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In this paper we give an example of transition to fractal basin boundary in a two-dimensional
map coming from the applicative context, in which the hard-fractal structure can be rigorously
proved. That is, not only via numerical examples, although theoretically guided, as often occurs
in maps coming from the applications, but also via analytical tools. The proposed example
connects the two-dimensional maps of the real plane to the well-known complex map.
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1. Introduction

The object of the work is to show an example
of fractalization of a basin boundary in a two-
dimensional noninvertible map, which gives a kind
of link, or connection, with the well known complex
map

z′ = z2 + C z ∈ C

The example we shall deal with comes from the
applicative field. It models the mean equity ratio a
and its variance V , useful to study the financial ro-
bustness of the firms, in an economic environment.
It was proposed two years ago in our economic
department. Independent of the meaning of the
variables, (a, V ) = (x, y), the two-dimensional map
modeling the dynamics of the financial processes

reads as











x′ = −g0 + g1x − g2x
2 − g2y

y′ = g2
2(β − 1)y2 + (2g2x − g1)

2y

+ 4g2
2g3x − 2g1g2g3

(1)

It was published in [Agliari et al., 2000], and in
the same paper the usual properties of local stability
were reported as well as some considerations on the
global dynamics and global bifurcations, following
the properties of noninvertible maps as described
in the references [Gumowski & Mira, 1980a, 1980b;
Mira et al., 1996; Abraham et al., 1997].

The case in which g3 = 0 in (1) is particularly
important because the map has the x-axis trapping
and it corresponds to the existence of a “represen-
tative agent”. We shall restrict our analysis to this
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case:

F :

{

x′ = −g0 + g1x − g2x
2 − g2y

y′ = g2
2(β − 1)y2 + (2g2x − g1)

2y
(2)

In the paper [Agliari et al., 2000] we have re-
ported some dynamic properties also for the map
F . In particular Figs. 1 and 2, related to β = 1
and β > 1 have been explained in terms of the
asymptotic properties of the attracting sets, and the
properties of two-dimensional noninvertible maps.

It is clear that the suggestive behavior of the
basin in the region of negative y, say

Π− = {(x, y) ∈ R
2 : y < 0} , (3)

recalls the behavior of the complex map

z′ = z2 + C z = (x, y) ∈ C (4)

where the parameter C in our analysis is to be
considered real, i.e. C = (−c, 0).

In terms of a two-dimensional real map, (4)
reads as

Z :

{

x′ = x2 − y2 − c

y′ = 2xy
(5)

At a first glance it seems quite far from our
model (2), while we shall see that when β = 1, F is
semi-conjugate to (5).

The plan of the work is as follows. In Sec. 2 we
shall introduce new coordinates which allow us to
rewrite the map F in a more suitable form, and we
shall describe the foliation of the real plane for the
new model T , topologically conjugated with F . In
Sec. 3.1 we shall prove that for β = 1 the frontier
of the basin in the half-plane Π− has a true hard-
fractal structure, following the definitions given in
[Mira et al., 1994] and [Mira et al., 1996], as F is
semi-conjugate to the complex map (5). In Sec. 3.2
we shall describe the transition to half-fractal basin
occurring for β > 1 proving the persistence of in-
finitely many cycles, of any order, belonging to the
negative half-plane Π−, while in Sec. 3.3 we shall see
how the hard-fractal structure of the basin bound-
ary is reached starting from a smooth frontier, at
increasing values of β for β < 1.

2. Change of Coordinates and

Structure of the Foliation

In this section we first rewrite our economic model
in a more suitable form, from the mathematical

point of view. We introduce the change of variable

h :



















x =
1

g2

(g1

2
− X

)

y =
Y

g2
2

(6)

Being h(X,Y ) a diffeomorphism, we have that
the map (2) is topologically conjugate to T =
h ◦F ◦ h−1, which only depends on two parameters
c = −(4g0g2 + 2g1 − g2

1)/4 and β. In fact, apply-
ing the change of coordinates (6) to (2) and writing
(x, y) instead of (X,Y ), we obtain the map

T :

{

x′ = x2 + y − c

y′ = (β − 1)y2 + 4x2y
(7)

The transition β < 1, β = 1, β > 1 character-
izes an important bifurcation of the basin boundary.

Let us denote by B∞ the set of points of the
phase plane having divergent trajectories. Its com-
plementary set is the set of points having bounded
trajectories belonging to some frontier or to some
basin of attraction and thus convergent to some
attracting set (and in this map we have that the
multistability is the generic situation, see [Agliari
et al., 2000]).

The map T has the x-axis which is trapping
and the restriction of T to that axis reduces to
the well-known Myrberg’s map (conjugate to the
logistic map)

x′ = x2 − c

and also the structure of the foliation of T is clear.
We recall that by Riemann foliation of the plane

we mean, following the literature on noninvert-
ible maps (see [Gumowski & Mira, 1980b; Mira
et al., 1996]), the understanding of the superim-
posed “sheets” which cover the plane giving reason
to the number of preimages existing in its different
parts. In fact, the Jacobian of T is given by

J(x, y) =

[

2x 1

8xy 2(β − 1)y + 4x2

]

whose determinant |J(x, y)| = 4x(yβ − 3y + 2x2)

vanishes on two curves, here denoted as LC
(a)
−1 and

LC
(b)
−1, given by











LC
(a)
−1 : x = 0

LC
(b)
−1 : y = −

2x2

β − 3

(8)

where it is assumed β 6= 3, as in fact, in this paper
we are interested in the range β < 3.
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(a)

(b)

Fig. 1. (a) An example of dynamic behavior of the economic model F , obtained for β = 1. The map F has four fixed points,
two of them repelling, Q∗ and S∗, always located on the frontier of the basin of bounded trajectories (not gray points). In
the case represented, the attracting sets are the fixed point R∗ and a 2-cycle, on the invariant axis x, born via flip bifurcation
of P ∗. The set of points having trajectories converging to R∗ is denoted in white and the one of points converging to the
2-cycle in red. The separation point between the two basins are the preimages of any rank of P ∗, which belongs to Z4 (only
those of rank-1 are marked in figure). Also the Riemann foliation of the map F is represented in the same figure. (b) In the
enlargement, the region of negative y, Π−, is shown: in such a region, all the points with converging trajectories go to the
2-cycles. The frontier of the basins of attraction of the 2-cycle in Π− seems to have a fractal structure.
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(a)

(b)

Fig. 2. (a) An example of dynamic behavior of the economic model F , obtained for β > 1. The attracting sets are the same
as in Fig. 1, but their basins of attraction (always denoted in white and red) now are quite different. This is due to the different
Riemann foliation of the map: the region Z4 now is smaller with respect to the previous case, the fixed point P ∗ belongs to
the Z2 region and the preimages are in Π−. (b) In the enlargement we can observe also the different behavior of the points
of Π−. In fact, now, there are also white points, which are the preimages of any rank of the region U0 (a small subset of the
region of positive y belonging to Z2). As a consequence the frontier of the set of points having unbounded trajectories (gray
points) seems to have a half-fractal structure.
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(a) (b)

(c) (d)

Fig. 3. Critical sets and Riemann foliation of the map T . (a) The two curves LC−1, the locus of points of the phase plane
(x, y) in which the determinant of the Jacobian matrix of T vanishes. (b) Case β = 1. The critical set LC = T (LC−1), locus

of points with merging preimages, is given by the x-axis (LC(a)) and an half parabola (LC(b)) located in Π+ with vertex

(−c, 0). The region Z0 is at the left of LC(b) and Z4 at the right. The region Z2 coincides with Π−, which is an invariant

set, i.e. T (Π−) = Π−, for T . (c) Case β < 1. LC(b) is similar to the previous case, but LC(a) now is a parabola in the half
plane Π−, with vertex in (−c, 0). Thus the region Z4 is increased and the region Z2 is smaller. Now Π− is a traffing set,

i.e. T (Π−) ⊂ Π−. (d) Case β > 1. The region Z4 is smaller than in the previous cases, because LC(b) is a parabola of the
half-plane Π+ and Z2 is larger. Now T (Π−) ⊃ Π−.
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The images by T of (8) give the critical curve
LC of the map, made up of two branches, which
separate regions of the phase plane having different
number of rank-1 preimages. These regions are de-
noted by Zi, where i denotes the number of distinct
rank-1 preimages of any point in the region.

We obtain


















LC(a) : y = (β − 1)(x + c)2

LC(b) :







y =
4

5 − β
(x + c)2

x ≥ c

Determining the inverses by solving the system
{

x′ = x2 + y − c

y′ = (β − 1)y2 + 4x2y

with respect to (x, y), it is easy to see that the map
T is of so-called type Z0 − Z2 − Z4 and the struc-
ture of the foliation depends on the value of the pa-
rameter β. The two curves giving LC−1 are shown
in Fig. 3(a) while the two branches of the critical
curve LC are shown in Figs. 3(b)–3(d).

In particular, a Z0 region always exists and
a Z4 region decreases as β increases. There is an
important qualitative change as β crosses 1. In fact,
the critical curve LC (a) is a parabola in the half-
plane Π− for β < 1, while it is located in Π+ for
β > 1 and it degenerates, reducing to the x-axis,
for β = 1, i.e. LC (a) = {y = 0} for β = 1. At
the same time, the properties of the region Z2 in
the half-plane Π− also changes as β crosses 1. For
β < 1 we see that T (Π−) ⊂ Π−, i.e. the neg-
ative half-plane is trapping, while at β = 1 we
have T (Π−) = Π−, i.e. the negative half-plane is
invariant and, for β > 1, T (Π−) ⊃ Π−, so that it
is no longer trapping.

But an important property persists for β = 1
as well as for β > 1: the whole region Π− belongs
to Z2 and as we shall see, any point P ∈ Π− has
two distinct rank-1 preimages belonging to the same
half-plane, one on the right of the y-axis (which is

LC
(a)
−1 ) and one on the left of the y-axis:

P ∈ Π− ⇒ T−1
R (P ) ∈ Π−

and T−1
L (P ) ∈ Π−

and this will characterize the particular dynamic
behavior of the map in the negative half-plane. It is
also easy to write in explicit form these two inverses.
For any point P = (u, v) ∈ Π− we have

T−1
R (u, v) = (

√

u + c − ξ, ξ)

T−1
L (u, v) = (−

√

u + c − ξ, ξ)

where

ξ =
2(u + c) −

√

4(u + c)2 + |v|(5 − β)

(5 − β)

3. Frontier of the Basin

Let us now turn to the dynamic behaviors of T . We
only deal with the properties of the basin boundary
∂B∞, referring to the paper [Agliari et al., 2000]
for other kind of details, as the bifurcations of the
fixed points. We are interested in the transition of
the basin as β crosses through 1. The values of the
parameter c governs the dynamics on the x-axis,
and here we shall only consider two values of c,
c = 0.65 for which the fixed point P ∗ on the x-axis
is attracting, and c = 1, after the flip bifurcation
of P ∗ (which is a bifurcation with double eigen-
value equal to 1 for the two-dimensional map T ).
When c = 1 the attracting set on the x-axis is the
2-cycle {(0, 0), (−1, 0)}, in the supercritical situa-
tion (one of the eigenvalues of the two cycle is zero,
and in fact one point is a critical point belonging
to LC−1). However this value has been chosen only
because the Julia set of the complex map with real
parameter −1, i.e. z′ = z2 − 1, is well known, but
any other value of c in the range (0.75, 1.25) (in-
terval of existence of an attracting 2-cycle on the
x-axis) works well.

For c = 1 beside the attracting 2-cycle on the
x-axis, there exists a stable fixed point R∗ in the
positive half-plane Π+. The basin of the 2-cycle is
represented in red in Fig. 4 and in the following,
while the basin of the fixed point R∗ is represented
in white.

3.1. Case β = 1

Let us consider our map T in the particular case
β = 1. It reads

T1 :

{

x′ = x2 + y − c

y′ = 4x2y
(9)

and comparing it with the complex map Z given
in (5) we can see, from Figs. 4 and 5, that a strict
connection exists, in fact the basin boundary of T1

in the negative half-plane Π− is not only “similar”
to that of the complex map Z, as stated in the fol-
lowing proposition.
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(a)

(b)

Fig. 4. (a) The set of points with bounded trajectories for the map T , when c = 1 and β = 1: the attractors are the fixed
point R∗ (its basin of attraction, B(R∗), is given in white) and a 2-cycle on the x-axis (with basin of attraction, B(2-cycle),
the red points). P ∗, S∗ and Q∗ are repelling fixed points. (b) In the enlargement only Π− is shown and the “hard-fractal”
structure of the boundary of B(2-cycle) is more evident.
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Fig. 5. The Julia set of the complex map z′ = z2 − 1. A strict connection with Fig. 4(b) exists, due to the semi-conjugacy
between the two maps.

Proposition. The map T1 in (9) restricted on the

negative half-plane is semiconjugate to the map Z
in (5) given on R

2, namely T1 ◦ h1 = h1 ◦ Z, where

h1(x, y) = (x,−y2).

Proof. T1 ◦ h1(x, y) = T1(x,−y2) = (x2 − y2 − c,
−4x2y2).

h1◦Z(x, y) = h1(x
2−y2−c, 2xy) = (x2−y2−c,

−4x2y2). �

Thus when β = 1 our map is really connected
with the complex map, although only in the nega-
tive half-plane Π−.

Transferring the properties of the complex map
to our map T1 we have on the frontier F ⊂ Π−

infinitely many cycles of any order, all expanding
(repelling nodes or foci).

The upper part of F ⊂ Π+ has not the same
property, really it depends on the values of the
parameters c, and at c = 1 it seems smooth: there
is another fixed point S∗, saddle, whose stable set
reaches Q∗ (the other repelling fixed point of the
Myrberg’s map, on the x-axis) on one side, and LC
on the other side, giving rise to the smooth bell-
shaped basin boundary. While below the x-axis the
red basin of the two cycle has a so-called “hard-
fractal” boundary, which is nowhere differentiable.

The other portions of the red basin in the
positive region Π+ are well explained following the
critical curve properties and the foliation structure.
This basin in the half-plane y > 0 may be con-
sidered disconnected, made up of infinitely many
components of “quadrilateral shape”, but with
connected closure, and the points connecting these
portions, the extrema of the quadrilateral regions,
are all preimages of any rank of the repelling fixed

point P ∗. This fixed point has one rank-1 preim-
age in itself, another rank-1 preimage on the a-axis,
called P ∗

−1,1 in Fig. 1, and two merging rank-1

preimages in the point P ∗

−1,2 of LC
(a)
−1 . This last

point is internal to Z4 and thus has four distinct
rank-1 preimages, all in the half-plane Π+, and
so on.

3.2. Case β > 1

The pure fractal structure of the two-dimensional
map T only exist for β = 1, and it is destroyed for
β > 1 or β < 1, and this allows us to show the
so-called route (or transition) to fractal structure
which, in two-dimensional real maps, is generally
a “half-fractal” structure, following the description
given in [Mira et al., 1996]. The half-fractal struc-
ture means that there exist smooth arcs on the
frontier, but following a fractal structure, typical



July 29, 2003 10:7 00762

Fractal Structure of Basin Boundaries 1775

(a)

(b)

Fig. 6. (a) The set of points with bounded trajectories for the map T , when β > 1: as in Fig. 4, the attractors are the

fixed point R∗ and a 2-cycle, located on the x-axis. A portion of LC(a) enters in Π+. (b) In the enlargement, this portion is
more evident, as well as the “half-fractal” structure of the frontier in Π−, due to the presence of infinitely many smooth arcs
accumulating on a Cantor set of repelling cycles.
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(a)

(b)

Fig. 7. (a) The same example as in Fig. 6: but the set of points with bounded trajectories is in light blue. This permits to
better appreciate the boundary structure. (b) In the enlargement, an arrow indicates the small arcs in Π+, whose preimages
are the smooth arcs, giving rise to the “half-fractal” frontier.
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(a)

(b)

Fig. 8. (a) The enlargement of the frontier in Π−, obtained for β > 1. The points of the region V0 in the half-plane Π+ have

two preimages in Π−, located at a side opposite to LC
(a)
−1 , and merging on it. So that, saying V−1 the set of rank-1 preimages

of V0, V−1 = V−1,L ∪ V−1,R. Also V−1 has two preimages in Π−, one, V−2,L, on the left of LC
(a)
−1 and the other, V−2,R on

the right: the two sets, with the same shape of V−1 at the left of P ∗ (V−2,L) and at the right of Q∗ (V−2,R). V−2 has two
preimages . . . and so on. (b) The analogous process of the one-dimensional logistic map with µ > 4. The interval V0 = [1, c]
has two rank-1 preimages located on opposite side with respect to c−1 and merging in it: the interval V−1 in figure. At its
time, V−1 has two rank-1 preimages: the set L and R in the figure and so on.

of the self-similar structure of the Cantor set, due
to the accumulation of infinitely many preimages on
repelling cycles belonging to a repelling Cantor set.

This is immediately seen as β crosses 1, as
shown in Figs. 6 and 7.

Let us consider the value β = 1.1, as in or-
der to show the mechanism, any value β > 1 works
well, in the same way as in the standard logistic
map x′ = µx(1 − x), in order to show the exis-
tence of the surviving repeller Cantor set Λ in the
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interval [0, 1], any value µ > 4 works equally well
(see Fig. 8).

In our map T , for β > 1 the branch of LC (a)

enters the positive half-plane Π+, and, as remarked
before, there are points of Π− which are mapped
in Π+, while the property persists that any point
P ∈ Π− has two distinct rank-1 preimages in Π−.
Thus there are points of Π+ having preimages in
Π−, and from the properties of the foliation (i.e. of
the inverses) the only points having this property
are those of the region called V0 in Fig. 8. The re-
gion V0 above the x-axis is bounded by a portion of
LC(a) and a portion of F belonging to Π+ (made
up of points belonging to the stable set of the saddle
S∗ located on the frontier). This area includes both
points belonging to the basin of the stable fixed
point B(R∗) (the white ones) and to the basin of
the attracting cycle B(2−cycle) (the red ones). The
two rank-1 preimages of V0 are one on the right and

one on the left of LC
(a)
−1 , both in Π− (see Fig. 8),

constituting the set V−1 = V−1,L ∪V−1,R. Then V−1

has two distinct rank-1 preimages, one on the right

and one on the left of LC
(a)
−1 , the y-axis (see V−2,L

and V−2,R in Fig. 8), and so on indefinitely:

T (Π−) = Π− ∪ V0

T−1(V0) = V−1,L ∪ V−1,R

T−2(V0) = T−1(V−1) = V−2,L ∪ V−2,R

. . .

The similarity of the process with that of the
one-dimensional logistic map shown in Fig. 8 is now
clear.

All the infinitely many repelling cycles existing
at β = 1 on F , persists also for β > 1. We can
prove the existence of infinitely many cycles also
for β > 1 by using a geometrical proof, which is the
two-dimensional analogue of the one which is usual
for the logistic map with µ > 4, using neighbor-
hoods instead of intervals, as described in the Ap-
pendix. However, by this geometrical proof we can
only see that the infinitely many cycles exist and
that the set which is invariant in Π− has a Cantor-
like structure, but we are not able to show that all
are repelling (although we believe in this). This is
left as an open problem for further researchers.

We note that now, for β > 1, the frontier F
in Π− is of so-called “half-fractal” type: it includes
smooth arcs (all coming from the preimages of any
order of V−1, and the smooth part of the frontier
includes a portion of the stable set of some saddle,

and note that the saddle belongs to the positive
half-plane), but the preimages of such smooth arcs
are accumulating on a Cantor set of (repelling) cy-
cles and with the property of self-similarity.

3.3. Case β < 1

As we have seen, crossing through β = 1 the basin
boundary of T in Π− undergoes the transition

hard-fractal
β=1

→ half-fractal
β>1

and how about for β < 1?
As at β = 1 infinitely many repelling cycles ex-

ist on F and survive for β > 1, they must have been
created as β tends to 1 on the left. In fact, looking
at the frontier of the basin at values of β below 1,
increasing β, we see a progressive increase of the
fractal structure, through “islands” of red points,
and the route to fractalization can be explained by
the tools of noninvertible maps, associated with the
properties of the critical curves and the foliation of
the plane, as described in [Mira et al., 1994] and
[Mira et al., 1996].

Let us consider the shape of the frontier at
a parameter value far from the bifurcation value.
As shown in Fig. 9 the geometrical shape of F for
β = 0.9 seems quite smooth.

As β increases, approaching 1, the number of
repelling cycles on F in Π− increases. The quali-
tative change of the structure of the basin in Π−

is due to a sequence of “contact bifurcations” in-
volving the frontier and the critical curve LC. The
crossing of F through the critical curve LC (a) (see
the enlargement in Fig. 10) gives rise to the appear-
ance of “islands” of red basins, the first one around

the critical curve LC
(a)
−1 and all its preimages of any

rank. The preimages of the main portion around

LC
(a)
−1 increases as β increases, as well as the preim-

ages, giving rise to new bifurcations due to contacts
and crossing of LC (a) and the same mechanism ap-
plies, creating new islands whose preimages are ac-
cumulating on more and more repelling cycles, ap-
proaching the fractal structure of F , as can clearly
be seen in Fig. 11.

At β = 1 all the islands will be in contact with
each other on F leading to the true fractal structure
existing at this value of β.

The one described above is the mechanism cre-
ating the hard-fractal structure which exists when
β = 1 (as proven in Sec. 3.1) independently of the
value of the parameter c. In order to show another
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(a)

(b)

Fig. 9. (a) At β = 0.9, the boundary appears quite smooth. In the upper part, the basin is multiply connected, i.e. connected
with holes, because near P ∗ there are gray points which have preimages. The presence of this region of points is due to a
contact between the branch of LC(a) in the half-plane Π− and the frontier of the basin. (b) In the enlargement, the region
causing the appearance of holes in the basin is more evident. In the same figure we can also observe the quite smooth structure
of the frontier in Π−.
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(a)

(b)

Fig. 10. (a) As β is increased, contact bifurcations, involving the frontier and the critical curve LC(a), of the same type as
the one described in Fig. 9, give rise to the appearance of small red islands. (b) In the enlargement, observe the region of point

which gives rise to the small islands and the “main island”, i.e. the preimages of rank-1 of that region, located around LC
(a)
−1 .
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(a)

(b)

Fig. 11. (a) As β approaches 1, the preimages of the “main island” increases, as well as its preimages, giving rise to new islands
(by new contact bifurcations) whose preimages are accumulating on more and more repelling cycles. (b) In the enlargement,
one of the new contact bifurcations is indicated by an arrow, as well as the increased size of the region which gives rise to
the process. The red islands are now very near to the frontier of the immediate basin and the “future” fractal structure is
perceivable.
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(a)

(b)

Fig. 12. A similar transition smooth — hard-fractal — half-fractal structure, as β crosses 1, is obtainable for different values
of c. Here, we show the case c = 0.6 at which P ∗ is an attractive fixed point and R∗ is a repelling fixed point located on the
frontier in Π−. (a) At β < 1, the frontier in Π− is quite smooth. (b) At b = 1, the frontier has a “hard-fractal” structure.
(c) At b > 1, the frontier has a half-fractal structure.
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(c)

Fig. 12 (Continued)

Fig. 13. For c = 2 the map T seems chaotic in the whole area bounded by critical curve segments, as the logistic map for
µ = 4.
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example let us consider a lower value of c, for which
the attractor on the x-axis is the stable fixed point
P ∗. We also have for the two-dimensional map T ,
that P ∗ is the only attractor, and the frontier of its
basin is also the frontier of B∞. The portion of F in
Π− from smooth for β < 1 becomes “hard-fractal”
at β = 1, and “half-fractal” for β > 1.

In Fig. 12 the transition to half-fractal bound-
ary can be observed as β crosses through 1.

Similarly we can reason at any value of c. In
particular, we know that for c = 2 (equivalent to
µ = 4 for the logistic map) the Myrberg’s map
is chaotic in the interval bounded by the criti-
cal points [c, c1] and we have an analytical solu-
tion for the trajectories on the x-axis. At β = 1
also the two-dimensional map T seems chaotic in
the whole area bounded by critical curve segments,
see Fig. 13. We conjecture that also for T , there
exist an analytical solution for the trajectories in
this chaotic area, which may be determined via
the “Schroeder mechanism” (see [Mira, 1987; Mira
et al., 1996]). We leave this as an open problem for
those who are interested in these topics.
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Appendix

In this Appendix we shall see that infinitely many
cycles exist in Π− for β > 1.

For β ≥ 1 any point P = (u, v) ∈ Π− has two
distinct rank-1 preimages in Π−, one on the right
and one on the left of the y-axis. We call these two
inverses T−1

R and T−1
L :

T−1
R (u, v) = (

√

u + c − ξ, ξ)

T−1
L (u, v) = (−

√

u + c − ξ, ξ)

where

ξ =
2(u + c) −

√

4(u + c)2 + |v|(5 − β)

(5 − β)

The fact that any point always has two distinct
rank-1 preimages in the same region is clearly an
important peculiarity. This property is not “com-
mon” in two-dimensional maps, and it may be as-
sociated with the existence of chaotic dynamics in
some invariant set.

The mechanism we use to prove the existence
of infinitely many cycles in Π− is the following.

Let us define the area bounded by F = ∂B∞

in Π− as the union of two closed sets: UL ∪ UR

(bounded by portions of the coordinate axes and
a portion of frontier F). Then we have T (UL) ⊇
UL ∪ UR, T (UR) ⊇ UL ∪ UR, thus the Brower fixed
point theorem holds and both UL and UR must
contain a fixed point of T .

Then let T−1(UR) = ULR ∪ URR and
T−1(UL) = ULL ∪ URL. We have that T 2(ULR) ⊇
ULR, T 2(URR) ⊇ URR, T 2(ULL) ⊇ ULL and
T 2(URL) ⊇ URL, which implies that each of the
four closed areas must include a fixed point of T 2,
and URL being on the right of the y-axis, T (URL) =
UL on the left, it follows that the fixed point of T 2

in this set URL cannot be a fixed point of T , so that
it must be a cycle of period 2 for T .

Taking the preimages of Uij for all the combina-
tions of (i, j) with the two symbols L and R, we get
sets Ui1i2i3 (with all the combinations of (i1, i2, i3)
with the two symbols L,R), each of which satis-
fies T 3(Ui1i2i3) ⊇ Ui1i2i3 and the fixed point the-
orem applies. The existence of cycles of period 3
can be proved. In fact, by using the same reason-
ing as above, the sets with index (RLL, LLR, LRL)
and the sets with index (RLL, LLR, LRL) must in-
clude periodic points belonging to cycles of period 3
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(while the sets with index RRR and LLL include
fixed points of T in UR and UL, respectively).

And so on, this process can never stop because
any closed set in Π− has two distinct rank-1 preim-
ages in Π−, at the step-k we have sets Ui1... ik (with
all the combinations of (i1, . . . ik) with the two
symbols L, R), each of which satisfies T k(Ui1... ik) ⊇
Ui1... ik and the fixed point theorem applies. The
existence in Π− of cycles of period k can be proved
by using the same reasoning as above.

We know that when β = 1 all the cycles in
Π− below the x-axis are on the frontier F , while
when β > 1 some cycle may be in the interior of
the area in Π− below the x-axis and bounded by
the frontier F , and in fact, they may belong to the
internal frontier which separates the red points from
the white ones. To see this we note that the cycles of
T belonging to the coordinate axes are completely
known, for example, at β = 1.1 on the x-axis the
only cycles are two fixed points of T and one cycle
of period 2, thus all the infinitely many cycles which
we have proved to exist cannot belong to the por-
tions of boundaries of the closed sets Ui1... ik which
are preimages of any order of the coordinate axes.
It follows that such cycles must be either in the
interior or on the frontier of Ui1... ik which is a preim-
age of F .

Let us close this Appendix recalling (as a
numerical curiosity) a trick in order to detect any
cycle of T in Π− which is expanding, i.e. a repelling
node or focus (it is the same that we apply in the
case of the one-dimensional logistic map).

For example, in order to find the two cycles of
period 3, starting from a point in Π− we iterate the
maps

T−1
R ◦ T−1

R ◦ T−1
L

T−1
L ◦ T−1

L ◦ T−1
R

In order to find the three cycles of period 4 we
iterate the inverses in the order RRRL, LLLR,
RRLL (as the iteration of RLRL gives the cycle

of period 2, while iterating the inverses RRRR we
get the fixed point Q∗ in UR and iterating LLLL
the other fixed point P ∗ in UL).

In general, starting from a point in Π− and
iterating the inverses in the following order:

{

L

R
we obtain the fixed point

P ∗

Q∗















LL

RR

LR or RL

we obtain

P ∗

Q∗

the 2-cycle C∗

2


























































LLL

RRR

RLL
LLR
LRL

RLL
LLR
LRL

we obtain

P ∗

Q∗

the 3-cycle C∗

3,a

the 3-cycle C∗

3,b


































































































































LLLL

RRRR

LRLR
RLRL

RLLL
LRLL
LLLR
LLRL

RRLL
RLLR
LRRL
LLRR

RRLR
RRRL
RLRR
LRRR

we obtain

P ∗

Q∗

the 2-cycle C∗

2

the 4-cycle C∗

4,a

the 4-cycle C∗

4,b

the 4-cycle C∗

4,c

and so on.


