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A Cournot model based on bounded inverse demand function and constant marginal produc-
tion costs is studied. The case of three producers is considered and the adjustment process
reduces to a three-dimensional noninvertible map in the output of competitors. The analysis
of the dynamical behavior of the map is performed by the “critical curve method”, extended to
the critical surfaces in 3D. By this method, we explain the different bifurcations in the basins
of attraction and in the attracting sets. In particular, given the economic application, feasi-
ble trajectories are focused, starting from the simple situation of two identical producers and
extending the results to the generic case.
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1. Introduction

Elementary textbook economics considers two op-
posite market forms: perfect competition and
monopoly. In perfect competition a large number
of producing firms face an equally large number of
consumers. Such an atomistic firm cannot influence
market price, and so takes it as a given datum. The
monopolist, on the contrary, alone faces the numer-
ous consumers, and can make maximum profit by
deliberately reducing supply so as to establish the
monopoly price which maximizes its profits. For
this, it must know how market demand varies with
the price it charges.

A contextually intermediate case is oligopoly,
with just a few suppliers facing the many consumers
on the demand side, but it is analytically more
complex than either of the extreme cases. The
oligopolist has the power to influence price notice-
ably, but it must have the information the monopo-
list has about demand, and further conjecture how
the competitors react to its own actions.

Oligopoly theory is one of the oldest branches
of mathematical economics, and its basic model
was formulated by Augustin Cournot in 1838 al-
ready [Cournot, 1838]. Cournot oligopoly assumes
that the firms use quantity as their strategic vari-
able of action. This assumption was severely
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criticized in 1883 by Joseph Bertrand and others
[Bertrand, 1883; Edgeworth, 1897], who suggested
that price and not quantity should be the strate-
gic variable. The argument was that if the com-
modity really were homogenous, as implied by the
quantity adjustment procedure, then one competi-
tor could throw the others out by any infinitesi-
mal undercutting of prices. Though several inter-
esting variants of oligopoly theory emerged from
this criticism, the Cournot model was later reestab-
lished as the core of oligopoly theory. Other de-
velopments were connected with the assumptions
about strategic behavior. Notable were Heinrich
von Stackelberg’s 1938 contribution about lead-
ership/followership [von Stackelberg, 1938], and
Ragnar Frisch’s of 1933 on conjectural variations
[Frisch, 1933]. Cournot’s original assumption —
that each competitor assumes the others to retain
their last moves even though observing the contrary
— had seemed rather simplistic. However, it must
be admitted that Cournot’s original assumptions,
even in this respect, produced a more interesting
offspring than the more sophisticated revisions ever
did.

In 1978 Rand [1978], suggested oligopoly games
as an example for dynamical economic systems
which easily lead to complex dynamics and hinted
at several possibilities to attain this. The proba-
bly simplest assumptions under which this occurs,
i.e. iso-elastic demand and constant though different
marginal costs for the competitors, were suggested
by one of the present authors in 1991 [Puu, 1991],
for the case of two competitors. A period-doubling
cascade to chaos was in fact observed. Three com-
petitors add further scenarios, such as Neimark–
Hopf bifurcations.

In the 1930s several demand functions, mainly
of the kinked straight line type, were tried, and such
phenomena as coexistent attractors and unending
oscillations were noted, see [Palander, 1936] and
[Wald, 1936]. However, the iso-elastic demand func-
tion, meaning that the quantity demanded by the
consumers is reciprocal to its price, has the advan-
tage that it arises from very basic microeconomic
theory. If the consumers maximize some utility
function of the Cobb–Douglas type, the most often
used assumption, then they spend given fractions of
their incomes on each commodity. This also holds
true for aggregate demand of the market, being the
sum of the demand of all the individuals, maybe all
different fractions of different incomes, but also all
reciprocal to price.

The authors tried their hands on such a model
with three competitors in a previous publication,
[Agliari et al., 2000; Puu, 2000]. However, the
iso-elastic demand function, though well rooted in
economic principles has a certain drawback in the
oligopoly context. As price and quantity are re-
ciprocal, their product, i.e. total sale values for a
monopolist, is a constant. Accordingly, a collu-
sive oligopoly (though normally forbidden by law
in most countries), which behaves as a single mo-
nopolist, could retain the total income but reduce
costs to zero by producing nothing and letting price
go to infinity. This a bit academic, but the annoying
problem can be avoided by letting price be recipro-
cal to the total quantity supplied plus some positive
constant, whose reciprocal then establishes a max-
imum price.

The study of such a model is the object of the
present paper. The three-dimensional model will be
described in Sec. 2 and, as often occurs in dynamic
games, we shall get a three-dimensional noninvert-
ible map whose dynamic behavior will be considered
in the consecutive sections. The study is mainly de-
voted to the determination in the four-dimensional
parameter space of the economically meaningful re-
gion of the model and of the feasible region in the
state space.

As we shall see, reasonable ranges for the pa-
rameters may be associated with unfeasible trajec-
tories or meaningful dynamics. Their evolutions as
the parameters are changed will be explained by the
theory of critical surfaces and contact bifurcations
between basin boundaries and critical surfaces.
As described in the basic references [Gumonwski
& Mira, 1980a, 1980b; Mira et al., 1996; Abraham
et al., 1997], the critical surfaces (or manifolds),
the three-dimensional analogous of critical lines and
critical points in maps of dimensions two and one,
respectively, give a powerful method to study the
global dynamical properties of a noninvertible map.
Thus, following this theory, we are able to detect the
global bifurcations which cause qualitative changes
in the structure of the region of feasible trajectories,
leading to the creation of volumes with a complex
topological structure.

The plan of the work is as follows. After the
description of the general model in Sec. 2, a sim-
pler map in Sec. 3, is introduced depending only
on three parameters and topologically conjugated
to the previous one. The regions of interest both
for the mathematical system (admissible trajecto-
ries and regions) and for the economic application
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(feasible trajectories and regions) are also de-
fined and the local stability analysis of the unique
Cournot equilibrium point is performed. Section 4
is devoted to the study of the properties of the
model in the particular case of two producers with
identical marginal costs: in particular, local stabil-
ity and feasibility analysis of the fixed point are
given as well as the study of the critical sets of the
map. The dynamical behaviors of the model in this
particular case are described in Secs. 5 and 6. More
precisely, in Sec. 5 we study the geometrical struc-
ture of the admissible and feasible regions when the
Cournot equilibrium point is the unique attracting
set of the map. We show some contact bifurca-
tions in the feasible region which cause changes in
the connected convex region (Sec. 5.2) and transi-
tions to connected, not convex, and disconnected
regions (Sec. 5.3). Section 6 is related to the study
of the more complex dynamics of the map due to
a global bifurcation of “saddle-node type”, after
which the map exhibits a multistability situation,
and to a Neymark–Hopf bifurcation of subcritical
type, after which the Cournot equilibrium point is
no longer attracting. The effects of such bifurca-
tions on the feasible region are also investigated.
Finally, in Sec. 7, we return to the generic model
and the analysis performed in the previous sections
help us to understand the dynamical properties of
the model with different marginal costs. The pa-
per is closed with two Appendices: in the first one
we give some topics related to game theory and the
definition of reaction function, useful to understand
the derivation of the model for the not expert read-
ers. In the second Appendix the proof of the local
stability and feasibility of the fixed point in the case
of two identical producers is reported.

2. The Model

As in [Agliari et al., 2000] we consider a Cournot
triopoly but now we assume that the inverse de-
mand function, i.e. the price as a function of the
demanded quantity, is given by

p =
1

q +W
(1)

where p is the unit price of the commodity and q is
the demanded quantity.

W in (1) is the reciprocal of the maximum price
obtainable and it has to be considered as a positive
parameter.

Assuming for each producer the production cost
proportional to the output, we denote with a, b and
c the constant marginal costs, i.e.

C1(x) = ax

C2(y) = by

C3(z) = cz

are the cost functions for the three producers, re-
spectively, where x, y and z denote the supplies. At
equilibrium, the total supply equals the demanded
quantity, that is q = x+ y+ z, and the profit func-
tions Ui, i = 1, 2, 3, i.e. the difference between the
revenue and the costs, are given by

U1 =
x

x+ y + z +W
− ax

U2 =
y

x+ y + z +W
− by (2)

U3 =
z

x+ y + z +W
− cz

By (2), the reaction functions of the players are
easily obtained, and depend on the expected sup-
plies xe, ye and ze of the competitors. More pre-
cisely, the reaction function of the player i depends
on the production of the other two producers, as
follows (see Appendix A for details):

r1(y
e, ze) =

√
ye + ze +W

a
− ye − ze −W

r2(x
e, ze) =

√
xe + ze +W

b
− xe − ze −W

r3(x
e, ye) =

√
xe + ye +W

c
− xe − ye −W

(3)

Assuming a one-stage game with the assump-
tion that the players have perfect foresight about
the moves of the competitors, the solution of the
game is the Cournot equilibrium point, the intersec-
tion point of the reaction functions (3). Thus the
Cournot equilibrium point is given by the solution
of the system



x =

√
y + z +W

a
− y − z −W

y =

√
x+ z +W

b
− x− z −W

z =

√
x+ y +W

c
− x− y −W

(4)
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Some algebraic manipulations show that the system (4) has only one solution

E∗ =




(b+ c− a)(1 +
√
1 +W (a+ b+ c))− aW (a+ b+ c)
(a+ b+ c)2

(a− b+ c)(1 +
√
1 +W (a+ b+ c))− bW (a+ b+ c)
(a+ b+ c)2

(a+ b− c)(1 +
√
1 +W (a+ b+ c))− cW (a+ b+ c)
(a+ b+ c)2




(5)

and the Cournot equilibrium of the game is
unique.

So, if the producers are full rational players,
their production choices are given respectively by
the components of E∗ in (5) and the market is
in equilibrium. But, if we relax the hypothesis of
perfect rationality the market changes, because the
players move according to their expectations, ad-
justing at each stage their production, and only af-
ter a suitable number of moves, if ever, the game
will be in equilibrium. In our work we consider
this last situation and we suppose, with Cournot,
that the producers adjust their production simulta-
neously and that they have naive expectations on
the choices of their competitors, i.e. they assume
that at the stage t the production by the other
players will be the same as in the previous stage.
These assumptions lead to an adjustment process
described by the discrete dynamical system

T :




x′ =

√
y + z +W

a
− y − z −W

y′ =

√
x+ z +W

b
− x− z −W

z′ =

√
x+ y +W

c
− x− y −W

(6)

where the symbol ′ denotes the unit time advance-
ment operator (i.e. if (x, y, z) represents the vector
of choices at time t, then (x′, y′, z′) gives the choices
at time (t+ 1)).

Observe that the point E∗ in (5) is the unique
fixed point of the map T .

The study of the dynamical properties of (6) as
well as its local and global bifurcations, shall be the
aim of the following sections of the paper. In partic-
ular we study the Cournot equilibrium point (5) as
an attractive fixed point for the map T and its basin
of attraction. Another important question to which
we shall give an answer, is about the coexistence of
other attractors with the Cournot equilibrium, and

the asymptotic behavior of the adjustment process
when the Cournot equilibrium is not attracting.

3. Dynamical Properties of the
Adjustment Process

Let us first rewrite our model (the map T ) in a more
suitable form, making use of the following result:

Proposition 1. The dynamics of the map T
in (6) with parameters (a, b, c, W ) and that of
(τa, τb, τc, W/τ) with τ > 0 are topologically
conjugate, via the homeomorphism φ(x, y, z) =
(τx, τy, τz).

Proof. The proof follows trivially by calculating
φ−1(T (φ(x, y, z))), where φ−1 is the inverse of φ,
i.e. φ−1(x, y, z) = (1/τ)(x, y, z). �

Given Proposition 1, we can consider the nor-
malization with respect to a marginal cost, say
a, considering as parameters (1, b/a, c/a, aW ) =
(1, h, k, v) and study the properties and the dy-
namics of the map by varying the three parameters
(h, k, v). The range of interest of the “reduced pa-
rameters” in this formulation is h ≥ 0, k ≥ 0 and
v ≥ 0. Moreover, if we assume the marginal cost a
to be the highest marginal cost, we have the con-
straints 0 ≤ h ≤ 1, 0 ≤ k ≤ 1 and 0 ≤ v ≤ 1, where
the hypothesis v ≤ 1 assures that all the produc-
ers have marginal cost smaller than the maximum
price obtainable. We note that taking W = 0 the
model reduces to the case analyzed in [Agliari et al.,
2000], and the reduced parameters h and k have the
same meaning as the parameters introduced in that
paper.

3.1. The model with the reduced
parameters (1, h, k, v)

Let us consider the normalization of the parame-
ters as described above, so that the map we are
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interested in becomes

T :




x′ =
√
y + z + v − (y + z + v)

y′ =

√
x+ z + v

h
− (x+ z + v)

z′ =

√
x+ y + v

k
− (x+ y + v)

(7)

which we shall continue to denote by T , for the
sake of simplicity, being the reduced form that we
consider in this work (that is, more rigorously, the
two maps (6) and (7) are topologically conjugated,
following Proposition 1 with τ = 1/a).

It is clear that the applicative model is mean-
ingful only for positive values of the variables x, y
and z, and in particular, the fixed point is “admis-
sible” iff all the components are positive. Moreover
it is immediate to see that the map T is not defined
in the whole three-dimensional space. The natural
domain of definition of T is the region, say D, given
by the set of points (x, y, z) which satisfy:

D = {(y + z + v) ≥ 0, (x+ z + v) ≥ 0,
(x+ y + v) ≥ 0} (8)

But we have to consider a “repeated” game, and
thus we are interested in a subset of this set, which

we call S, which consists of the points (x, y, z) for
which we have Tn(x, y, z) ∈ D for any n ≥ 0. We
shall call admissible such points and trajectories in
S. However, not all the admissible trajectories are
meaningful, so we restrict our interest to a lower
set, which we call feasible, denoted as F , and made
up by positive trajectories. Formally: the locus of
admissible points for which Tn(x, y, z) ∈ S ∩ R3+
for any n ≥ 0. We shall call unfeasible the other
points and trajectories in S.

S = {(x, y, z) ∈ D : Tn(x, y, z) ∈ D
for any n ≥ 0}

F = {(x, y, z) ∈ S : Tn(x, y, z) ∈ S ∩R3+
for any n ≥ 0}

Obviously F ⊆ S ⊆ D.
The existence (and structure) of such a trap-

ping region F of feasible trajectories is not easy to
ascertain. We can be sure of its existence when the
map T has an attracting (i.e. asymptotically stable)
set belonging to R3+ (fixed point or something else),
and we shall see how it may be determined.

Let us start studying the simpler situation of
the attracting fixed point, belonging to F .

The fixed point of T in (7) is given by:

E∗ =



x∗

y∗

z∗


 =




(h+ k − 1)(1 +
√
1 + v(h + k + 1))− v(1 + h+ k)
(h+ k + 1)2

(1 + k − h)(1 +
√
1 + v(h + k + 1))− vh(1 + h+ k)
(h+ k + 1)2

(1 + h− k)(1 +
√
1 + v(h + k + 1))− vk(1 + h+ k)
(h+ k + 1)2




(9)

E∗ belongs to the positive orthant of the space if the following conditions are satisfied

(h+ k − 1)(1 +

√
1 + v(h+ k + 1))− v(1 + h+ k) > 0

(1 + k − h)(1 +
√
1 + v(h+ k + 1))− vh(1 + h+ k) > 0

(1 + h− k)(1 +
√
1 + v(h+ k + 1))− vk(1 + h+ k) > 0

. (10)

Conditions (10) can be rewritten as


(1 + h+ k)− 2 > v(1 + h+ k)

1 +
√
1 + v(1 + h+ k)

(1 + h+ k)− 2h > v(1 + h+ k)

1 +
√
1 + v(1 + h+ k)

h

(1 + h+ k)− 2k > v(1 + h+ k)

1 +
√
1 + v(1 + h+ k)

k
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that is


1 + h+ k > 1 +
√
1 + v(1 + h+ k)

1 + h+ k

h
> 1 +

√
1 + v(1 + h+ k)

1 + h+ k

k
> 1 +

√
1 + v(1 + h+ k)

(11)

Now, we need to obtain the following

Proposition 2. If h ∈ (0, 1] and k ∈ (0, 1] then
the Cournot equilibrium point belongs to the posi-
tive orthant of R3 iff

h+ k > 1 + v (12)

In particular a necessary condition for E∗ ∈ R3+
is

v > 1 (13)

Proof. Assuming h ∈ (0, 1] and k ∈ (0, 1], the last
two inequalities in (11) are satisfied once the first
one holds,

1 + h+ k > 1 +
√
1 + v(1 + h+ k)

from which, by standard algebraic manipulation, we
get (12).

Moreover, from v < h+k−1, h ≤ 1 and k ≤ 1,
we obtain v < 1. �

Proposition 2 has an immediate economic
meaning: the adjustment process gives feasible

trajectories only if the maximum price obtainable
(P = 1/W ) is greater than the marginal costs of the
producers. In fact if the parameters of the map are
normalized with respect to the maximum marginal
cost a, we assume v = aW < 1, i.e. P > a. Observe
also that feasible trajectories can be obtained only
if h+ k > 1, i.e. b+ c > a.

Otherwise, if we relax the assumptions on the
marginal costs, and assume that h > 1 and/or
k > 1, i.e. the parameters of the map are not
normalized with respect to the maximum marginal
cost, for the positivity of E∗ a condition similar to
(13) can be obtained, that is v smaller than the
maximum marginal cost. In fact, if k is the maxi-
mum marginal cost, in (11) we have to consider

1 + h+ k

k
> 1 +

√
1 + v(1 + h+ k)

which gives

v <
1 + h− k

k2
≤ 1
k

Observe that the last condition always implies
P > c, i.e. the maximum price obtainable must be
greater than the marginal costs.

In the following we shall assume 0 < k ≤ h ≤ 1
and v ≤ 1.

Let us now study the local stability of the fixed
point. As usual, we have to consider the Jacobian
matrix of the map T , which is given by

J(x, y, z) =




0 −1
2

−1 + 2√y + z + v√
y + z + v

−1
2

−1 + 2√y + z + v√
(y + z + v)

−1
2

−1 + 2
√
(x+ z + v)h√

(x+ z + v)h
0 −1

2

−1 + 2
√
(x+ z + v)h√

(x+ z + v)h

−1
2

−1 + 2
√
(x+ y + v)k√

(x+ y + v)k
−1
2

−1 + 2
√
(x+ y + v)k√

(x+ y + v)k
0



(14)

and evaluating the Jacobian matrix (14) in E∗, we obtain the matrix

J∗ =



0 A A

B 0 B

C C 0


 (15)

where

A =
(1 + h+ k)− 2(1 +

√
1 + v(1 + h+ k))

2(1 +
√
1 + v(1 + h+ k))

B =
(1 + h+ k)− 2h(1 +

√
1 + v(1 + h+ k))

2h(1 +
√
1 + v(1 + h+ k))

C =
(1 + h+ k)− 2k(1 +

√
1 + v(1 + h+ k))

2k(1 +
√
1 + v(1 + h+ k))
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(a)

(b)

Fig. 1. Stability regions for the fixed point E∗ in the parameter space (h, k), obtained at different values of v. In the dark
gray region E∗ is stable with positive coordinates and in the dark yellow region E∗ is unstable with positive coordinates. The
curve separating the two regions is a Neimark–Hopf bifurcation curve.
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(c)

(d)

Fig. 1. (Continued )
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In order to study the local stability of the
Cournot equilibrium point the Samuelson condi-
tions apply (see also [Agliari et al., 2000]). These
can be summarized as follows:

1−M2 +Det > 0
1−M2 −Det > 0
1 +M2 −Det2 > 0

where Det is the determinant of the Jacobian ma-
trix (15), i.e. Det = 2ABC and M2 is the opposite
of the sum of the principal minors of order two of
(15), i.e. M2 = AB +BC +AC.

It is easy to show that the second condition
is always satisfied. By computer aid we further
obtain that in the range of interest of parame-
ters, the stability region is bounded by the curve
1 + M2 − Det2 = 0, (bifurcation curve), crossing
which a subcritical Neimark–Hopf bifurcation ap-
pears, as we shall see in Sec. 6. Some stability
regions in the parameter space (h, k), obtained at
different values of v, are shown in Fig. 1. From
that figure we can deduce that for high values of v,
i.e. for low maximum obtainable price, the feasible
trajectories are all converging to the fixed point [see
Fig. 1(c)], in which the bifurcation curve does not
cross the positivity region, dark-gray points, of E∗,
whereas for lower values of v, also more complex
dynamics in the feasible region can be obtained. In
Figs. 1(a) and 1(b) the dark yellow points denote
sets of parameters for which the fixed point is in the
positive orthant of the space but it is unstable. Ob-
serve, as stated in Proposition 2, that when v = 1
[Fig. 1(d)] for each value of the parameter in the
range of interest E∗ has negative coordinates and
no feasible trajectory exists.

4. Two Identical Producers

In this section we consider the particular case in
which two producers have the maximum marginal
cost, i.e. h = 1 in (7). This means that if the initial
states of the outputs x and y, say x0 and y0, are
equal, then the two players will “move” in the same
way forever: xt = yt for any t ≥ 0. That is, their re-
sponse to the market (though modified by the third
oligopolist) is always the same. Certainly if their
initial states are not equal, then their histories will
be different, at least in a transient part, which may
be very short, and it is possible (or highly probable,
depending on the structure of the basins) that ulti-

mately they will behave in the same way, or better,
that their asymptotic behavior is similar.

Mathematically this comes from the fact that
the plane Π∗ of equation y = x is trapping,
i.e. mapped into itself, as the first two equations
of the map T are equal. Thus all the points belong-
ing to Π∗ have trajectories trapped on that plane,
which we shall call invariant for short (although it
is strictly mapped into itself). It follows that the
dynamics of points belonging to Π∗ can be studied
by use of a simpler map: the restriction of T to that
invariant plane, which can be identified with a 2-D
map. Let us denote by u the common value x = y,
then the dynamics of T on Π∗ can be reduced to
the 2-D map, say Tu, given by:

Tu :



u′ =

√
u+ z + v − (u+ z + v)

z′ =

√
2u+ v

k
− (2u+ v)

(16)

where a point (u, z) ∈ Π∗ identifies the point
(u, u, z) ∈ R3.

Let us now restrict our attention to the invari-
ant plane in order to characterize the sets S and F .
From the result obtained for the two-dimensional
map Tu, we shall describe the dynamics of the whole
map T in this particular case and we shall try to un-
derstand the generic case.

The domain of definition of the map (16) is

Du =

{
(u, z) : u ≥ −v

2
and u+ z + v ≥ 0

}
(17)

In order to obtain the admissible and feasible
regions, we consider the fixed point of Tu, which is
given by

E∗u =

(
u∗

z∗

)

=




k(1 +
√
1 + v(k + 2))− v(k + 2)

(k + 2)2

(2− k)(1 +
√
1 + v(k + 2))− vk(k + 2)
(k + 2)2




Proposition 3. For k ∈ (0, 1] and v ∈ [0, 1], the
fixed point E∗u of (16) belongs to the positive quad-
rant iff

0 ≤ v ≤ k
and it is stable iff

v>
k3−5k2−7k+2+(1−k)(2−k)

√
k2−4k+1

18k2
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and

0 < k <
8− 2

√
13

3
or

k ≥ 8− 2
√
13

3
.

At the bifurcation values, a Neimark–Hopf bi-
furcation takes place, i.e. complex eingenvalues
cross the unit circle.

Proof. See Appendix B. �

The stability region of E∗ is shown in Fig. 2(a).
Let us complete the local stability analysis of

the fixed point for T in the three-dimensional phase-
space by computing the third eigenvalue of the 3-D
Jacobian matrix J∗ in (15), remembering that, in
this particular situation, A = B. The third eigen-
value of J∗ (always real) is given by

λ3 = −A =
2(1 +

√
1 + v(2 + k))− (2 + k)

2(1 +
√
1 + v(2 + k))

It is simple to show that 0 < λ3 < 1, when v
and k are in the range [0, 1], thus λ3 is always as-
sociated with a direction attracting towards the in-
variant plane, at least locally (near the fixed point),
and the trajectories are locally on one side of that
plane, i.e. they are not oscillating from one side to
the other as it happens with a negative eigenvalue,
which implies that the trajectories of points outside
the invariant plane and near the fixed point cannot
be symmetric with respect to the invariant plane.

In order to understand the structure of the
basin of attraction of the attractors of the dy-
namical system and the structure of the admissi-
ble and feasible regions, a crucial role is played
by the Riemann foliation induced by the map (see
[Gumonwski & Mira, 1980a, 1980b; Mira et al.,
1996]), obtainable by the study of the critical line.

The map Tu in (16) is a noninvertible one:
this means that while starting from some initial
values for supplies, say (u0, z0), the iteration of
(16) uniquely defines the trajectory (ut, zt) =
T tu(u0, z0), t = 1, 2, . . . , the backward iteration
of (16) may be not uniquely defined. In fact, a
point (u, z) of the plane may have several rank-1
preimages. Calculating the preimages of a point
(u, z) ∈ R2 we obtain that

Proposition 4. On the invariant plane the points
(u, z) such that

(a) u > 1/4 or z > 1/4k have no preimages,
i.e. they belong to Z0;

(b) u < 0 and z < 0 have one rank-1 preimage,
i.e. they belong to Z1;

(c) u < 0 and 0 ≤ z < 1/4k or 0 ≤ u < 1/4
and z < 0 have two distinct rank-1 preimages,
i.e. they belong to Z2;

(d) 0 ≤ u < 1/4 and 0 ≤ z < 1/4k have four
distinct rank-1 preimages, i.e. they belong to
Z4.

Thus, following the notation used in [Mira
et al., 1996], the map Tu is of the type Z1 − Z2 −
Z4 − Z0, which means that the phase plane is sub-
divided into different regions Zj (j = 1, 2, 4) each
point of which has j distinct rank-1 preimages and
a region Z0 of points without preimages.

The lines u = 1/4 and z = 1/4k, in the fol-
lowing LC(1) and LC(k) respectively, are the Crit-
ical Lines, loci of points with two merging preim-
ages, and, as usual, separate the zones Z0 and Zj
(j = 2, 4). But in this case, due to the square
root in the map, also the coordinate axes have this
role, separating Z4 from Z2, and Z2 from Z1, see
Fig. 2(b). But the points on the coordinate axes
have distinct rank-1 preimages and so we cannot
call them critical lines.

Geometrically, the action of a noninvertible
map can be expressed by saying that it “folds and
pleats” the plane, so that two or more distinct
points are mapped into the same point, or, equiva-
lently, that several inverses are defined which unfold
the plane. The understanding of this mechanism is
very important in our study, because we are inter-
ested in the topological structure of admissible and
feasible regions, which are portions of the basin of
attraction of the attracting sets of the map. And
this strongly depends on contacts between critical
sets and the boundary of the region. In fact, if
a parameter variation causes a crossing between a
basin boundary and a critical set (and in our case
also the coordinate axes) which separates different
region Zk so that a portion H of a basin enters a
region where a higher number of inverses is defined,
then new components of the basin may suddenly ap-
pear, given by the new preimages of H. This is the
basic mechanism which causes the creation of more
and more complex structures of the admissible and
feasible regions, as we shall see below.

For this reason, we end this section introducing
some properties of the inverse transformation of Tu,
useful in the following.
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(a)

(b)

Fig. 2. (a) The stability region of E∗ in the parameter space (k, v), obtained considering two producers with identical
marginal costs, i.e. h = 1. (b) The domain of definition Du of the map Tu, restriction of T to the trapping plane x = y (Π∗),
and its critical curves. The different colors denote the zones Z0 (orange), Z1 (light blue), Z2 (blue) and Z4 (green). The
rank-1 preimages of the segments ζ and ω on the coordinates axes are also shown as well as the four rank-1 preimages of the
point O = (0, 0).
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The preimages of the critical lines, loci of points
of the merging preimages, are the critical set of
rank-0 and are given by the points for which the
determinant of the Jacobian matrix vanishes. We
obtain

LC
(1)
−1 :

{
u+ z =

1

4
− v

}
∩Du

LC
(k)
−1 :

{
u =

1

8k
− v

2

}
∩Du

Let us define the half-lines

ω =

{
(u, 0) : u ≤ 1

4

}

ζ =

{
(0, z) : z ≤ 1

4k

} (18)

The preimages of ω and ζ are

ω
(1)
−1 :

{
u =

1

2k
− v

2

}
∩Du and

ω
(2)
−1 :

{
u = −v

2

}
∩Du

ζ
(1)
−1 : {z + u = 1− v} ∩Du and

ζ
(2)
−1 : {z + u = −v} ∩Du

(19)

From (19) it is easy to obtain the four preim-
ages of the origin, the points of intersection of these
segments, as shown in Fig. 2(b), which are

O
(1)
−1 =

(
1

2k
− v

2
, 1− 1

2k
− v

2

)

O
(2)
−1 =

(
1

2k
− v

2
, − 1
2k
− v

2

)

O
(3)
−1 =

(
−v
2
, 1− v

2

)
O
(4)
−1 =

(
−v
2
, −v
2

)

Another important property of the map Tu is
that the rank-1 preimages of segments belonging to
a line u = const, when they exist, are located on
a straight line parallel to u + z = 0 and those of
segments belonging to a line z = const, when they
exist, are located on a straight line of type u = const
[see Fig. 2(b)].

5. Global Bifurcations in the
Feasible Regions Fu and F

In this section, we shall study the geometrical struc-
ture of the admissible and, in particular, feasible re-
gions of the model (16) as the marginal cost k of the

third producer is varied in the stability region of the
fixed point E∗. In order to help the understanding
of the different situations we deal with, the section
is organized in three subsections: the first one is de-
voted to the description of the admissible region Su,
obtained by the preimages of the boundary of the
definition set Du. The second one describes the fea-
sible region Fu as a convex set which can have differ-
ent shapes, depending on the rank of the preimages
of the coordinate axes to be considered. In the last
subsection the topological structure of Fu is more
complex, caused by contact bifurcation between its
frontier and the critical sets. In any subsection the
corresponding regions S and F , related to the three-
dimensional map T , are described. Although in
our examples we consider v = 0.2, analogous re-
sults can be obtained for low values of v (v ≤ 0.5),
i.e. for relatively high maximum price obtainable, as
should be.

5.1. Admissible regions

The starting situation we consider is given in
Fig. 3(a), in which k = 0.46. In that figure we can
observe the set of feasible points Fu (yellow points)
and the admissible but unfeasible points (the red
ones) on the invariant plane Π∗. Obviously the set
of all non-gray points is the section Su of S on Π

∗

and Fu is the section of F , always on the same plane.
With this choice of parameters, the Cournot

equilibrium point is the unique attractor of the map
Tu and its basin of attraction (Bu(E∗)) is the whole
admissible region Su. We observe that both Bu(E∗)
and Fu are connected sets. Now we show how the
boundary of Su depends on the Riemann foliation
of the map.

Consider the set Bu(E∗). Its frontier can be con-
structed considering the set of definition Du in (17)
of the map and, in particular, the four segments

(i) V D on u = −(v/2), where V is the vertex of
Du, i.e. V = (−(v/2), −(v/2)) and D also be-
longs to the u-axis, i.e. D = (−(v/2), 0). Its
points have only one rank-1 preimage;

(ii) DA on u = −(v/2), where A also belongs to
LC(k), i.e. A = (−(v/2), 1/4k). Its points have
two rank-1 preimages;

(iii) V C on u + z = −v, where C also belongs to
the z-axis, i.e. C = (0, −v). Its points have
only one rank-1 preimage;

(iv) CB on u + z = −v, where B also belongs to
LC(1), i.e. B = (1/4,−v − (1/4)). Its points
have two rank-1 preimages.
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(a)

(b)

Fig. 3. (a) The basin of attraction of the stable fixed point E∗ on the plane Π∗. The yellow points denote the set of feasible
trajectories Fu, the red ones the set of admissible but unfeasible trajectories. The union of yellow and red sets give the
admissible set Su, whose points all converge to E∗. The gray points in Du represent the nonadmissible trajectories. The
boundary of Su is obtained considering the rank-1 preimages of the segments AV and V B. The upper frontier of the feasible
set Fu is given by the rank-1 preimages of the segment ζ. (b) The plane section with the plane z = 0 of the admissible (F ∪S)
and feasible (F ) sets for the three-dimensional map.
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The preimages of V D and DA belong to a
straight line parallel to u + z = −v, as observed
in Sec. 4: they give the upper boundary of Su. In
particular, the preimages of DA are the two seg-

ments located on opposite sides of LC
(k)
−1 , with a

common extremum A−1, corresponding to the two
merging preimages of A, the others extrema are

given respectively by D
(1)
−1 and D

(2)
−1, the two preim-

ages of D. The last part of the upper frontier is
given by the preimages of V D, i.e. the segment be-

tween D
(1)
−1 and V−1, the preimage of V . The curve

which closes Bu(E∗) is given by the preimages of
V C and CB: more precisely the preimages of CB

are the two arcs located on opposite sides of LC
(1)
−1 ,

with a common extremum B−1, corresponding to
the two merging preimages of B, the others given

respectively by C
(1)
−1 and C

(2)
−1 , the two preimages

of C, and the preimages of V C are located in the

upper part of the curve, between V−1 and C
(1)
−1 . Be-

cause all these preimages belong to Z0, there are
no preimages of rank-k (k > 1) of V D, DA, V C
and CB, and the construction of the boundary of
Bu(E∗) is completed by adding the appropriate por-
tions of the frontier of Du.

Now considering the basin B(E∗) of the fixed
point in three-dimensional space R3, we have that
it is a simply connected volume, whose boundary we
conjecture is determined by the rank-1 preimages of
the portion of planes defining the boundary of the
domain of definition of the map, and not belonging
to the region Z0. That is, the rank-1 preimages of
the portions on the planes y+z+v = 0, x+z+v = 0,
x+ y + v = 0:

∂B(E∗) = ∂S = µ ∪ T−1(µ) , µ = ∂D\Z0

In order to confirm this fact we can consider the
sections of S with planes z = z, which all appear as
connected sets, if z varies in a bounded interval: in
Fig. 3(b) the section z = 0 is shown.

Evidently, when some of the preimages of in-
creased rank of µ appear, due to a contact bifur-
cation of the frontier of the regions with the criti-
cal surfaces, they cause a qualitative change in the
structures of Su and S. In the following we do not
proceed with the study of the admissible regions,
because the different situations we find are qualita-
tively the same as in [Agliari et al., 2000].

Fig. 4. The pyramidal shape of the feasible set F (in yellow), bounded by the coordinate planes and the rank-1 preimages of
x = 0 and y = 0 (the two transverse planes denoted by ∂F ). The critical set SC (in blue) of the map T , located below ∂F, is
also shown. Only the points belonging to the convex set bounded by SC have preimages, eight if feasible.
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5.2. Connected feasible regions

More interesting is the study of the feasible region,
the only meaningful one in the economic applica-
tion. As before, we start by describing Fu and try
to understand the structure of F in the whole space.
In order to obtain the boundary of Fu, we now have
to consider the coordinate axes, which separate the
points with positive coordinates from the others.
In Fig. 3(a) we observe that the major part of the
rank-1 preimages of both the segments ω and ζ,
given by (19), are out of the positive quadrant of
Π∗ (in the following Π∗+). Thus, the feasible region
has a triangular shape, bounded by portions of the

coordinate axes and by the portion of ζ
(1)
−1 belonging

to Π∗+. From an economic point of view, this means
that the producer with lower marginal cost (equals
k), can gain by producing a quantity z ≤ 1 − v

(positioning the market on ζ
(1)
−1) so as to throw the

two identical players out of the market, because
they do not obtain any profits. The competitors do
not have this possibility, because they have a too
high marginal cost: in order to stay in the market
they have to produce a total quantity x+y ≤ 1−v,
and if x + y = 1 − v, then the profit of the com-
petitor is zero. But they do not gain, making no
profit either. Moreover the third producer can pro-
duce an arbitrarily low quantity in order to obtain
a price near the maximum price obtainable. This is
also true if the two producers do not behave in an
identical way (out of the invariant plane): in fact
the feasible region F in R3 has a square-based pyra-
midal shape, shown in Fig. 4, contained in the cube
[0, 1−v]× [0, 1−v]× [0, 1−v]. The boundary of F
is given by the rank-1 preimages of the coordinate
planes x = 0 and y = 0.

In Fig. 4 the critical set of the map T is also
illustrated, bounding a Z8 region with the coordi-
nate planes. In fact, as stated in Proposition 5 in
Sec. 7, the map T is also noninvertible and is defined
in the space regions of points (zones) with different
numbers of rank-1 preimages. In particular, in the
positive orthant of the space (R3+) only the points
belonging to the convex parallelepiped bounded by
the critical surfaces (which are planes) have preim-
ages, and exactly eight, of which only four belong to
the invariant plane Π∗. Observe that the preimages
of the planes x = 0 and y = 0 belong to Z0, then
they completely define the region F.

This situation persists until the marginal cost
k is sufficiently small. In fact, we can observe in
Fig. 5(a) where k is increased, that the triangular

shape of Fu is lost: the feasible region is always a
connected set, but now it has a trapezoidal shape.
How can we explain this change in the structure of
Fu? In order to give an answer to this question, let
us return to the previous analysis. We have said
that both the segments ω and ζ have four preim-

ages, but only ζ
(1)
−1 was in Π

∗
+. Observe now that

ω
(2)
−1 and ζ

(2)
−1 are in Π

∗ \Π∗+ for each value of k (and
v), because they are the frontier of Su, but a portion

of ω
(1)
−1 can enter Π

∗
+: when

k ≥ 1

2− v

i.e. the point O
(1)
−1, rank-1 preimage of O, belongs

to Π∗+. This is the case of Fig. 5(a): now the
boundary of Fu is given by portions of the coor-

dinate axes and by part of ζ
(1)
−1 and ω

(1)
−1. Looking

at the section shown in Fig. 5(b), we can observe
that in the whole space R3, the pyramid represent-
ing the feasible region F is now truncated short
of the vertex (1 − v, 1 − v, 0) by a plane paral-
lel to z = 0 and orthogonal to the plane x = y,
i.e. x+ y = (1/k)− v. So, also if the two producers
with the highest marginal cost, behave differently,
they have the possibility to win the market, until
z ≤ 1− (1/2k) − (v/2).

For higher values of v, until v ≤ 0.5, the struc-
ture of the feasible regions remains the same, also
when k increases towards 1.

5.3. Contact bifurcations in F

Let us return to the case k < 1/(2 − v). In this
section we shall study the effect on Fu (and F )
of the contact bifurcation, arising when the point
Q = (1/4, 1/4k) on Π∗, i.e. Q = LC(1) ∩LC(k), be-
longs to the upper boundary of Fu. This happens
when k becomes equal to

kcb =
1

3− 4v

The vertex Q has four preimages merging in
Q−1 = ((1/8k)− (v/2), (1/4)− (1/8k)− (v/2)), the
point in which LC

(1)
−1 and LC

(k)
−1 intersect. Observe

that the z-coordinate ofQ−1 is negative in the range
of values at which we are now interested (v ≤ 0.5
and k ≤ 1/(3−4v)) and this means that such a point
belongs to a region of admissible but unfeasible tra-
jectories. For that reason, when we decrease a bit
k from kcb [Fig. 6(a)] we do not see (as expected)
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(a)

(b)

Fig. 5. (a) The feasible set Fu on the plane Π∗ is a convex set, with a trapezoidal shape. This is due to the rank-1 preimages
of the segment ω that, for high values of k, enter the feasible region. (b) The plane section with the plane z = 0 of the basins
of attraction of E∗. The yellow points are the basis of the truncated pyramid representing the feasible region F .
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(a)

(b)

Fig. 6. (a) After the contact bifurcation value, occurring when the vertex Q = LC(1) ∩LC(b) belongs to the upper boundary
of Fu, the unfeasible points in the set Hu enter into Z4. The feasible region Fu on the invariant plane is always a convex set,
because the hole Hu,−1 of the rank-1 preimages of Hu, located around the point Q−1 (the four merging preimages of Q) does
not intersect the “old” feasible region. (b) The effects of the contact bifurcation are visible on the plane z = 0: the two red
balls (unfeasible points) inside the yellow square are the sections of the rank-1 preimages of an unfeasible volume H containing
the point Q.
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(a)

(b)

Fig. 7. (a) As k is further decreased, the hole Hu,−1 becomes bigger and bigger and gets into contact with the region Fu,
which becomes a connected, not convex set. (b) Plane section of the region F with the plane z = 0. F is always a connected,
not convex set, the two yellow pieces which appear in the figure joining itself near z = 0.5.
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(a)

(b)

Fig. 8. (a) For small k, the region Fu is a disconnected set, due to the contact between its upper boundary and the boundary
of Hu,−1 (see enlargement). Moreover, a global bifurcation in the admissible region occurs, due to the contact of Q with the
upper boundary of Su, leading to a multiply connected set. Ku is the set of nonadmissible points entering the Z4 region; the
holes Ku,−1 and Ku,−2 of nonadmissible points are the preimages of Ku of rank-1 and rank-2, respectively. (b) Plane section
of F and S with the plane z = 0. In this case, the feasible region F is formed by two separated volumes, only one of them
intersects the plane z = 0. The gray hole K−1 inside the set S denotes the rank-1 preimages of the volume K of which Ku is
the section on Π∗.
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a qualitative change in the set Fu. In fact, a set
Hu of admissible but unfeasible trajectories is in
Z4, but its preimages, the hole Hu,−1 around Q−1,
do not have any contact with Fu, leaving its shape
unchanged. This occurs on the invariant plane Π∗,
but if we look at the sections of F on plane z = z
[Fig. 6(b) shows the section z = 0] we note that the
feasible region in the whole space is always a con-
nected set (but not a convex one) given by the “old”
pyramid, where we have to remove two sorts of balls,
put on the face z = 0. These unfeasible points are
the (four) preimages of the volume H, containing
the point (1/4, 1/4, 1/4k), located outside of Π∗,
of which Hu is the section on the invariant plane.

If k is further decreased, the hole Hu,−1 (and
obviouslyH−1) becomes bigger and bigger, and gets
in contact with the region Fu, so that this last one
assumes a more complex structure: a connected
nonconvex set or even a disconnected set [Figs. 7(a)
and 8(a)], due to different contact bifurcations of
the same type. In any case, the shape of Fu can
be obtained by the preimages of increased rank
of the segment ζ. In particular, the disconnected

shape of Fu is due to a new contact between ζ
(1)
−1

and the boundary of Hu,−1 [see the enlargement in
Fig. 8(a)]. Looking at the sections, we observe that
F can also assume a complex structure: in the first
case, on the plane z = 0, shown in Fig. 7(b), two
pieces, which join itself near z = 0.5, in the second
case, F is disconnected, being formed by two sepa-
rate volumes, of which only one intersects the plane
z = 0, as shown in Fig. 8(b).

In Fig. 8(a), we can also see that a global bi-
furcation for the admissible set Su has taken place:
the set Su now is a multiply connected set. This
qualitative change of the admissible region is due
to a contact bifurcation between its frontier and the
critical set which arises when the point Q belongs
to the upper boundary of Su. After this contact
a region Ku of nonadmissible points is in Z4 and
its preimages give the gray holes inside the admissi-
ble region. In the example we consider, the rank-1
preimages of Ku define the hole around Q−1 and
the other one is given by the rank-2 preimages of
Ku. Obviously the structure of the volume S is also
modified by this contact bifurcation, as we can see
in Fig. 8(b).

The ones described above are some of the feasi-
ble region structures that accompany the maps Tu
and T , for low values of v. If we consider a higher
value of v (for example v > 0.5), different structures

are possible, but the bifurcations, causing the qual-
itative changes of Fu or F , are similar to those just
described. In the next section we study the dynam-
ics associated with the map Tu and we will also find
an important qualitative change in the structure of
the feasible region due to a global bifurcation of a
different type (bifurcation of “saddle-node type”).

6. Complex Dynamics of the Map Tu

In this section we are interested in the dynamics of
the map Tu in (16), when the marginal cost k and
the parameter v are so chosen that the bifurcation
curve in Fig. 2(a) is crossed. In particular, we shall
study what happens when the crossing is from the
dark gray region (the equilibrium point is stable and
feasible) to the yellow one (E∗ is feasible but unsta-
ble). We know, from Proposition 3, that the loss of
stability of E∗ is due to a Neimark–Hopf bifurca-
tion. We shall see that, as in the subcase studied
in [Agliari et al., 2000], this bifurcation is of sub-
critical type, i.e. a repelling closed invariant curve
exists “around” the stable fixed point, decreasing
in size and merging with the fixed point at the bi-
furcation value (kvbif) and so “transforming” it into
an unstable one. Before starting, it is important to
note that only for low values of v, E∗ can become
unstable and feasible: only v ≤ 0.25 has to be con-
sidered (see Fig. 1). For that reason, we consider
small values of v, in order to obtain more interesting
situations.

We start considering v = 0.01 and then a value
of k close to k0.01bif , at which the Neimark–Hopf bifur-
cation takes place. For k = 0.2627 the fixed point
E∗ is stable, its basin of attraction, B(E∗), is a mul-
tiply connected set and all the points of the feasible
region Fu have trajectories converging to E

∗ [see
Fig. 9(a)]. The set Fu is disconnected, because a se-
quence of bifurcations like the ones described in the
previous section occurred; anyway, the boundary
of Fu can be obtained by the coordinate axes and
their preimages. If we consider somewhat smaller
k, we can observe that in Fu there are points not
converging to E∗. This is however still attracting
but B(E∗) has a very different shape. In fact, as we
see in Fig. 9(b), now we have the coexistence of two
attractors: the fixed point E∗ and a closed invari-
ant attractive curve Γs. The appearance of Γs is
due to a global bifurcation (called saddle-node type
bifurcation), occurring at a value of k, say k0.01sn ,
not easily detectable, but smaller than k0.01bif : this
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(a)

(b)

Fig. 9. Complex dynamics at v = 0.01. (a) The basin of attraction of the attracting fixed point E∗ on the invariant plane.
The feasible region Fu is a disconnected set. (b) A global bifurcation occurred giving rise to the birth of two closed invariant
curves, one attracting Γs and one repelling Γu. The fixed point is still attractive. The basin of E∗ is a disconnected set given
by the immediate basin D0 (yellow points), whose boundary is the repelling curve, and its preimages of ranks 1 and 2 (red
points). Only the points belonging to D0 are feasible. The basin of attraction of Γs is given by the green and light blue points,
the green ones being feasible. (c) Plane section with the plane z = 0.7 of the basins of attraction of E∗ and of Γs, separated by
the stable manifold of the invariant curve Γu. (d) After the subcritical Neimark–Hopf bifurcation, the fixed point is unstable
and the only surviving attractor is Γs. All the feasible points (in green) belong to the basin of attraction of Γs. (e) As k is
further decreased, the curve Γs has a contact with the z-axis, after which no feasible trajectory exists.
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(c)

(d)

Fig. 9. (Continued )
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(e)

Fig. 9. (Continued )

bifurcation gives rise to two invariant closed curves,
one attracting Γs, and one repelling Γu, belonging
to the invariant plane. Both Γs and Γu are in the
feasible region Fu, Γu being the boundary of the
immediate basin of attraction D0 of E

∗ (i.e. the
largest connected component of B(E∗)). In Fu we
have points (the green ones) converging to Γs and
points (the yellow ones) converging to E∗: in partic-
ular the largest portions of the feasible trajectories
are in B(Γs). The set Fu ∩ B(E∗) is the immediate
basin of E∗, with boundary Γu, the whole stable
set on the invariant plane of Γu being the bound-
aries of the preimages of D0 (six sets, one in yellow
and five in red) which with D0 constitute the dis-
connected set B(E∗). Some preimages of D0 are
located outside the invariant plane Π∗, so that for
the whole map T the feasible points in the basin of
E∗ consists of two volumes of the space, as the sets
of feasible points converging to Γs. In Fig. 9(c) the
section z = 0.7 (near the fixed point) of the admis-
sible region is shown. As the parameter k is further
decreased, the two closed curves, Γu and Γs, move
away from each other, and Γu decreases in size un-
til, at the bifurcation value k0.01bif , it shrinks to the

fixed point and it disappears, leaving E∗ unstable:
this is the Neimark–Hopf bifurcation of subcritical
type. For k < k0.01bif , the only surviving attractor is
Γs and the feasible trajectories belong to B(Γs). In
Fig. 9(d) we observe that Γs is close to approaching
the boundary of the feasible region, and in fact, for
a lower of value of k, after contact with the z-axis,
the feasible region Fu disappears [Fig. 9(e)]: in this
case the generic admissible trajectory is unfeasible.

The saddle-node global bifurcation and the sub-
critical Neimark–Hopf bifurcation can be found also
for greater values of v, but their effect on the region
of feasible trajectories is not the same.

For example, at v = 0.06, the closed attrac-
tive curve Γs, born at k = k0.06sn , is not contained
in the region Fu, so we do not have feasible tra-
jectories converging to it. In Fig. 10(a), we see
that the feasible region is composed of two sepa-
rate components, both subsets of B(E∗), the im-
mediate basin D0 and a portion of T

−1(D0): The
frontier of Fu is now given by the closed repelling
curve Γu and a portion of its stable set belonging to
Fu. For F the same argument may be applied. Ob-
viously, after the Neimark–Hopf bifurcation, i.e. at
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(a)

(b)

Fig. 10. Complex dynamics at v = 0.06. (a) The attracting curve Γs coexists with the attracting fixed point, but it crosses
the z-axis. No feasible trajectory converging to Γs exists. The feasible region now is a very small disconnected set, given by
the immediate basin D0 of E

∗ and a small portion of the rank-1 preimages of D0. (b) Enlargement of the set of bounded

trajectories. After the Neimark–Hopf bifurcation, no feasible trajectory exists. In this example, Γs crosses LC
(1)
−1 , this implies

the folding of Γs on LC
(1) and the appearance of smooth oscillations on its shape.
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(a)

(b)

Fig. 11. Complex dynamics at v = 0.1 (a) The repelling invariant curve Γu intersects the z-axis. In the enlargement of the
basin of attraction of E∗ we observe, as a consequence, that the feasible region Fu is smaller than the immediate basin D0.
The boundary of Fu is a portion of the stable set of Γu. (b) The folding phenomena on Γs, due to the crossing with LC

(1)
−1 ,

are more evident. In this example, the boundary of Fu is still Γu. (c) Before the Neimark–Hopf bifurcation, the curve Γs has
a contact with the boundary of the set Su and it disappears. Then the Cournot equilibrium E∗ is the unique attracting set
of the map and its immediate basin coincides with the feasible region Fu. After the Neimark–Hopf bifurcation the generic
trajectory is nonadmissible.
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(c)

Fig. 11. (Continued )

k < k0.06bif , there are no generic feasible trajectories,
because the unique attractor is the closed curve Γs.
In Fig. 10(b), representing an enlargement of the set
Su, Γs shows some “oscillations” in its geometrical
shape. This is due to the nonlinearity properties of

the map Tu: in fact the curve crosses LC
(1)
−1 causing

the folding of Γs occurring on LC
(1). Moreover Γs,

in this example, is very close to the boundary of Su.
As the parameter k is further decreased no admis-
sible trajectories appear and the generic trajectory
is nonadmissible: the contact between the attrac-
tor and the boundary of the set Su of admissible
trajectories may be read as a “final bifurcation”.

A different behavior can be observed at v = 0.1:
in fact, just after the “saddle node type” bifurca-
tion, in Fig. 11(a), the stable closed curve Γs and
the repelling closed curve Γu are not contained in
the feasible region Fu, and unfeasible trajectories
converging to the fixed point E∗ are visible (red
points). Now the boundary of the set D0 ∩ Fu is a
portion of the stable set of Γu. Moreover, before
its disappearance, in the attractive curve Γs the
folding phenomena previously described are more
evident, see Fig. 11(b) where Γu is now the bound-
ary ∂B(E∗). From Fig. 11(c), we deduce that the

contact of the “chaotic” attractor with the fron-
tier of Su occurs at k̃ < k0.1bif . Thus, for k in the

range (k̃, k0.1bif ), the Cournot equilibrium point is the
unique attractor, but its basin of attraction, made
up of D0 and its preimages, is very small, as well as
the set of feasible trajectories, coincident with D0.
After the Neimark–Hopf bifurcation the generic tra-
jectory is nonadmissible.

7. The Map T in the Generic Case

Let us return to the 3D map T in the generic
case, i.e. we consider the map given in (7), with
k < h < 1.

In Sec. 3.1 we presented some results about this
model, in particular related to the feasibility of the
Cournot equilibrium point and its local stability
analysis. Now we shall present some global prop-
erties of (7), proceeding as in the previous sections
for the case h = 1, i.e. we shall study the feasible
region and some of its bifurcations and analyze the
crossing of the bifurcation curve shown in Fig. 1.

First of all, we need to know the Riemann foli-
ation induced by the map and the critical surfaces.
We have
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Proposition 5. In the admissible region S, the
points (x, y, z) such that

(a) x > 1/4 or y > 1/4h or z > 1/4k have no
preimages, i.e. they belong to Z0;

(b) x < 0 and y < 0 and z < 0 have 1 rank-1
preimage, i.e. they belong to Z1;

(c) x < 0 and y < 0 and 0 ≤ z < 1/4k, or x < 0
and 0 ≤ y < 1/4h and z < 0 or 0 ≤ x < 1/4
and y < 0 and z < 0 have two distinct rank-1
preimages, i.e. they belong to Z2;

(d) x < 0 and 0 ≤ y < 1/4h and 0 ≤ z < 1/4k or
0 ≤ x < 1/4 and y < 0 and 0 ≤ z < 1/4k or
0 ≤ x < 1/4h and 0 ≤ y < 1/4h and z < 0 have
four distinct rank-1 preimages, i.e. they belong
to Z4;

(e) 0 ≤ x < 1/4 and 0 ≤ y < 1/4h and 0 ≤
z < 1/4k have eight distinct rank-1 preimages,
i.e. they belong to Z8.

The planes x = 1/4, y = 1/4h and z = 1/4k
are the Critical Surfaces, loci of points with two

merging preimages, and in the following denoted by
CS(1), CS(h) and CS(k), respectively. As we have
seen in the previous section, the coordinate planes
separate regions of points with a different number of
preimages but they do not have merging preimages.

The preimages of the critical planes, critical set
of rank-0, are given by

SC
(1)
−1 :

{
y + z =

1

4
− v

}
∩D

SC
(h)
−1 =

{
x+ z =

1

4h
− v

}
∩D

SC
(k)
−1 :

{
x+ y =

1

4k
− v

}
∩D

(20)

The critical surfaces of rank-0 intersect at the
point

Q−1=
(
1

8

(
1

k
+
1

h
− 1− 4v

)
,
1

8

(
1

k
− 1
h
+ 1− 4v

)
,

1

8

(
1

h
− 1
k
+ 1− 4v

))

(a)

Fig. 12. Global bifurcation of the feasible region in the case of different producers. (a) The feasible region F is bounded by
the coordinate planes and the rank-1 preimages of x = 0 and y = 0. The critical surfaces are also shown. Q is the intersection
point of the critical planes. (b) The rank-1 preimages of z = 0 enter the feasible region, truncating the “old” set F. (c) After
the contact bifurcation, a volume H of nonadmissible points enters the Z8 region.
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(b)

(c)

Fig. 12. (Continued )
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(a)

(b)

Fig. 13. (a) The plane section of F with the plane z = 0 shows the small red “ball” B of nonadmissible points appearing
soon after the contact bifurcation inside the yellow set. (b and c) As the value of k decreases, this “ball” increases in size.
(d) A different plane section of F . The plane considered has equation y = m∗x and includes the fixed point.
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(c)

(d)

Fig. 13. (Continued )
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rank-1 preimage of Q = (1/4, 1/4h, 1/4k), which
has eight coincident preimages in Q−1.

We start our analysis with a low value of v,
v = 0.2, and we set h and k so that the fixed
point E∗ is an attractor in the feasible region F .
As in the previous case, three different shapes for
F can be found. The simpler case is shown in
Fig. 12(a) in which F is the connected volume
bounded by the coordinate planes and by the planes
y+z = 1−v, preimage of rank-1 of {x = 0}∩Z8, and
x+z = 1/h−v, preimage of rank-1 of {y = 0}∩Z8:
once more the producer with lowest marginal cost
has the opportunity to expel the competitors of the
market, and to fix a monopoly price. In Fig. 12(a)
the region Z8, bounded by the critical surfaces and
the coordinate plane is shown. As we have already
seen in Sec. 5 the region F may undergo several
kinds of global bifurcations. One is related to the
preimage of rank-1 of the region {z = 0} ∩ Z8,
i.e. x+ y = (1/k) − v. In fact, when the relation

1 +
1

h
− 1
k
− v ≥ 0 (21)

holds, then even the opportunities of the third pro-
ducer are reduced and the region F is bounded
by the preimages of the third coordinate plane
{z = 0} ∩ Z8 which modifies the “back” of the fea-
sible region, as qualitatively shown in Fig. 12(b),
which corresponds to the “truncated pyramid” of
Sec. 5.2. Condition (21) can be obtained observing
that the three preimages of the coordinate planes
intersect at the point

O−1 =
(
1

k
+
1

h
− 1− v, 1

k
− 1
h
+ 1− v,

− 1
k
+
1

h
+ 1− v

)

one of the preimages of the point O = (0, 0, 0), and
O−1 ∈ R3+ iff (21) holds. We remark that (21) is
equivalent to say that the z-coordinate of O−1 is
positive, whereas the other two coordinates are al-
ways positive, being (1/k)+(1/h)−1−v > 1−v > 0
and (1/k)−(1/h)+1−v > 0 in the range of interest
of the parameters.

A second global bifurcation of F occurring is a
contact bifurcation, due to the contact of the crit-
ical surfaces with the preimages of the coordinate
plane, constituting ∂F . An example is shown in
Fig. 12(c), where the contact has just occurred and

a portion of the region Z8 which is now in the un-
feasible region is clearly evident. The bifurcation
value is given by

k =
h

4(1 − v)h− 1

obtained by the condition that the vertex Q belongs
to the plane y+ z = 1− v. The effect of this second
bifurcation is the creation of a volume of unfeasible
region inside the feasible one, due to the preimages
of the portion of Z8 which is now (after the con-
tact) located in the unfeasible region. This is illus-
trated in Fig. 13, where some sections of the three-
dimensional space are drawn. In Fig. 13(a) we can
see the small red “ball” inside the feasible yellow
region, appeared soon after the contact bifurcation,
as the section of the “ball” on the plane z = 0. On
decreasing the value of the parameter k, this “ball”
increases in size, as we can see from the sections in
Figs. 13(b) and 13(c). In Fig. 13(d) we show the sec-
tion of the feasible three-dimensional region taken
on a different plane, of equation y = mx includ-
ing the fixed point, say Π∗. The three-dimensional
feasible region illustrated in Fig. 13 is always a con-
nected set and its origin and bifurcations are similar
to those already described in the previous sections.
The “ball” is located around the pointQ−1 and, due
to the lack of symmetry between the producers, it
is not symmetric with respect to the plane Π∗.

Also the crossing of the bifurcation curve, for
low values of v, gives rise to situations similar to the
ones analyzed in Sec. 6. In particular, the effect of
the saddle-node type bifurcation, which gives rise
to the appearance of two closed invariant curves,
one attracting (Γs) and the other repelling (Γu).
The stable set of Γu constitutes the boundary of
the basin of the equilibrium point E∗, which is fea-
sible if Γu belongs to the positive orthant of the
space. As the parameter values approach the bi-
furcation curve, the curve Γu becomes smaller and
smaller and, at the bifurcation values, it shrinks on
E∗, which becomes unstable (Neimark–Hopf bifur-
cation of subcritical type).
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Appendix A
Reaction Functions

Let us consider the game G in normal form given

by
G = {I, S, U}

where

• I = {1, 2, . . . , n} is the set of players;
• S = S1 × S2 × · · · × Sn is the set of the strategic

profiles of the game and Si is the set of strategies
of the ith player;
• U is the payoff, i.e. the function U : S → Rn

such that Ui(s) is the utility of the ith player cor-
responding to the strategic profile s.

Observe that the utility of each player depends
on his strategy but also on that of his competitors.
Then, in order to choose the “best action”, each
player has to know the moves of the other players.

In the game G, the best response correspon-
dence of a player is defined as the set of its strategies
which give him the best result, in term of utility, if
used as a reply to the moves of the competitors, see
[Binmore, 1992].

More formally

ri(s−i) = arg max
si∈Si

Ui(si, s−i)

where s−i is the strategic profile of the competitors
of player i, i.e.

s−i = (s1, . . . , si−1, si+1, . . . , sn)

Generally ri : S−i → Si is a correspondence
one-to-many, but, when ui(s) is a unimodal func-
tion of si, then ri is a function and it is called reac-
tion function.

This is the case of the Cournot model con-
sidered in the present paper. In fact, it can be
considered as a game G in which I = {1, 2, 3},
S = {(x, y, z) : x ≥ 0, y ≥ 0, z ≥ 0} is the set
of the quantities and U = (U1, U2, U3), where the
functions Ui are given in (2).

Let us fix our attention on player 1, with
marginal cost a. We have

∂U1

∂x
=

y + z +W

(x+ y + z +W )2
− a

and, U1 being a concave function in x, the reaction
function is

r1(y, z) = arg max
x

U1 =

√
y + z +W

a
− y − z −W

In an analogous way, r2(x, z) and r3(x, y) are
obtained as given in (3).
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Given the best response correspondence for
each player, we can consider R : S → S such that

Ri(s) = ri(s−i)

The fixed points of R, when exist, are the Nash
equilibria of the game (Cournot points in oligopoly
theory), i.e. the strategic profiles s∗ such that

∀ i ∈ I ∀ s̃ ∈ Si ui(s
∗) ≥ ui(s̃, s∗−i)

Appendix B
Proof of Proposition 3

Proof. The positivity of the coordinates of E∗u can
be obtained by Proposition 2, considering h = 1.
The stability condition is obtained in the usual way,
considering the Jacobian matrix of Tu in the fixed
point:

J∗u=




2+k

2(1+
√
1+v(2+k))

−1 2+k

2(1+
√
1+v(2+k))

−1

2+k

k(1+
√
1+v(2+k))

−2 0




We have trace(J∗u)=2+k/(2+2
√
1+v(2+k))−1

and

det(J∗u) = −
(

2 + k

2 + 2
√
1 + v(2 + k)

− 1
)

×
(

2 + k

k(1 +
√
1 + v(2 + k))

− 2
)
,

so that the well-known stability conditions give
1 − trace(J∗u) + det(J∗u) > 0 which is true for

every k and v as it reads:

1

2

√
1 + v(2 + k)

(2 + k)2

(1 +
√
1 + v(2 + k))2k

> 0 .

1 + trace(J∗u) + det(J
∗
u) > 0 reads:

2k2 + 3k2
√
1 + v(2 + k) + 4

√
1 + v(2 + k)

−4k − 8vk − 4vk2
2k(1 +

√
1 + v(2 + k))2

> 0

and this inequality is true in the range of interest
of the parameters because

2k2 + 3k2
√
1 + (2 + k)v + 4

√
1 + (2 + k)v − 4k − 8vk − 4vk2 ≥ 2k2 + 3k2 + 4− 4k − 8vk − 4vk2

= 5k2 + 4− 4k − 8vk − 4vk2

= 4k2 + (k + 2)2 − 4vk(k + 2)

≥ 4k2 + (k + 2)2 − 4k(k + 2)

= (k − 2)2

where the first inequality follows by
√
1+(2+k)v≥

1 and the second by v ≤ 1.
Finally

det(J∗u) = −
(

2 + k

2 + 2
√
1 + v(2 + k)

− 1
)

×
(

2 + k

k(1 +
√
1 + v(2 + k))

− 2
)
< 1

reduces to the inequality

2(2−k)(1−k)
√
1+v(2+k)<6vk(k+2)+k(10−k)

and, being k ≤ 1, to

36k2v2 − 4v(k3 − 5k2 − 7k + 2)
− 36k2 + 16k − 4 > 0

whose solutions are

• 0 < k < (8 − 2
√
13)/3, v > [k3 − 5k2 − 7k + 2 +

(1− k)(2− k)
√
k2 − 4k + 1]/18k2

• k ≥ (8− 2
√
13)/3, any v.

�


