists, and Z4 becomes wider and wider as the parameter γ
decreases. The region Z0 is a subset of Π+ = {(x, y) : y > 0} if γ ≤ 0, whereas the region
Z4 is a subset of Π+ if γ ≥ 0 (see Figure 1).

Figure 1: Critical curves and Zi (i = 0, 2, 4) regions. (a) LC−1 = La
−1 ∪ Lb

−1. (b)
LC = La ∪Lb in the case γ = 0. (c) LC = La ∪Lb in the case γ > 0. (d) LC = La ∪Lb

in the case γ < 0.

The equation of Lb shows that it is a “double” arc. This is indeed a non standard
property, associated with a particular foliation of the plane. In fact, the map T in (1)
corresponds to a non generic case of the map

Tε :

{

x′ = x2 + y − c
y′ = γy + 4x2y + εx

when ε = 0. The map Tε is of so-called type Z0 − Z2 < Z4 (following the notation used
in Mira et al. 1996a, Mira et al. 1996b), the symbol < denoting the existence of a cusp
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point on the critical curve corresponding to a cape of Z4 “penetrating” into Z2. The
non genericity of the map T in the case ε = 0 corresponds to a bifurcation value for LC,
which exhibits a “double” arc resulting from the merging of two arcs of the critical set
LC, as shown in the qualitative figures of Figure 2.

Figure 2: Qualitative Riemann foliation of the plane induced by the maps Tε and T .

This paper essentially deals with the dynamic properties of the map T because it
is simpler than Tε (in fact, as we shall see below, all the inverses of T can be given
explicitly), but mainly because for γ = 0 the map T is topologically semiconjugated to
the complex quadratic map in Π− = {(x, y) : y < 0}

The inverses of a point p = (u, v), for the map T, are obtained by solving with respect
to (x, y) the system u = x2 + y − c, v = γy + 4x2y. Any point p = (u, v) not belonging
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to the region Z0 has the following inverses:

T−1
dR

(u, v) =
(

√

ξ , u+ c− ξ
)

, T−1
dL

(u, v) =
(

−
√

ξ , u+ c− ξ
)

(6)

where ξ =
1

2

(

u+ c− γ

4
+

√

(

u+ c+
γ

4

)2

− v

)

while any point p = (u, v) belonging to the region Z4, besides the two inverses given
above, also has the following two inverses:

T−1
uR

(u, v) = (
√
η , u+ c− η) , T−1

uL
(u, v) = (−√η , u+ c− η) (7)

where η =
1

2

(

u+ c− γ

4
−
√

(

u+ c+
γ

4

)2

− v

)

Clearly the positions of the rank-one preimages of a point p depend on the value of the
parameters. However, for γ ≤ 0 any point of Π− has at least two preimages (exactly
two if γ = 0), and two of these preimages, given by T−1

d in (6), always belong to Π−,
one on the left and one on the right of the y−axis (La

−1). Moreover a point p belonging
to Π− ∩Z4, has two more preimages, given by T−1

u in (7), which belong to Π+. The fact
that for γ ≤ 0 any point of Π− has at least two preimages in Π− implies the existence of
infinitely many periodic points in this half-plane. Indeed after n iterations each point of
Π− gives rise to at least 2n points preimages of rank-n, an arborescent sequence tending
with n→∞ toward a limit set SR of strange repeller type. The set SR is made up of
infinitely many unstable cycles and their limit when their period tends toward infinity.
This means that all the possible cycles, of any period, and, for each period, of any
possible rotation sequence (i.e. the permutation type of the cycle points), exist on the
left and on the right of the y−axis (although not all belonging to the frontier of the
immediate basin).

Furthermore, we can observe that if γ > 0 then the half-planes Π+ and Π− are both
trapping, being T (Π+) ⊆ Π+ and T (Π−) ⊆ Π−. If γ < 0 such a property does not hold,
whereas for γ = 0 the negative half-plane is invariant (T (Π−) = Π−) and the positive
one is still trapping. As shown in section 4, the fact that Π+ is not trapping in the case
γ < 0 gives rise to a half fractal boundary for the basin B also in that region of the
plane.

As stated above, for γ = 0 the map T is topologically semiconjugated to the complex
quadratic map Z given in (2), in the negative half-plane Π−. In fact in this case the map
T with γ = 0, say Tγ=0, reduces to the map already considered in Agliari et al. 2003
(with γ = β − 1). We briefly recall the proof given there. The following equality holds
Tγ=0 ◦ h = h ◦ Z, where h (x, y) = (x,−y2). Indeed Tγ=0 ◦ h (x, y) = Tγ=0 (x,−y2) =
(x2 − y2 − c,−4x2y2), h ◦ Z (x, y) = h (x2 − y2 − c, 2xy) = (x2 − y2 − c,−4x2y2). This
property is essential because it permits an easier study of the structure of the boundary
∂B, when the transitions from smooth to fractal (section 3) and from fractal to half
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fractal (section 4) occur, as the parameter γ decreases from positive values to negative
ones.

3 Transition of the boundary from smooth to fractal

Let c = −0.15 be the fixed value of the parameter c. The only singular points of T on
the x−axis are the fixed points, P ∗ with 0 < S1 (P

∗) < 1, and Q∗ with S1 (Q
∗) > 1,

no other cycle exists on this axis for any value of γ < 1. When γb1 ' 0.86491 > γ ≥ 0
the fixed point P ∗ is the unique attractor of the map T . All the other fixed points are
unstable and belong to the boundary of the basin B = B(P ∗). In particular, the point
R∗ belongs to the negative half-plane Π−.

At γ = 1 P ∗ is a saddle of T , transversely repelling. The parameter γ = 1 corresponds
to a saddle-node bifurcation, for which the fixed points R∗ and S∗ merge in the point
(0, c) of the x−axis. For 1 > γ > γb1 ' 0.86491, R∗ is a saddle and S∗ a stable
node of T . The bifurcation value γ = γb1 is such that P ∗ and S∗ merge with S2 =

γ +
(

1−
√

1 + 4(−0.15)
)2

= +1, exchanging their stability, so that for 0 ≤ γ < γb1 P
∗

is the only attractor of T , and S∗ a saddle belonging to Π+. Figure 3 shows the basin
B of P ∗ which is simply connected. Moreover ∂B+ = ∂B ∩Π+ is smooth, including the
stable set W s(S∗) of the saddle S∗ and no other cycle of T .

In the parameter interval 0 ≤ γ < γb1 the structure identification of the basin
boundary arc ∂B− = ∂B ∩ Π− is highly facilitated by the considerations which follow.

-(a) Numerical simulations show that B remains a simply connected basin for the
values of γ considered in this work.

-(b) These simulations show that the critical arc La intersect ∂B− in a critical point
(in the Julia-Fatou sense) Ca, Ca = ∂B− ∩ La separating an arc Z0 from a Z2 one, for
the restriction TRB of T to ∂B−. Its rank one preimage Ca

−1 ∈ La
−1 plays the role of an

extremum for a one-dimensional quadratic map, and TRB behaves as a one-dimensional
map defined by a function having only one extremum and a negative Schwarzian deriva-
tive. Then when γ varies in the interval 0 ≤ γ < γb1 TRB generates on ∂B− a fractal
bifurcation structure of box-within-a-box type related to a one-dimensional quadratic
map (for example the map x′ = x2 − c mentioned above), because Ca is the unique
critical point on ∂B−. In particular the cycles tables of Gumowski & Mira 1980 permit
to forecast the cycles with their rotation sequence which can be found on ∂B−. So the
fixed point R∗ ∈ ∂B− remains a saddle in an interval γb2 ≤ γ < γb1, equivalent to the
interval −1/4 < c ≤ 3/4 related to x′ = x2 − c.

-(c) For γ = 0, in the negative half-plane Π−, T is topologically semiconjugated to
the one-dimensional complex quadratic map Z, given in (2) as a two-dimensional real
map TZ . When c = −0.15 TZ has a fixed point as unique attractor. In the (x, y) plane
its basin boundary, nowhere smooth, is the Julia set made up of all the possible cycles
generated by TZ and their increasing rank preimages. These points constitute a real set
(E), occupying the whole boundary, the derived set (set of limit points) (E ′) of which is
perfect. The preimages of any point of (E) are everywhere dense on (E ′). It results that
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Figure 3: The simply connected basin of attraction B of P ∗ (white points). The grey
points belong to B∞.

∂B− is nowhere smooth, and fully occupied by the sets (E) and (E ′). This means that
γ = 0 is the limit bifurcation value γ∗1 for the creation of new cycles by TRB, equivalent
to the value c∗1 = 2 defined above for the map x′ = x2 − c.

-(d) The parameter interval γb1 > γ ≥ γ∗1 = 0 has the same fractal bifurcation
structure of box-within-a-box type related to a one-dimensional quadratic map x′ =
x2 − c. For the restriction TRB on ∂B− only one attractor exists (a saddle for T ).

From the situation of Figure 3, where the boundary ∂B− includes only the stable set
of the saddle R∗, the above points permits to understand what occurs when γ decreases
from γb1 ' 0.86491 The saddle R∗ turns into a repelling node at γ = γb2 ' 0.73585
with S1 = −1 (and S2 > 1), giving rise to a cascade of period 2i cycles on ∂B−,
i = 1, 2, 3, ..., initially saddles then turning into repelling nodes when the multiplier S1

decreases crossing through −1. When i =∞ the limit of this cascade by period doubling
is attained for γ = γ1s. It is equivalent to the parameter c = c1s ' 1.401155189 of the
map x′ = x2 − c. Moreover γ = γ1s is a limit of a sequence of homoclinic bifurcation
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values γ∗2i < γ∗2i+1 ... < γ1s, i = 1, 2, 3, ..., γ1s = limi→∞ γ∗2i . The position of the critical
points Ca

n = T n(Ca) = ∂B− ∩ La
n, L

a
n = T n(La), with respect to a period 2i cycle,

i = 0, 1, 2, 3, ..., born from the above period doubling cascade, permits to approach the
γ∗2i values by successive trials. For γ = γ∗2i the above unstable period 2i−1 cycle merges

with a rank 2i + 1 critical point Ca
2i = T 2i

(Ca).

Figure 4: Enlargement of the basin B at γ = 0.3865.

Figure 4 shows the situation when γ = γ∗22 ' 0.3865. At the figure scale the critical
arcs La

4 and La
6 (resp. La

5 and La
7) seem merging. It is not the case they intersect on

∂B− at a point of the period two cycle born from the period doubling of R∗. Figures 5
a,b,c show what occurs for γ = γ∗21 ' 0.3242, γ∗21 < γ < γ∗22 , and 0 = γ∗1 < γ < γ∗21 .

The bifurcation values γ = γ∗2i are those at which the first homoclinic orbits of
the expanding cycles of period 2i, born from a flip bifurcation, appear. That is, they
correspond to the values at which such cycles become snap back repeller (following
Marotto, 1978). As an example let us briefly comment this in relation with the snap
back repeller (sbr for short) bifurcation of the fixed point R∗, at γ = γ∗21 ' 0.3242,
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Figure 5: (a) Enlargement of the basin B at γ = 0.3242 ' γ∗21 . (b) Enlargement of the
basin B at γ = 0.33 > γ∗21 . (c) Enlargement of the basin B at γ = 0.315 < γ∗21 .

but clearly similar behaviours occurs at any other bifurcation value γ∗2i , associated with
the other cycles of period 2i. In Figure 6a just above the bifurcation value γ∗21 , the two

rank−1 preimages of the fixed point R∗ are the point itself and RdR

−1 on the right of La
−1

belonging to Z2. Then the preimages of RdR

−1 consist of two points, RdRdR

−2 = T−1
dR

(RdR

−1)

which belongs to Z2, while R
dRdL

−2 = T−1
dL

(RdR

−1) is in Z0. And so on, all the preimages

T−k(R∗) of any rank k of the fixed point R∗ consist of one point on the right belonging
to Z2 and of one point in Z0. In particular, no homoclinic orbit of R∗ can exist, so that
the fixed point R∗ is expanding but not sbr.

In Figure 6a we can see that the point RdRdL

−2 is quite close to the boundary of the

region Z0 and the merging occurs when the point RdRdL

−2 becomes the critical point Ca, at
the bifurcation value γ = γ∗21 , which is the sbr bifurcation. As shown in Gardini 1994, at
the sbr bifurcation of an expanding fixed point (node or focus) all the homoclinic orbits

are critical. An example, the sequence of points T−m
dL

(

RdR

−1

)

→ R∗ as m→∞, is shown
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Figure 6: (a) Enlargement of the basin B at γ = 0.325 > γ∗21 ,.just above the sbr
bifurcation value. (b) Enlargement of the basin B at γ = 0.3241 ' γ∗21 , the sbr bifur-
cation value, a critical homoclinic orbit is shown. (c) Enlargement of the basin B at
γ = 0.324 < γ∗21 , soon after the sbr bifurcation value.

in Figure 6b, but any homoclinic orbit of R∗ includes the critical points RdRdL

−2 = Ca

and RdR

−1 = Ca
1 . For γ < γ∗21 (see Figure 6c) the point RdRdL

−2 belongs to Z2 and infinitely
many noncritical homoclinic orbits of R∗ exist. As an example, the sequence of points

T−m
dL

(

RdR

−1

)

→ R∗ as m → ∞ gives now a noncritical homoclinic orbit of R∗, and

infinitely many other can be obtained by using T−m
dL

(X) being X a preimage of some
rank of R∗. We note that at the sbr bifurcation these preimages are dense on the arc
of frontier ∂B− between the points Ca = La ∩ ∂B− and Ca

1 = T (Ca), which bound a
chaotic interval, and all these preimages still exist after the bifurcation (see Figure 6c).

A similar behaviour occurs to the preimages of the 2-cycle as γ crosses through the
value γ∗22 (see Figure 5a), which is the sbr bifurcation of the 2-cycle.

In the interval γ∗21 ≤ γ < γb2 cycles with an odd period do not exist. They appear
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(with other cycles of even period) from bifurcations in the interval γ∗1 ≤ γ < γ∗21 . More
details on the fractal bifurcation structure of box-within-a-box type, and so on the one
related to the interval γb1 > γ ≥ γ∗1 = 0, can be found in Gumowski & Mira 1980, Mira
1987, Mira et al. 1996b.

When γ decreases from γ = γb2, with c = −0.15, the route to fractalization of
∂B− occurs from the incorporation to this boundary of “more and more” sequences of
infinitely many unstable cycles of increasing period created by the above fractal bifurca-
tion structure. For the restriction of T to ∂B− they constitute a strange repeller leading
to a chaotic transient toward the attractor of this restriction. For γ = γ∗1 = 0, ∂B− has
the fractal properties as the ones generated by the complex map z ′ = z2 + 0.15 (two
enlargements are shown in Figure 7).

Figure 7: Enlargement of the frontier∂B− near the fixed point R∗. (a): in the case γ > 0,
and the direction of an eigenvector is also shown. (b): in the case γ = 0.

We remark that this property holds only at the bifurcation value γ = 0 (see Figure
7b), as for any positive value of γ the frontier ∂B− is smooth, although it may be with
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complex dynamics on it (as shown in Figure 7a), while for any negative value of γ the
frontier ∂B− is half fractal (with complex dynamics on it) as we shall see in the next
section.

4 Transition of the boundary from fractal to half

fractal

In the previous section we have studied the transition of the frontier ∂B− from smooth
to fractal, which is obtained for positive values of γ decreasing toward 0. In this section
we consider negative values of the parameter γ and we shall see the transition of a fractal
boundary to an half fractal one.

We recall that for γ < 0 the two half planes are not trapping, i.e. there are points
belonging to Π− which are mapped in Π+ and vice versa, as we can see from the preim-
ages of T given in (6) and in (7). However, the main feature of the map, whichever
is the value of c, which persist for γ < 0 is that any point belonging to Π− has the
two preimages given by (6) which belong to Π−. Thus all the possible cycles existing
in Π− for γ = 0 (when the set is perfect) persists also for γ < 0, and belong to ∂B−.
All the points of the cycles existing in ∂B(A)−, their preimages of any rank and their
limit points form a set which we denote by Λ, which is an invariant set with Cantor like
structure, that is a strange repeller Λ ⊂ ∂B−.

The transition to half fractal boundary which occurs for γ < 0 is due to the Riemann
foliation of the plane. In fact, as γ decreases the critical curve La has a negative slope
(see Figure 1d) which causes the appearance of a portion of region Z2 in Π+ to the left
of the vertical axis, and the appearance of a portion of region Z4 in Π− to the right of
the vertical axis. The preimages of the portion of frontier in these zones are responsible
of the appearance of smooth arcs on the frontier of B and of points of non smoothness
in ∂B+.

We always consider c = −0.15. The attracting set of the map, for values of γ just
below 0, is always the fixed point P ∗, belonging to the x-axis, so that B = B (P ∗). All
the other fixed points of T belong to ∂B as shown in Figure 8a.

In the enlargement in Figure 9a we see the smooth arc, called ψ, which is the bound-
ary of B∩Z2∩Π+ , bounded by the points Q−1 and q, which is responsible of the smooth
parts belonging to Π−. Considering the preimages of this arc, given by the two inverses
in (6), we get a smooth arc crossing La

−1. Due to the fact that these preimages belong
to the region Z2 ∩ Π− we can state that all the possible 2k (for any k ≥ 1) preimages
of any rank exist in Π− and these preimages have as limit points all the points of the
strange repellor Λ ⊂ ∂B−. In the enlargement of Figure 8b we see arcs accumulating
in the fixed point R∗ which is a cusp point (having eingenvalues S1 < −1, S2 > 1 and
|S1| > S2), and a non-smooth point of the frontier (as well as any other point of Λ).
Thus the frontier ∂B−, however small is γ, is now almost smooth, as it is smooth except
for a set of points of zero Lebesgue measure, which belong to a strange repellor Λ, that
is: the frontier ∂B− is half fractal.
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Figure 8: (a) The connected set B = B (P ∗), in the case c = −0.15 and γ just below 0.
(b) Enlargement of ∂B− near the fixed point R∗ evidencing the half fractal structure.

A different sequence of preimages are associated with the other arc of frontier, φ,
shown in the enlargements in Figure 8b, which is the boundary of B∩Z4∩Π−, bounded
by the points Q∗ and p. This arc φ includes a part of the half fractal structure existing
in ∂B− (as explained above), and is responsible of the non-smooth points in Π+, which
belong to the two preimages of this arc obtained by the two inverses in (7). Due to the
fact that these preimages belong to the region Z0 no further preimages are obtained in
Π+.

5 Conclusions

In this paper we have described two particular routes to fractal basin boundary occurring
in a two-dimensional noninvertible family of maps depending on two parameters, c and
γ. The peculiar fact is that for γ = 0 the family is topologically semiconjugated to the
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Figure 9: (a) The smooth arcs in ∂B− are the 2k preimages of the arc ψ, boundary
of B ∩ Z2 ∩ Π+, with extrema the points Q−1 and q. Such preimages accumulate on
a strange repellor. (b) Points of non-smoothness in ∂B+: they belong to the rank-1
preimages of the arc φ, boundary of B ∩ Z4 ∩ Π−, with extrema the points Q∗ and p.

complex quadratic map Z. To simplify the analysis we have considered only the case
c = −0.15, and the variation of the parameter γ permits a full identification of two
phenomena. On one side, for decreasing positive values of γ, we have described one of
the possible bifurcation mechanisms leading to the fractalization of a basin boundary
from a smooth situation. On the other side, for negative values of γ, decreasing from 0,
we have seen the transition of a basin boundary from fractal to half fractal. The main
peculiarity occurring in the case γ > 0 is that the bifurcations occurring at the periodic
points on the boundary ∂B− have the fractal structure of box-within-a-box type, i.e.
are topologically conjugated to those occurring in the one-dimensional Myrberg’s map
x′ = x2 − c. The main peculiarity occurring in the case γ < 0 is that the whole strange
repellor Λ existing on ∂B− for γ = 0 still persists on ∂B− for negative values of γ.

Certainly all the possible mechanisms of transitions of a smooth boundary to a fractal
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one, or transition from a fractal boundary to an half fractal one, are not covered by this
only example. We may expect that other mechanisms may be observed when we fix
different values for the parameter c, and this will be the object of further investigations.
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