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1. Introduction

Oligopoly theory, founded in 1838 by Cournot, Cournot (1938), is one of the oldest,
if not the oldest branch of mathematical economics. It is also one of the oldest
dynamic theories in economics that were suspected to lead to complex dynamic
phenomena. Rand (1978) suggested that if the reaction functions of the competi-
tors were of the shape known from the logistic iteration, i.e., first increasing and
then decreasing, then duopoly theory would be capable of producing all known
phenomena of complex dynamics: orbits of any periodicity, as well as quasiperiodic
and chaotic ones, along with multistability of attractors.

∗Corresponding author.
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In traditional industrial organization textbooks the reaction functions are always
drawn as simple straight lines, so no interesting dynamic phenomena at all appear
at the average economics student’s horizon. However, there exist many circum-
stances under which the shapes suggested by Rand can arise. One of the simplest
is maybe the case suggested in Puu (1991): an isoelastic demand curve, combined
with constant marginal costs for the duopolists.

The isoelastic demand curve (of unit elasticity) itself arises whenever the con-
sumers maximize utility functions of the popular Cobb-Douglas variety. As is well
known, the consumers then spend fixed budget shares on each commodity, so the
demand for any commodity becomes reciprocal to the price of this particular com-
modity (independently of the prices of all the other commodities).

This reciprocity, for once, also makes aggregation over individual consumers an
easy matter, and so aggregate demand as well retains this property of reciprocity to
price. Constant marginal costs, likewise, belong to the simplest first approximations
in microeconomic models.

In Puu (1991) it was shown that under these assumptions a period doubling
cascade to chaos occurs when the competitors react in the Cournot mode. It was
also shown that, making the adjustment process adaptive, i.e., assuming that the
competitors move to a weighted average of their previous moves and their calculated
new best responses according to Cournot, results in the loss of stability occurring
through a Neimark bifurcation. So, once the fixed point loses stability, it is replaced
by a periodic solution, or by a closed orbit in phase space.

There is a special characteristic to this Neimark bifurcation: it is not supercrit-
ical, but subcritical. So, it is not the loss of stability for the fixed Cournot point
that gives rise to another attractor. Rather, this other attractor (or several of them)
exist even before the Neimark bifurcation, so at the bifurcation moment, the fixed
point just loses stability through the collapse of its basin of attraction around it,
thus eliminating the fixed point itself from the list of attractors. Before this, there
is coexistence, or multistability.

This also shows up in the bifurcation diagrams, where the periodic Arnol’d
tongues protrude right through the Neimark bifurcation curve. For illustrations see
Puu (2003).

All this means that the global bifurcations, through which multistability arises,
producing other attractors along with the Cournot point, is more interesting than
the Neimark bifurcation itself, which just signifies the final destabilization of the
fixed point.

The objective of the present paper is a more close study of this emergence of
multistability preceding the subcritical Neimark bifurcation in oligopoly models of
the type described.

One of the peculiarity of these models is the piecewise smooth character of the
map, and it is well known that for this kind of maps particular bifurcation are
involved, due to the change of definition of the map. Such bifurcations are related
with closed invariant sets (as attractors, frontiers, manifolds) having a contact with
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the border of a region of definition of the map. Since the papers by Nusse and
Yorke, Nusse and Yorke (1992), Nusse et al. (1994), Nusse and Yorke (1995), a
common term to refer to this type of bifurcation is “border collision”. Indeed, we
shall see also in this model that appearance/disappearance of closed invariant sets
are associated with border collision bifurcations.

It is worth stressing that subcriticality which occurs in our model is not just a
mathematical property, it also has considerable significance in terms of economic
substance. This is because, with subcriticality, the bifurcations become “hard”, so
that the trajectory makes a jump to approach some distant attractor, and cannot
be stabilized towards the Cournot point again through any fine tuning.

The structure of the paper is as follows. In Sec. 2 we introduce the Cournot
duopoly model and we analyze the properties of the map that governs the adjust-
ment process. In particular we prove that a subcritical Neimark bifurcation of the
fixed point occurs. In Sec. 3 we show a border collision bifurcation which leads
to the emergence of a closed repelling invariant curve Γ, whose shrinking process
causes the loss of stability of the Cournot equilibrium point. Such a border colli-
sion gives rise also to an attracting invariant closed curve which coexists with the
attracting equilibrium point. In Sec. 4 we show that more complex multistability
situations, always due to border collision bifurcations, are possible.

2. The Model

Consider a market in which the demand function is isoelastic, i.e.,

Q =
1
p
, (1)

Q denotes total demand and p the price of the commodity.
Moreover, assume there are two competitors in the market, producing under

a technology of constant marginal costs, denoted a and b. Following the Cournot
hypothesis, the competitors act simultaneously, choosing their outputs qi. We
assume they have no capacity constraints, so qi ∈ [0, +∞), i = 1, 2.

The inverse demand function is p = 1/Q, where Q = q1 + q2. Hence,
p = 1/(q1 + q2), so the profit function of producer 1 becomes

U1(q1, q2) =
q1

q1 + q2
− aq1 (2)

and his optimal production, given the expected production qe
2 of the competitor, is

the solution to the problem

max
q1≥0

U1(q1, q
e
2). (3)

From Eq. (3), it is easy to obtain the best response of producer 1:

R1(qe
2) =

{q
qe
2
a −qe

2 if 0 ≤ qe
2 ≤ 1

a

0 if qe
2 > 1

a

. (4)
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The best response of producer 2 can be obtained analogously:

R2(qe
1) =

{q
qe
1
b −qe

1 if 0 ≤ qe
1 ≤ 1

b

0 if qe
1 > 1

b

. (5)

R1(qe
2) and R2(qe

1) are normally called the reaction functions of the competitors. If
we identify actual and expected outputs, then R1(q2) and R2(q1) represent curves
in the q1, q2 plane, which intersect at the origin and in the Cournot equilibrium
point.

If the competitors have perfect foresight, and if they do not try any smart
strategy for instance of the Stackelberg type, they immediately jump to the Cournot
equilibrium point, whose coordinates are easily calculated:

E∗ = (q∗1 , q∗2) =
(

b

(a + b)2
,

a

(a + b)2

)
. (6)

Observe that for each firm this equilibrium point is a decreasing function of its
own marginal cost, and, seen as a function of the marginal cost of the competitor,
attains its maximum when b = a.

If we adopt the “myopic rationality” of Cournot’s original setup, then each of
the firms assumes the output of the competitor to remain the same as it was in the
previous period, i.e.

qe
i (t) = q(t − 1). (7)

Using this convention, we could also set up a dynamic process in which the
Cournot equilibrium point is reached, not in one step, but approached asymptot-
ically through successive adjustments according to the reaction functions (4)–(5).
This, of course, only holds provided the Cournot equilibrium point is stable. As
indicated in the introduction, the Cournot point can be destabilized even in such a
simple adjustment process, and be replaced by periodic processes or even by chaos.

However, we do not consider this at present, but adopt the adaptive format right
from the outset, i.e., we assume that the competitors do not immediately aim for the
optimum predicted by the myopic best reply function. As a conservative concession
to their limited knowledge concerning the actual reactions of the competitor, they
only adjust their previous decision in the direction of the new optimum. Thus:{

q1(t) = (1 − λ)q1(t − 1) + λR1(q2(t − 1))

q2(t) = (1 − µ)q2(t − 1) + µR2(q1(t − 1))
(8)

where we assume fixed weights, or adjustment speeds λ and µ, for the previous
decision and the calculated myopic best response. Of course 0 ≤ λ, µ ≤ 1. Observe
that if both adjustment speeds equal 1, then we are back to the original Cournot
duopoly as verbally described above.
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Substituting the best response functions (4) and (5) in (8), we obtain the map
T , which is the object of the present study

T :


x′ =

{
(1 − λ)x + λ

(√
y
a − y

)
if 0 ≤ y ≤ 1

a

(1 − λ)x if y > 1
a

y′ =
{

(1 − µ)y + µ
(√

x
b − x

)
if 0 ≤ x ≤ 1

b

(1 − µ)y if x > 1
b

. (9)

In Eq. (9), as in the rest of the discussion, we use the variables x and y to denote
the quantities q1 an q2, and the prime symbol (′) to denote the unit advancement
operator, i.e., if x is the decision of producer 1 at time t − 1, q1(t − 1), then x′

denotes q1(t).
The two-dimensional map T is continuous and piecewise smooth in the plane

R
2
+. It depends on four parameters, the marginal costs a > 0 and b > 0 and the

adjustment speeds λ and µ, both constrained to the interval [0, 1].
But it is possible to show that in order to study the dynamical behaviour of T ,

only three parameters are essential. Without loss of generality, we can fix any of
the marginal costs at the value 1, for instance the smaller of them, because the
following proposition holds:

Proposition 1. The map T with parameters (a, b, λ, µ) is topologically conju-
gated to the map T̃ with parameters (τa, τb, λ, µ), τ > 0, via the homeomorphism
Φ(x, y) = (τx, τy).

Proof. We have

T (Φ(x, y)) =


{

(1 − λ)τx + λ
(√

τy
a − τy

)
if 0 ≤ τy ≤ 1

a

(1 − λ)τx if τy > 1
a{

(1 − µ)τy + µ
(√

τx
b − τx

)
if 0 ≤ τx ≤ 1

b

(1 − µ)τy if τx > 1
b



=


{

τ
[
(1 − λ)x + λ

(√
y
τa − y

)]
if 0 ≤ y ≤ 1

τa

τ(1 − λ)x if y > 1
τa{

τ
[
(1 − µ)y + µ

(√
x
τb − x

)]
if 0 ≤ x ≤ 1

τb

τ(1 − µ)y if x > 1
τb


= Φ(T̃ (x, y)) .

In what follows we consider b = 1 and a > 1 so the map T in Eq. (9) becomes

T :


x′ =

{
(1 − λ)x + λ

(√
y
a − y

)
if 0 ≤ y ≤ 1

a

(1 − λ)x if y > 1
a

y′ =
{

(1 − µ)y + µ(
√

x − x) if 0 ≤ x ≤ 1
(1 − µ)y if x > 1

. (10)
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2.1. The equilibrium point and local stability analysis

As we observed, the map T in Eq. (10) is piecewise smooth. This means that we
need to consider four maps, defined in four different regions of R

2
+. More precisely,

write

R
2
+ = R1 ∪ R2 ∪ R3 ∪ R4 (11)

where

R1 = [0, 1] ×
[
0,

1
a

]
; R2 = (1, +∞) ×

[
0,

1
a

]
;

R3 = (1, +∞) ×
(

1
a
, +∞

)
; R4 = [0, 1] ×

(
1
a
, +∞

)
.

(12)

In each region Ri the composite map T is given by a different map Ti.
The simplest is

T3 :
{

x′ = (1 − λ)x
y′ = (1 − µ)y

(13)

which is linear, with an attracting fixed point at (0, 0). But the origin does not
belong to region R3 where T3 applies. After a finite number of iterations each
trajectory starting in R3 leaves that region.

In region R2 we have the map

T2 :

{
x′ = (1 − λ)x + λ

(√
y
a − y

)
y′ = (1 − µ)y

. (14)

This too always admits a fixed point at the origin, which again does not belong
to R2. We observe that at each iteration a contraction of the y value occurs (remem-
ber that 0 ≤ µ ≤ 1). So y tends towards 0, and y = 0 is an attracting direction for
the fixed point (0, 0). Then a trajectory starting in R2 leaves that region entering
in R1 after a finite number of steps. Similarly the map

T4 :
{

x′ = (1 − λ)x
y′ = (1 − µ)y + µ

(√
x − x

) (15)

admits as fixed point the origin, not belonging to R4, and it contracts the x value.
Then a trajectory starting in R4 after a finite number of iterations enters R1.

Thus we conclude that, after a finite number of iterations, every trajectory enters
R1, and so the asymptotic behaviour of T strongly depends on the map

T1 :

{
x′ = (1 − λ)x + λ

(√
y
a − y

)
y′ = (1 − µ)y + µ

(√
x − x

) . (16)

As we will see, the region R1, however, is not a trapping set for the map T .
Hence a trajectory can escape from R1, but, if so, it has to re-enter this region
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(in a finite number of steps). This leads us to state that the attracting sets for
the map T must belong to or intersect the region R1. More precisely, when the
attractor is a fixed point, it must be a fixed point of T1 and when the orbit is
periodic (or quasi-periodic) some periodic points must belong to R1. Also in the
case of chaotic behavior, a portion of the strange attractor must be contained in R1.
For this reason, in order to study the map T , we have to start from the properties
of the map T1.

The fixed points of T1 are: the origin, always repelling, and the Cournot equi-
librium point E∗, given in (6), which belongs to R1 for every a > 0.

In order to study the local stability of E∗, as usual, we consider the Jacobian
matrix of T1 evaluated at the equilibrium point.

We have J∗ =
[

1 − λ λ 1−a
2a

µa−1
2 1 − µ

]
, from which we can deduce the stability

conditions

(1) 1 − trace(J∗) + det(J∗) = 1
4a (a + 1)2λµ > 0

(2) 1 + trace(J∗) + det(J∗) = 2(2 − λ − µ) + µλ(a+1)2

4a > 0

(3) 1 − det(J∗) = λ + µ − µλ(a+1)2

4a > 0.

It is obvious that conditions 1 and 2 are always fulfilled, whereas condition 3
defines a surface in the parameter space on which a Neimark bifurcation takes
place. Thus the only possible bifurcations which may occur are those related to
closed invariant curves and may be very interesting in our context from an applied
point of view. Moreover, in the particular case of equal adjustment speeds λ = µ,
we can prove analytically the type of the Neimark bifurcation, as stated in the
following proposition.

Proposition 2. If λ = µ < 1, then at any crossing of the curve

λ =
8a

(a + 1)2
(17)

a Neimark bifurcation of subcritical type takes place.

Proof. In the case µ = λ, denoting by S the eigenvalues, the characteristic poly-
nomial of the Jacobian matrix J∗ can be written

P(S) = (S + λ − 1)2 +
1
4a

(a − 1)2λ2 . (18)

We deduce that J∗ has complex conjugated eigenvalues for every λ and a. The
modulus of such eigenvalues is |S| = (1− λ)2 + 1

4a (a− 1)2λ2, so they belong to the
unit circle when (17) is fulfilled. Moreover if λ < 1, then |S|j �= 1, j = 2, 3, 4.

This proves that at any crossing of the curve (17) a Neimark bifurcation takes
place. Finally, computing coefficients d and A (a in the book) of Theorem 3.5.2,
p. 162, in Guckenheimer and Holmes (1997), we obtain d = 1 and A < 0 in the
relevant parameter range. This proves that the Neimark bifurcation is of subcritical
type.
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It is clear that the generic case is λ �= µ, however the above proposition leads
to interesting dynamic situations, so that we leave the generic case for further
researches and in what follows we shall focus our attention to the particular case of
equal adjustment speeds for the competitors, µ = λ, where, of course, λ < 1.
In such a case we know from Proposition 2 that just before the bifurcation a
repelling closed curve Γ exists while the fixed point is still attracting, and that,
at the bifurcation values, it disappears, shrinking on E∗, which then becomes
repelling.

The very fact that the bifurcation is subcritical has a certain importance in
terms of the economics involved. Economists are most often concerned with fine
tuning, i.e., keeping systems at equilibria with minute adjustments of parameters
under the control of some authority. In the case of multistability and other phe-
nomena appearing in complex nonlinear systems, this means restoring a destabilized
equilibrium. It is therefore notewhorty that this never works in the case of subcrit-
ical bifurcations, because, unlike the case of supercritical bifurcations, the system
jumps to some attractor at considerable distance from the original one that was
destabilized.

The appearance of the repelling curve Γ involved in the subcritical Neimark
bifurcation will be the object of our study. In fact the existence of such a repelling
closed curve is very important, as it implies the existence of points in the phase
plane with different asymptotic behaviour. Then we can expect that the Cournot
equilibrium coexists with some other attractors, which, as we will see, are periodic
and/or quasi-periodic (as two more attractors can exist besides the stable Cournot
point). In any case, the closed curve Γ is the boundary of the immediate basin of
attraction of E∗.

In particular we will see that Γ can appear with a cycle or an attracting closed
curve, via a border collision bifurcation (typical of piecewise smooth maps), and
that different multistability situations are possible. In our study we proceed by
fixing the value of the parameter λ and letting a change.

3. Border Collision Bifurcations

In order to understand the global bifurcation causing the appearance of the closed
curve Γ, we consider the map T1 defined in Eq. (16), as noted in the previous section.

Given we are particularly interested in T1 with λ = µ, let us rewrite the map
accordingly:

T1 :

{
x′ = (1 − λ)x + λ

(√
y
a − y

)
y′ = (1 − λ)y + λ

(√
x − x

) (19)

Due to the appearance of the square root, it is obvious that T1 is defined only
at points belonging to the nonnegative quadrant of the plane R

2. Let us now define
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the feasible region F1. This is the set of points in the plane defined by

F1 = {(x, y) : x ≥ 0, y ≥ 0} (20)

Note that the feasible region is larger than the region in which the map T1 is well
defined. Indeed, we can only say that T1 is “a map” in D if, given any initial
condition (x0, y0) ∈ D, we have that T n

1 (x0, y0) exists and is feasible for any n. In
other words D is a region in which T1 is defined forever in its forward iterations.
This set D includes the basins of attraction of the attracting sets of the map.

In this section we shall describe the shape of D, and in particular of its boundary.
We shall see that this boundary may be the repelling invariant closed curve Γ we
are looking for.

In the case of noninvertible maps, such as the one we are interested in, the
study of the basins of attraction can be performed using the Riemann foliation of
the phase plane as defined by the map. Recall that, according to the literature on
noninvertible maps (see Gumowski and Mira (1980), Mira et al. (1996)), a Riemann
foliation of the plane means superposed “sheets”, which cover the plane and explain
the number of preimages that exist in its different parts.

Usually, this information is obtained considering the critical curve LC of the
noninvertible map, which separates regions of the phase plane that have different
numbers of rank-1 preimages. These regions are denoted Zi, where the index i

denotes the number of distinct rank-1 preimages of any point in that region. The
critical curve LC is the locus of points having two merging preimages. In our case
it can be obtained as the image by T1 of the set of points for which the Jacobian
determinant |J | vanishes. (This set itself is denoted LC−1, and is called critical
curve of rank-1).

We have

|J | = det

[
1 − λ λ

(
1

2
√

ay − 1
)

λ
(

1
2
√

x
− 1

)
1 − λ

]

= (1 − λ)2 − λ2

(
1

2
√

x
− 1

)(
1

2
√

ay
− 1

)
= 0 . (21)

Solving for the variable y in explicit form, we obtain LC−1:y = 1
4a

(
λ2(2

√
x−1)

4λ
√

x−2
√

x−λ2

)2

0 ≤ x ≤ 1
4

. (22)

An example of this curve is shown in Fig. 1, along with its image
LC = T1(LC−1).

For the map T1 the critical line LC is not enough to give the Riemann foliation,
because of the square root in its definition. In fact, we have to take into consideration
that some preimages may be unfeasible, i.e., they can have a negative coordinate.
To define the regions Zi properly, we must therefore also consider the images by T1
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TX

TY

LC

LC-1

Z1

Z0

Z2

A

A1

BB1O

Fig. 1. Riemann foliation of the phase plane defined by the map T1. In white the region Z1, in
grey the region Z0 and in pale grey the small region Z2.

of the coordinate axes, i.e., of the boundary of the set F1. The images of these two
curves TX = T1({y = 0}) and TY = T1({x = 0}) are obtained as

TX : y = λ
(√

x
1−λ − x

1 − λ

)
TY : x = λ

(√
y

a(1−λ) −
y

1 − λ

) . (23)

The curves TX and TY are not critical lines in the sense of Gumowski and Mira
(1980) and Mira et al. (1996), because their points do not have merging preimages.
However the essential features of the critical curves theory apply also to such curves
because the crossing through them still causes the appearance (or disappearance)
of a rank-1 preimages. In Fig. 1 we show the regions Z0, Z1 and Z2 so obtained.
In particular we observe that the points of the y-axis that have admissible forward
images belong to the segment OA, where O is the origin and A is the point (0, 1

a ).
Likewise, those of the x-axis belong to the segment OB , where B is the point
(1, 0). This fact has a trivial explanation: 1 and 1/a are the supply quantities of
the respective firms, for which the competitor’s maximum profits turn negative.

We also observe that, consequently, the points of the y-axis having preimages
belong to the half-line starting from A1 = T (A), and those of the x-axis to the
half-line starting from B1 = T (B).

Let us now return to the set D. In order to obtain the boundary of D we reason
as follows. Starting from F1, i.e., the feasible region of T 1

1 , we can compute F2, the
feasible region of T 2

1 . This is the subregion of F1, such that not only (x, y), but also
(x1, y1) = T1(x, y), are feasible, so that we are able to compute T 2

1 . Thus

F2 = {(x, y) ∈ F1 : T1(x, y) ∈ F1} . (24)
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0 0.04

0.1

0

*E

A

A1

C

G

A-1

A-2

A-3

G-1

C-1

ξ
LC

LC-1

TX

TY

Z0

Z1

Z0

Z2

Z1

x

y

6.11;5.0 == aλ

Fig. 2. The set D (white points) is the basin of attraction for the Cournot equilibrium point E∗,
and it coincides with F4. Its boundary is made up by four preimages of the segment A1A of the
y-axis, denoted by ξ.

Clearly F2 ⊆ F1, and the boundary of F2 contains the rank-1 preimages of the
boundary of F1, as well as a portion of ∂F1 itself. This means that a point belonging
to ∂F2 is either mapped into ∂F1 or it belongs to F1.

And so forth:

Fk = {(x, y) ∈ Fk−1 : T1(x, y) ∈ F1} . (25)

It may occur that a finite k exists such that Fk+1 = Fk = D, as in the case
displayed in Fig. 2. In this picture, obtained at λ = 0.5 and a = 11.6, the set D is
the basin of attraction for the Cournot equilibrium point E∗, and it coincides with
F4. Its boundary is made up by four preimages of the segment A1A of the y-axis,
denoted by ξ.

Indeed, the segment ξ belongs to Z1: its rank-1 preimage is bounded by A and
A−1 (the rank-1 preimage of A), and it is always located in Z1, up to the line
y = 1/a (and then we deduce that R1 is not a trapping set for T1). There exists a
rank-2 preimage of ξ, bounded by A−1 and A−2, which always belongs to Z1. Only
a portion of the preimages of rank-3 of ξ belong to Z1. Its upper part is bounded
by A−2 and C (a point on the curve TX ), whereas the portion bounded by C and
G (located on LC ) belongs to Z2 and a small portion (bounded by G and A−3) to
Z0. This means that there exist rank-1 preimages of the portion A−2G, which are
rank-4 preimages of ξ. The portion CG has an extra preimage, located below the
LC−1 curve, and it has an extremum on the x-axis. Such preimages belong to Z0,
and this completes the construction of ∂D = ∂F4.

Observe that, due to the high marginal cost a, only the preimages of the y-
axis are involved in the construction of the set ∂D. For a smaller value of a, the
boundary of D would also be made up by the preimages of the segment B1B, and
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this occurs when the point C does not exist and the preimages of ξ have no longer
a contact with the curve TX .

Obviously the structure of the set D can also be more complex, for instance, it
can become disconnected, due to further contacts of its frontier with LC , but this
is beyond the scope of the present paper.

It is interesting that, as the parameter a is increased, a greater number of
preimages are involved in the construction of ∂D, i.e., Fk+1 = Fk for k > 4, and
a “cyclical appearance” of new preimages shows up due to contact bifurcations of
the frontier with the curve TY .

Let us clarify using some examples, always obtained for λ = 0.5. In the first
case, displayed in Fig. 3(a), the mechanism we consider is not yet working, but its
“germ” just comes into existence: We can see that a portion of the rank-4 preimage
of ξ belongs to Z2, and that some of its preimages belong to Z1 and Z2, so the
preimage of rank-6 of ξ, ξ−6, exists.

Well, it is just ξ−6 (now located close to the y-axis in the Z0 region), and
its contacts with TY , that are responsible of the quick appearance for six new
preimages, which rotate around and inside the set F6. Moreover, at each contact of
a new preimage of rank-6n (n = 1, 2, . . .) with TY , the same mechanism applies.
For instance, in Fig. 3(b) (where D is a disconnected set), we can observe that a
great number (but always a multiple of six) of preimages of ξ are needed to obtain
the boundary of D. A consequence of the increasing number of preimages is that
the set ∂D becomes more smooth.
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Fig. 3. (a) The bifurcation “germ” just comes into existence: A portion of the rank-4 preimage
of ξ belongs to Z2, and some of its preimages belong to Z1 and Z2, so the preimage of rank-6 of
ξ, ξ−6, exists. (b) After the contact of ξ−6 with TY , a greater number (but always a multiple
of six) of preimages of ξ are needed to obtain the boundary of D. As a consequence the set ∂D
becomes more smooth.
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As the parameter a is increased further, a global bifurcation occurs, after which
the boundary of D is made up by infinitely many preimages of the segment A1A.
This must be due to the appearance of two cycles (evidently of high order and
therefore difficult to be identified), a saddle and a repelling node, whose saddle
connection (the stable set of the saddle connecting to the repelling node) defines a
closed repelling invariant curve Γ. This curve is unstable, and bounds the set D,
the basin of attraction of the fixed point.

We can observe such a global bifurcation in Fig. 4(a), where there exists a
preimage of the segment A1A of a rank greater than 17, tangent to the curve
TY . This means that no point of such a preimage falls into Z0, so the process of
backward iteration of A1A never ends, i.e., there exist infinitely many preimages.
We conclude that in such a case Fk+1 ⊂ Fk for every k, and that the set ∂D, i.e.,
the repelling curve Γ, is the limit set of ∂Fk as k → ∞, which may also be defined as
the limit set of T−k

1 (∂F1) = T−k
1 (A1A). An alternative way to check such a global

bifurcation is to consider the forward iteration of the upper part of TY , denoted
η in Fig. 4(b): We know that ∂D is tangent to η at the point P , hence its first
forward iterate T1(η) must be tangent to ∂D in P1 = T1(P ), and so forth . . . At the
bifurcation value, all the forward iterates of η are tangent to ∂D, as in Fig. 4(b),
obtained immediately after the bifurcation (where only a finite number of forward
iterates are shown).

After the bifurcation, at a higher value of a, the repelling closed curve always
exists, it becomes smaller with no contact with the curve η and, consequently, with
the y-axis, that is, it is internal to the quadrant F1 (see Fig. 5).
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Fig. 4. (a) A preimage of the segment A1A is tangent to the curve TY , then there exist infinitely
many preimages of A1A; now Fk+1 ⊂ Fk for every k, and the set ∂D, i.e., the repelling curve Γ,
is the limit set of ∂Fk as k → ∞. (b) An alternative way to check such a global bifurcation: all
the forward iterates of η (the upper part of TY ) are tangent to ∂D.
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Fig. 5. The repelling closed curve Γ is internal to the quadrant F1 and belongs to the region
R1 ∪ R4.

We have thus seen that either ∂D is made up by a finite number of pieces
of curves belonging to T−k

1 (∂F1), or (when a pair of cycles exist, giving rise to
the unstable closed curve Γ) ∂D is made up by Γ itself, which is the limit set of
T−k

1 (∂F1) as k → ∞.
As a increases, the region D shrinks more and more, merging with the fixed

point at the Neimark-Hopf bifurcation value.
Let us now return to the map T , in order to show how the sequence of bifurca-

tions just described also implies a global bifurcation for that map.
When it appears, the closed repelling curve Γ (for T1) belongs to the region

R1 ∪ R4 (see Fig. 5). Then it does not influence the dynamical behaviour of T .
Indeed, for the parameter constellation we considered up to now, the Cournot equi-
librium point E∗ is the global attractor of the trajectories for T . But, during its
shrinkage process, the curve Γ has a contact with the line y = 1

a , which separates
the regions R1 and R4, as shown in Fig. 6(a). Let us denote the bifurcation value at
which this happen by ab. At a = ab a bifurcation for T , called border collision, takes
place, which results in the appearance of an attracting closed invariant curve Γs,
very close to the curve Γ, which now bounds the basin of attraction of the Cournot
equilibrium point (see Fig. 6(b)). The effects of such a bifurcation are noticeable:
The basin of attraction of the Cournot equilibrium point suddenly becomes smaller,
coinciding with the set D of the map T1, and the major part of the trajectories con-
verge to the curve Γs, that is the major part of the trajectories are quasi-periodic,
or periodic of high period.

We can explain this bifurcation only conjecturing that at a = ab another couple
of cycles are created: a saddle and a stable node, so that now the unstable set of
the saddle cycle gives rise to a closed invariant (attracting) curve on which we also
have the stable cycle.
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Fig. 6. (a) The curve Γ has a contact with the line which separates the regions R1 and R4.
(b) Border collision bifurcation for the map T : An attracting closed invariant curve Γs appears,
very close to the curve Γ, which now bounds the basin of attraction for the Cournot equilibrium
point (in white). The grey points converge to Γs.

Once more the high periodicity of the cycles involved makes a numerical verifi-
cation difficult.

The closed invariant curve Γ which bounds the basin of attraction of the fixed
point E∗, as the parameter a increases, shrinks and merges with E∗ at the subcriti-
cal Neimark bifurcation value aN , leaving an unstable fixed point and an attracting
set Γs quite far from it. It is worth to stress that this leads to an hysteresis effect:
once large-amplitude oscillations have begun, they cannot be turned off by bringing
a back to aN and the system returns to the Cournot equilibrium point only if the
parameter is decreased to ab.

4. Multistability

In the previous section we have seen that the border collision bifurcation gives rise
to a new attractor, and causes a drastic reduction of the basin of attraction for the
fixed point. Now, analyzing a sequence of bifurcations that arise inside a periodic
window, we shall see how the situations of multistability, always due to border
collision bifurcations, can be even more complex.

From the bifurcation diagram for the map T , not shown here (see for instance
Puu (2003), p. 278), we obtain that at λ = 0.5039 a window of period 6 exists. Then
we fix this value for λ and let a vary, in order to analyze the bifurcation sequence
leading to the appearance of the cycles (stable and unstable), and of the repelling
closed curve Γ.

As usual we start from the map T1. Also in this case, the sequence of bifurcations
leads to a set D internal to F1, with its boundary given by the limit set of the
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preimages of the frontier of the feasible region (in a way similar to the one described
in the previous section).

But now a periodic orbit, of period 6, on the repelling curve is obtained. In
Fig. 7(a) we observe two cycles of period 6 on Γ: a saddle (a periodic point of which
is (0.00149, 0.0660) with eigenvalues S1 = 1.1236, S2 = 0.9977), and a repelling
node (a periodic point of which is (0.001508, 0.0666) with eigenvalues S1 = 1.1218,
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Fig. 7. (a) Two cycles of period 6 on Γ, a saddle and a repelling node node, born by a saddle-node
bifurcation. The curve Γ results from a saddle connection, i.e., the stable manifold of the saddle
connects the periodic points. (b) The contact between the saddle cycle and the upper bound of
R1. (c) Border collision for the map T : An attracting focus cycle of period 6 appears, as well as
a saddle cycle of period 6 quite indistinguishable from the attracting one.
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S2 = 1.0024). Such cycles are very close to each other, because they are just born
by a saddle-node bifurcation (the numerical values of the two eigenvalues S2 close
to unity confirm this). In the present situation the curve Γ results from a saddle
connection, i.e., the stable manifold of the saddle connects the periodic points,
forming a repelling invariant set. Observe that both the saddle and the unstable
cycle have a periodic point belonging to R4, though very close to the line y = 1

a ,
so they do not affect the dynamic behaviour of T (for which only an attracting
fixed point exists). But as the value of the parameter a is slightly increased, we can
observe the contact between the saddle cycle and the upper bound of R1 (Fig. 7(b));
as before this contact corresponds to a bifurcation for the map T . We can observe
it in Fig. 7(c), where an attracting cycle of period 6 appears, reducing, though
not so drastically, the basin of attraction of the Cournot equilibrium point. At
a = 13.5668, shown in Fig. 7(c), this cycle is a focus with modulus |λ| = 0.24267
and at this parameter configuration there also exists a saddle cycle of period 6, with
eigenvalues S1 = 1.05 and S2 = 0.2835. It is not visible in Fig. 7(c) because it is
quite indistinguishable from the attracting one (and different from the saddle cycle
existing for T1). Its stable set bounds the basin of attraction of the stable cycle.

The closeness of the two cycles suggests that they are born together, but the
presence of the focus and the eigenvalues do not suggest a fold bifurcation. Two
possibilities are open: either an attracting node appears with the saddle at the
bifurcation value (via the usual saddle-node bifurcation) and turns into a focus
immediately after, or the two cycles appear via a border collision bifurcation not
necessarily with an eigenvalue of unit modulus.

In any case, in the situation shown in Fig. 7(c) the attracting focus is very close
to the frontier of its basin of attraction, given by the stable manifold of the saddle
cycle. As a increases the basin of the fixed point becomes smaller, as we can see in
Fig. 8(a), in which we also show (in pale grey) its unstable manifold. This converges
to the fixed point from one side and to the attracting 6-cycle from the other.

From Fig. 8(a) we can also observe that another border collision bifurcation is
emerging. We note that the unstable manifold of the saddle is very close to the
frontier of the basin of attraction of E∗, and it seems to “describe” a closed curve
in phase space. Indeed, looking at the map T1, we can observe that, slightly increas-
ing the marginal cost a, the repelling curve Γ becomes tangent to the upper bound
of the region R1 (see Fig. 8(b)). As in the previous section, the border collision leads
to the appearance of an attracting curve Γs, close to the repelling curve Γ. Then,
after the bifurcation, we have three coexisting attractors, the Cournot equilibrium
point, the attracting curve and the focus cycles of period 6. Their basins of attrac-
tion are separated by the invariant repelling closed curve Γ, which separates the tra-
jectories converging to the fixed point from the quasi periodic ones, and by the stable
set of the saddle cycle, separating the periodic and the quasi-periodic trajectories
(see Fig. 8(c)).

The interval of existence of the curve Γs is very short. A further slight increase
of the parameter a leads to a contact of Γs with the saddle, which causes the
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Fig. 8. (a) The basin of the fixed point is smaller. The unstable manifold of the saddle cycle (in
pale grey) is very close to the frontier of the basin of attraction of E∗, and it seems to “describe”
a closed curve in phase space. (b) For the map T1, the repelling curve Γ becomes tangent to the
upper bound of the region R1: the border collision for the map T will lead to the appearance of
an attracting curve Γs, close to the repelling curve Γ. (c) After a new border collision bifurcation,
three coexisting attractors exist: the Cournot equilibrium point, an attracting curve Γs and the
focus cycles of period 6. Their basins of attraction are separated by the invariant repelling closed
curve Γ, which separates the trajectories converging to the fixed point (in white) from the quasi
periodic ones (in light gray), and by the stable set of the saddle cycle, separating the periodic (in
dark gray) and the quasi-periodic trajectories.
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Fig. 9. (a) The contact of Γs with the saddle, which causes the disappearance of one attracting
set. At the contact bifurcation the curve Γs connects all the periodic points of the saddle cycle.
(b) After the contact only two invariant curves survive: a repelling one, Γ, which is the boundary
of the basin of attraction of E∗ and the saddle connection between the two cycles of period 6.
The two colors (different gray tonalities) in the basin of attraction of the attracting 6-cycle make
in evidence the stable manifold of the saddle 6-cycle.

disappearance of one attracting set. At the contact bifurcation the curve Γs connects
all the periodic points of the saddle cycle (Fig. 9(a)), and after the contact only
two invariant curves survive: a repelling one, Γ, which is the boundary of the basin
of attraction of E∗ and the saddle connection between the two cycles of period 6
(Fig. 9(b)). Now the unstable manifold of the saddle goes to the attracting 6-
cycle, and the stable one separates the basins of the single periodic points of T 6,
forming a spiral around Γ. This is shown in Fig. 9(b), obtained just after the
bifurcation.
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