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The complex bifurcation structure in the parameter space of the general piecewise-linear scalar
map with a single discontinuity — nowadays known as nested period adding structure — was
completely studied analytically by N. N. Leonov already 50 years ago. He used an elegant and
very efficient recursive technique, which allows the analytical calculation of the border-collision
bifurcation curves, causing the nested period adding structure to occur. In this work, we have
demonstrated that the application of Leonov’s technique is not resticted to that particular
bifurcation structure. On the contrary, the presented map replacement approach, which is an
extension of Leonov’s technique, allows the analytical calculation of border-collision bifurcation
curves for periodic orbits with high periods and complex symbolic sequences using appropriate
composite maps and the bifurcation curves for periodic orbits with much lower periods.
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1. Introduction and Historical
Remarks

Nonsmooth models appear naturally in many appli-
cation fields. Representative examples for systems
where the adequate description of the dynamic
behavior requires nonsmooth and often even dis-
continuous system functions, are electronic circuits
with switching behavior, mechanical systems with
suspensions, gears, transmissions, ball bearings
where impacts or stick slip behavior occurs. Fur-
ther examples range from economy where several
business cycle models are nonsmooth, micro- and
nano-technology in particular piezoelectric energy
harvesting devices and devices using piezoelectric
or other micro-machined actuators [Mita et al.,
2003; Zhao et al., 2004] to generate movement or
propulsion in a very precise manner up to several
models [Karner, 1994; Saif et al., 1998; Leonel &
McClintock, 2006] of the Fermi accelerator [Fermi,

1949]. Additionally, the importance of nonsmooth
systems is based on the fact that Poincaré return
maps of continuous flows showing chaotic behav-
ior are inherently discontinuous. It is also known
that piecewise-smooth dynamical systems are able
to demonstrate not only all phenomena which occur
in smooth systems but also some additional phe-
nomena which are therefore specific for these mod-
els. As the state space of piecewise-smooth systems
is subdivided in several partitions, these phenom-
ena are related with interactions between invariant
sets of the system and the boundaries between these
partitions in the state space. A typical example for
that is given by border-collision bifurcations.

In the history of nonlinear dynamics border-
collision bifurcations became a focus of research
interest about 1990, after [Nusse & Yorke, 1992;
Nusse et al., 1994] where the term border-collision
bifurcation was introduced. Nevertheless, there are
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some earlier works on this topic published already
in 1970 [Feigin, 1970] and in 1974 [Peterka, 1974a,
1974b] Nowadays their works will be frequently
referred to as the first publications on border-
collision related phenomena.

Surprisingly, this is not completely true. In fact,
already in 1959 (that means, 50 years ago) the Rus-
sian mathematician N. N. Leonov published a series
of works on nonsmooth maps and presented a num-
ber of fundamental results which remained mainly
unknown until now.

In his works Leonov considered a four-
parametric family of piecewise-linear discontinuous
1D maps defined on two partitions. It was demon-
strated that the number of parameters which deter-
mine the dynamical behavior is in fact three and
the bifurcation structure of the complete 3D param-
eter space was reported in detail. Not only the exis-
tence boundaries of specific periodic orbits were
explained by introducing the bifurcations which are
now referred to as border-collision bifurcations, but
also the bifurcation scenarios formed by these orbits
were reported. The parameter regions structured by
these scenarios (denoted now as period adding and
period increment) were identified. Regarding the
period increment scenario, Leonov demonstrated
that at most two stable periodic orbits correspond-
ing to symbolic sequences LRn or RLn (which
are now denoted as maximal, principal, basic or
simple orbits) can coexist. Considering the period
adding scenario, Leonov has not only determined
the underlying structure in the space of symbolic
sequences (known in the meanwhile as Farey- or
Brocot-tree-like infinite symbolic sequences adding
scheme, also denoted as the symbolic representa-
tion of the Farey tree), but has also shown that in
the limiting case stable aperiodic dynamics is pos-
sible, although on a parameter subspace with zero
Lebesgue measure.

Due to several reasons (including the language
barrier) the results obtained by Leonov were not
known by the scientific community (although they
were reported in [Mira, 1987]) and were therefore
mostly rediscovered later by other researchers. How-
ever, one idea used by Leonov for the analytical
calculation of bifurcation curves within the period
adding scenario is still not only of historical interest.

Since computer algebra software like Maple
or Mathematica were not available at that time,
Leonov used the following idea to simplify the calcu-
lation of border-collision bifurcation curves involv-
ing high-periodic orbits with complex symbolic

sequences: first, he calculated the border-collision
bifurcation of some other usually much simpler
orbits. This was done in a way similar to what
we call nowadays a straight forward calculation.
Leonov noticed the fact that the existence region of
each orbit is confined by two border-collision bifur-
cations. He calculated one of them using the con-
dition that a fixed point of the iterated function
collides with the boundary and the other one using
the condition that the same fixed point collides with
the image of the boundary. For details we refer to
[Gardini et al., 2010] where the steps performed by
Leonov are explained and extended. Eventually he
defined a different (composite) map related to the
original one in an appropriate way (using some com-
posite coefficients), so that the already calculated
curves exist also in this new map and correspond
in the original map to periodic orbits with usually
more complex symbolic sequences. This can be seen
as a two-steps approach: first the bifurcation curves
calculated in the original parameter space will be
transferred into a different parameter space by a
simple replacement of coefficients, and after that,
the obtained results will be mapped back to the
original parameter space. This allowed Leonov to
describe the period adding structure analytically
with a surprisingly small calculation effort and in
much more detail than it can be done by straight
forward calculation.

In fact, the application of Leonov’s ideas is
neither restricted to period adding structures nor
to border-collision bifurcations. In the presented
work we ask the following question: which con-
ditions must be fulfilled for the calculation of
border-collision bifurcations of a periodic orbit
with complex symbolic sequence based on border-
collision bifurcations of a different periodic orbit
with much simpler symbolic sequence. This will be
done without any additional assumptions regard-
ing the bifurcation scenarios both periodic orbits
are involved in, and represents therefore a general-
ization of Leonov’s approach, which we denote as
the map replacement approach. For a further gen-
eralization regarding bifurcation types other than
border-collision bifurcations, we refer to [Avrutin &
Schanz, 2009] and to forthcoming works.

The presented work is structured as follows.
In Sec. 2 we discuss the basic idea of the map
replacement approach and explain what are the
preconditions for its application. After that, in
Sec. 3 we consider the infinite symbolic sequence
adding scheme and its recursive definition by some
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operators in the space of admissible symbolic
sequences. Based on these operators we review in
Sec. 4 the results obtained by Leonov regarding
the period-adding structure. Eventually, in Sec. 5
we demonstrate that the application of the map
replacement approach can be considered as a kind
of topology-preserving mapping in the parameter
space, explaining the self-similarity of the period-
adding structure.

2. Basic Approach

In order to explain the basic idea of the map replace-
ment approach, let us consider the general discon-
tinuous piecewise-linear map defined by

xn+1 = f(xn) =
{

fL(xn) = a�xn + µ� if xn < 0
fR(xn) = arxn + µr if xn > 0

(1)

which was also used in the original works [Leonov,
1959, 1960a, 1960b]. The main advantage of map (1)
is that all four parameters are independent from
each other. This property is crucial for the applica-
tion of the map replacement approach. One further
advantage of map (1) is the symmetry property

f(x, a�, µ�, ar, µr) = −f(−x, ar,−µr, a�,−µ�) (2)

which simplifies the calculation due to the possibil-
ity of exchanging the symbols L and R.

One obvious disadvantage of the general
map (1) is that its parameter space is four-
dimensional and hence is not easy to visualize.
Therefore, we will additionally consider in the fol-
lowing the map with only two parameters given by

xn+1 =
{

axn + µ + 1 if xn < 0
axn + µ− 1 if xn > 0

(3)

which represents a well-known model of an elec-
tronic circuit, namely a Σ/∆ modulator. This model
has been already intensively investigated by many
authors (see for instance [Gray, 1987; Feely & Chua,
1991; Feely, 1992; Reiss & Sandler, 2001; Jacomet
et al., 2004; Coutinho et al., 2006]). In this way, to
keep the generality we will perform all calculation
steps for the general map (1) and after that trans-
fer the obtained results to the map (3) using the
substitution

a� = a, ar = a, µ� = µ + 1, µr = µ− 1 (4)

Note that in an analogous way all results obtained
for map (1) can be transferred to any other
piecewise-linear 1D map.

It is in the meanwhile well-known that when
dealing with periodic orbits of such maps a sym-
bolic description is useful. So, let σ be a symbolic
sequence consisting of the letters σi ∈ {L,R} (as
usual, we write L for a point x < 0 and R for
a point x > 0) corresponding to one period of
a periodic orbit, which we denote by Oσ. If two
sequences σ and σ′ are identical up to a cyclic shift
(we express that by σ ≡ σ′), they correspond to the
same periodic orbit. Obviously, a period-n orbit Oσ

of map (1) is related with fixed points of the nth
iterated function fσ(x) = fσn−1 ◦ · · · ◦ fσ0(x) with
n = |σ|.

Let us consider the most simple case investi-
gated also in the original works by Leonov, namely
the border-collision bifurcations.1 Proceeding in
this way, let Oσ be a periodic orbit of map (1)
undergoing two border-collision bifurcations. One
of these bifurcations is defined by the collision of
a specific point xσ

i of the orbit with the bound-
ary from the left side and the other one by a
collision of another specific point xσ

j of the orbit
with the boundary from the right side. We denote
the parameter subspace corresponding to these two
bifurcations by ξ�,i

σ and ξr,j
σ , respectively, and use in

the following the shorter notation ξ
�,i/r,j
σ referring

to both of them.
Furthermore, let Oρ be a periodic orbit of

map (1) with the symbolic sequence ρ resulting from
the sequence σ by the replacement of all letters L
by some sequence �� and all letters R by some
sequence �r, which means by a transformation in
the space of admissible sequences. To give an exam-
ple, for σ = LR3, �� = LR and �r = LR2 we
obtain ρ = LR(LR2)3. Similarly, using the same
replacement, we obtain from σ = LR(LR2)3 the
sequence ρ = LRLR2(LR(LR2)2)3.

Now let us assume that the periodic orbit Oρ

not only exists, but also undergoes two border-
collision bifurcations, one of them by collision with
the boundary from the left side by the point xρ

i′ and
the other by collision with the boundary from the
right side by the point xρ

j′ . Of course, the sequence ρ
is longer than σ and it is much easier to calculate the
bifurcation subspaces ξ

�,i/r,j
σ than ξ

�,i′/r,j′
ρ . The goal

1Note that the same approach can also be used for calculation of bifurcations of different types, as far as they are caused by
contacts of some (stable or unstable) periodic orbits with some boundaries in the state space. Especially, the well-known crisis
bifurcation represents an example where the approach works well.
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of the map replacement approach is to reduce the
complexity of the calculation in the following way:
at first, the simpler bifurcation subspaces ξ

�,i/r,j
σ will

be calculated and after that the bifurcation sub-
spaces ξ

�,i′/r,j′
ρ will be obtained from this result by

a suitable replacement of the parameters.
To explain how the map replacement approach

works, let us consider the following example. Let us
calculate the border-collision bifurcation curves for
the period-11 orbit OLR(LR2)3 . This orbit collides
with the boundary x = 0 from the left side by its
third point x

LR(LR2)3

2 and from the right side by its
last point x

LR(LR2)3

10 [see Figs. 1(e) and 1(f), respec-
tively]. Note also that thoughout this work the
points of periodic orbits are numbered according to
the corresponding symbolic sequences, that means,
for example, the point x

LR(LR2)3

0 corresponds to the
first letter L in the sequence LR(LR2)3. The point
x
LR(LR2)3

2 can be calculated straight forward by the
fixed point equation

x = fr ◦ f� ◦ (f2
r ◦ f�)3(x) (5)

The point x
LR(LR2)3

10 can be calculated analo-
gously by solving the fixed point equation

x = (fr ◦ f� ◦ fr)3 ◦ f� ◦ fr(x) (6)

Eventually, using the border-collision condi-
tions x

LR(LR2)3

2 = 0 and x
LR(LR2)3

10 = 0 we obtain
the bifurcation curves ξ�,2

LR(LR2)3
and ξr,10

LR(LR2)3
,

respectively.
As one can see, this straight forward calcula-

tion is always possible but becomes more and more
complicated for increasing length and complexity of
the considered orbits. Therefore, let us note that the
symbolic sequence LR(LR2)3 can also be obtained
from the much more easy sequence LR3 by some
replacement of the letters L and R. The most obvi-
ous possibility for that is

L → LR, R→ LR2 (7)

However, we use a different replacement, which is
given by

L → LR, R→ RLR (8)

In this case, we obtain the sequence LR(RLR)3.
One can easily see that both sequences LR(LR2)3

and LR(RLR)3 are equivalent up to a cyclic shift

LR(RLR)3 = LR RLR RLR RLR
= LRR LRR LRR LR
= (LR2)3LR
≡ LR(LR2)3 (9)

and therefore correspond to the same orbit. The
reasons why we prefer to use the replacement (8)
and up to which extent the seemingly equivalent
replacement (7) is different from (8) with respect
to the calculation of the bifurcation curves will be
explained below.

As a first step, let us calculate the border-
collision bifurcation curves of the orbit OLR3

instead of OLR(LR2)3 . For this orbit it is known
that it undergoes border-collision bifurcations when
its first, or last, point collides with the boundary,
respectively. The first point of this orbit xLR3

0 can
be calculated straight forward by solving the fixed
point equation

x = f3
r ◦ f�(x) (10)

which is significantly simpler than Eq. (5). From
Eq. (10) we obtain:

xLR
3

0 = −a3
rµ� + (a2

r + ar + 1)µr

a3
ra� − 1

(11)

Similarly, for the last point of the orbit OLR3 we
obtain from x = f2

r ◦ f� ◦ fr(x)

xLR
3

3 = −a2
rµ� + (a2

ra� + ar + 1)µr

a3
ra� − 1

(12)

Then solving the equations xLR3

0 = 0 and xLR3

3 = 0
we obtain the following border-collision bifurcation
curves

ξ�,0
LR3 =

{
(a�, ar, µ�, µr)

∣∣∣∣µ�

µr
= −a2

r + ar + 1
a3

r

}
(13)

ξr,3
LR3 =

{
(a�, ar, µ�, µr)

∣∣∣∣µ�

µr
=

a2
ra� + ar + 1

a2
r

}
(14)

The orbits at both bifurcations for the map (3) are
shown in Figs. 1(a) and 1(b), respectively. As one
can clearly see, Fig. 1(a) shows the situation at the
border-collision ξ�,0

LR3 where the orbit OLR3 collides
with the boundary x = 0 with its first point xLR3

0 .
Similarly, in Fig. 1(b) the situation at the border-
collision ξr,3

LR3 is shown, where the orbit collides with
the boundary with its last point xLR3

3 .
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(a) (b)

(c) (d)

(e) (f)

Fig. 1. Border-collision bifurcations in the original map (1) (a, b) and the composite map (17) (c, d). In (e, f) the border-
collision bifurcations in the original map (1) are shown at the same parameters values as used in (c, d). For parameter values
and further details see text.
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So far all steps were as usual. Now let us
go back to the orbit OLR(LR2)3 and let us calcu-
late its bifurcations from the bifurcations of the
orbit OLR3 calculated above. As already mentioned,
the calculation is based on the replacement (8).
According to this, let us define the following two
functions:

f�r(x) = fr ◦ f�(x) = a�ar︸︷︷︸
a�r

x + arµ� + µr︸ ︷︷ ︸
µ�r

(15)

fr�r(x) = fr ◦ f� ◦ fr(x)

= a�a
2
r︸︷︷︸

ar�r

x + ara�µr + arµ� + µr︸ ︷︷ ︸
µr�r

(16)

The most important property of the function f(x)
is that both iterated functions f�r(x) and fr�r(x)
are linear with respect to x. As a consequence, the
composite map defined in the following way

xn+1 = g(xn)

=
{

f�r(xn) = a�rxn + µ�r if xn < 0
fr�r(xn) = ar�rxn + µr�r if xn > 0

(17)

has the same functional form as the original
map (1), that means it is piecewise-linear with one
point of discontinuity. The key point of the map
replacement approach is that we can adjust the
slopes a�r, ar�r, and the offsets µ�r, µr�r, of the
functions f�r and fr�r so that they are identical
with the slopes a�, ar and the offsets µ�, µr, of the
functions f� and fr, respectively, especially at the
bifurcation values. Hence, let us consider a set of
parameters (a�r, µ�r, ar�r, µr�r) satisfying for exam-
ple Eq. (14). Recall that at these parameter values
the orbit OLR3 in the original map (1) undergoes
a border-collision bifurcation. Therefore, the com-
posite map (17) shows at these parameter values
the same behavior. However, recall that by defini-
tion of map (17) one step on the left side of this
map represents two steps of the original map, and
one step on the right side of this map represents
three steps of the original map. In other words,
the orbit OLR3 of the composite map represents
the orbit OLR(LR2)3 of the original map, and there-
fore the orbit for which we wanted to calculate the
bifurcation curves. Consequently, by substituting
the parameters (a�r, µ�r, ar�r, µr�r) in Eq. (14) we
obtain the border-collision bifurcation curve for the
orbit OLR(LR2)3 :

ξr,10
LR(LR2)3

=
{
(a�, ar, µ�, µr)

∣∣∣∣ µ�r

µr�r
=

a2
r�ra�r + ar�r + 1

a2
r�r

}
(18)

After that we have to insert the values of the parameters (a�r, µ�r, ar�r, µr�r) in terms of the original
parameters, as given by Eqs. (15) and (16):

ξr,10
LR(LR2)3

=
{
(a�, ar, µ�, µr)

∣∣∣∣ arµ� + µr

ara�µr + arµ� + µr
=

(a�a
2
r)

2(a�ar) + (a�a
2
r) + 1

(a�a2
r)2

}
(19)

Finally we have to resolve the last equation with respect to µ�/µr and obtain after some algebraic trans-
formations the final result

ξr,10
LR(LR2)3

=

{
(a�, ar, µ�, µr)

∣∣∣∣∣µ�

µr
= −a2

�a
4
r + a4

�a
6
r + a�

3a5
r + a2

�a
3
r + a� a2

r + a� ar + 1
ar

(
a2

�a
4
r + a3

�a
5
r + a� a2

r + 1
) }

(20)

As one can see, the border-collision bifurcation curve ξr
LR(LR2)3 is now calculated using Eq. (14)

which represents a much simpler bifurcation curve ξr
LR3 by replacing the map (1) with the composite

map (17). The other border-collision bifurcation curve ξ�
LR(LR2)3 can be obtained analogously, using the

same replacement and Eq. (13) instead of Eq. (14). We obtain in this way

ξ�,2
LR(LR2)3

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�r

µr�r
= −a2

r�r + ar�r + 1
a3

r�r

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣ arµ� + µr

ara�µr + arµ� + µr
= −(a2

ra�)2 + a2
ra� + 1

(a2
ra�)3

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣µ�

µr
= −a3

�a
6
r + a3

�a
5
r + a2

�a
4
r + a2

�a
3
r + a�a

2
r + a�ar + 1

ar(a3
�a

6
r + a2

�a
4
r + a�a2

r + 1)

}
(21)
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To summarize, we can represent the calculation
steps described above by the following replacement
scheme:

ξ
�,0/r,3
LR3

L �→ LR
R �→ RLR−−−−−−−−−−−−−−−−→

a� �→ a�r

µ� �→ µ�r

ar �→ ar�r

µr �→ µr�r

ξ
�,2/r,10
LR(LR2)3

(22)

The described procedure is illustrated in Fig. 1.
As already mentioned, Figs. 1(a) and 1(b) show the
orbit OLR3 of map (1) at the bifurcations ξ�,0

LR3 and
ξr,3
LR3, respectively. Obviously, the used parameter

sets

(a�, ar, µ�, µr) = (0.65, 0.85, 4.188887,−1) (23)

(a�, ar, µ�, µr) = (0.65, 0.85, 3.210553,−1) (24)

satifsy Eqs. (13) and (14), respectively. Then we
set the parameters of the composite map (17) to
the same values:

(a�r, ar�r, µ�r, µr�r) = (0.65, 0.85, 4.188887,−1)
(25)

(a�r, ar�r, µ�r, µr�r) = (0.65, 0.85, 3.210553,−1)
(26)

Finally, we solve the expressions for the parame-
ters of the composite map (17) defined by Eqs. (15)
and (16) with respect to the parameters of the orig-
inal map (1) and get:

a� =
a2

�r

ar�r
, ar =

ar�r

a�r
,

µ� =
a�rµ�r − µr�r + µ�r

ar�r
, µr =

µr�r − µ�r

a�r

(27)

Inserting the parameter sets (25) and (26) in
Eqs. (27) we obtain the following parameter sets

(a�, ar, µ�, µr) = (0.497059, 1.307692,
9.307838,−7.982902) (28)

(a�, ar, µ�, µr) = (0.497059, 1.307692,
7.408722,−6.477775) (29)

where the composite map (17) coincides with
the original map (1) evaluated at the parameter
sets (23) and (24), respectively, and hence shows the
same behavior, as illustrated in Figs. 1(c) and 1(d).
Consequently, for map (1) the parameter sets (28)
and (29) lead to the situations where the orbit
OLR(LR2)3 undergoes the bifurcations ξ�,2

LR(LR2)3

and ξr,10
LR(LR2)3

, respectively, as shown in Figs. 1(e)
and 1(f).

The bifurcation curves of the orbits OLR3 and
OLR(LR2)3 for map (3) are shown in Fig. 2(a). The
depicted curves are obtained from Eqs. (13), (14),
(20) and (21) using substitution (4). As one can
see, the shapes of the regions of existence PLR3 and
PLR(LR2)3 are similar: both regions originate from
the same point a = 0, µ = 1; then they collapse to
singular points at the line a = 1 where both orbits
become unstable, and for increasing a their bound-
aries tend pairwise asymptotically to each other and
converge to the points a = +∞, µ = ±1. This sim-
ilarity is due to the fact that both orbits OLR3 and
OLR(LR2)3 we considered are involved in the same
period-adding structure. For the description of this
structure, the map replacement approach is very
useful, as we will see later.

(a) (b)

Fig. 2. Bifurcation curves in map (3) calculated by map replacement approach. (a) Bifurcations of the period-11 orbit
OLR(LR2)3 calculated starting from the bifurcations of the period-4 orbit OLR3 . (b) Bifurcations of the period-8 orbit OL2R6

calculated starting from the bifurcations of the period-2 orbit OLR. Insets show the marked rectangles enlarged.
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To obtain this replacement of the coefficients,
let us first consider a symbolic sequence � =
�1�2 · · ·�n−1�n with period n = |�|. Since f
is a piecewise-linear function, the iterated function
f [n](x) is piecewise-linear too. Since f is defined on
two partitions, the maximum number of partitions
for f [n] is 2n. In the case that the function f has a
n-periodic orbit O�, the iterated function f [n] has
n fixed points corresponding to the specific points
of O�. Due to the linearity of the function f [n](x)
in each partition, it is clear that each of these fixed
points is located in a different partition.

Let us denote by←−�n a symbolic sequence which
results from � by a cyclic shift by n. For exam-
ple, ←−�0 = �, ←−�1 = �2�3 · · ·�n�1, and ←−�2 =
�3�4 · · ·�1�2. Then the fixed points of f [n] men-
tioned above are located in the partitions given by
the n linear functions f←−�i(x) with i = 0, . . . , n− 1.
Recall that according to our notation the func-
tion f←−�i(x) represents a subsequent application of
the functions fL(x) and fR(x) according to the
sequence←−� i. As a consequence, when dealing with a
border-collision bifurcation of the orbit O� whereby
a specific point (say, the kth point) collides with the
boundary x = 0, only one linear function f←−�k(x) for
this specific k needs to be considered.

As a matter of fact, the procedure described
above can significantly simplify the calculations.
Therefore, the question arises how generic is this
procedure. More precisely, if a (complex) symbolic
sequence ρ is given, the question is how to deter-
mine a simpler sequence σ so that the bifurca-
tions of the orbit Oρ can be calculated from the
bifurcations of the orbit Oσ using some replace-
ment? If a pair of sequences σ and ρ are given,
so that there exists a replacement leading from the
sequence σ to the sequence ρ, is it always guaran-
teed that the bifurcation curves for Oρ can be cal-
culated using the bifurcation curves for Oσ as it was
done above?

Let us summarize the notation used in the fol-
lowing. Starting from the bifurcation curves for the
orbit Oσ we will calculate the bifurcation curves for
the orbit Oρ by replacement of the parameters in the
equations for the bifurcation curves for Oσ. So, the
sequence σ = σ0σ1σ2 . . . σn−1 with the letters σi ∈
{L,R} i = 1, . . . , n,n = |σ|will bedenotedas a start-
ing sequence for the replacement. The letters σi in the
sequenceσ will be replaced by the symbolic sequences
�� and �r which we denote as syllables. Obviously,
after each L in σ is replaced by �� and each R by
�r, the resulting sequence (also denoted as a target

sequence) ρ can be written as

ρ = �0�1�2 · · ·�n−1 with

�i =
{

�� if σi = L
�r if σi = R (30)

In the example discussed above the starting
sequence is σ = LR3, the target sequence is ρ =
LR(LR2)3, and the syllables used for the replace-
ment are �� = LR, �r = RLR. For the sake of
clarity, the replacements L → �� and R → �r

will be denoted as left and right replacements,
respectively. Furthermore, we denote a replacement
(L → ��,R → �r) as admissible, if the calcula-
tion of the bifurcation curves for the orbit Oρ using
the replacement of the parameters (slopes and off-
sets) defined by the linear functions f�l

and f�r

into the expressions for the bifurcation curves of
the orbit Oσ leads to a correct result. As we will
see below, there are admissible and not admissible
replacements.

For the calculation of border-collision bifurca-
tion curves it is essential to know which points of
the orbits Oσ and Oρ collide with the boundary. We
denote the letters corresponding to these points as
colliding letters and underline them. In the example
discussed above we have

σ = LR3 = LRRR and
(31)

ρ = LR(RLR)3 = LRRLRRLRRLR
In the following, we assume that each periodic orbit
we consider undergoes one border-collision bifur-
cation where it collides with the boundary from
the left side (left bifurcation), and one bifurcation
where it collides from the right side (right bifurca-
tion). Hence, each symbolic sequence corresponding
to a periodic orbit of map (1) contains one colliding
letter L and one colliding letter R.

Which letters are colliding in a particular sym-
bolic sequence, depends on the mechanism lead-
ing periodic orbits to emerge. Regarding orbits of
type LRn in 1D piecewise-linear maps like (1), it
is known in the case that both slopes are posi-
tive, the system function forms some kind of chan-
nel with the bisecting line and the colliding letters
are the (only) symbol L and the last symbol R.
By contrast, in the case that one slope is positive
and the other one is negative (and both offsets are
positive), the system function forms some kind of
swirl around an unstable fixed point, and the col-
liding letter R is not the last but the second to
last one.
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All the results presented below are based on the
following conjecture:

The replacement L → �� and R → �r

is admissible for the calculation of the left
(resp. right) bifurcation iff the syllable ��

(resp. �r) in the sequences ρ which corre-
spond to the colliding letter L (resp. R) in
σ, starts with the colliding letter L (resp. R).

It becomes immediately clear that if a replace-
ment is admissible for the calculation of the left
bifurcation, then �� starts with L. Note that in this
case nothing is said about �r: it may start with R
or with L. Similarly, if a replacement is admissible
for the calculation of the right bifurcation, then �r

starts with R, whereas �� may start with an arbi-
trary letter.

Note that the symbolic replacement technique
we use in this work is closely related to the sym-
bolic inflation technique described in [Procaccia
et al., 1987]. However, the aims of both works are
different. In the cited work this technique is used
within the context of renormalization group theory,
whereas we are calculating bifurcation curves. Since
the maps considered in [Procaccia et al., 1987] are
piecewise-nonlinear and hence do not preserve their
functional form under iterated application, the cal-
culation of bifurcation curves by map replacements
is not possible for these maps.

Let us now turn back to the example σ = LR3,
ρ = LR(LR2)3 discussed above and compare the
replacement (8) we used, with the seemingly “more
obvious” but unfortunately not admissible replace-
ment (7). For the replacement (8) the following
scheme

σ = LRRR
τ :=


L �→ LR
R �→ RLR−−−−−−−−−−→ ρ

=

τ(σ0)︷︸︸︷
LR

τ(σ1)︷ ︸︸ ︷
RLR

τ(σ2)︷ ︸︸ ︷
RLR

τ(σ3)︷ ︸︸ ︷
RLR (32)

confirms that it is admissible both for the calcula-
tion of the left and of the right bifurcations. Indeed,

the colliding letter σ0 = L is mapped by (8) onto
the syllable τ(σ0) = LR where the first letter is in
fact the colliding letter L of the sequence ρ. Sim-
ilarly, the colliding letter σ3 = R is mapped onto
the syllable τ(σ3) = RLR where the first letter is
the colliding letter R of the sequence ρ.

By contrast, the replacement (7) cannot be used
neither for the calculation of the left nor of the right
bifurcation. It is obvious that it is not applicable
for the calculation of the right bifurcation since the
syllable �r starts with L and not with R. Further-
more, it is also not admissible for the calculation of
the left bifurcation, since according to this replace-
ment the colliding letter σ0 = L will be mapped
onto the syllable τ(σ0) = LR where the first letter
is now not the colliding one, as illustrated by the
following scheme:

σ = LRRR
τ :=


L �→ LR
R �→ LR2

−−−−−−−−−→ ρ

=

τ(σ0)︷︸︸︷
LR

τ(σ1)︷ ︸︸ ︷
LRR

τ(σ2)︷ ︸︸ ︷
LRR

τ(σ3)︷ ︸︸ ︷
LRR (33)

Now let us consider a slightly more sophisti-
cated example and calculate the bifurcation curves
for the period-8 orbit Oρ with ρ = L2R6. As the
starting orbit we will use the period-2 orbit Oσ

with σ = LR (the reasons why we use this orbit
are explained below). To find an admissible replace-
ment for this calculation, we have to take into
account that the colliding letters in the sequence
L2R6 are the second L and the last R. Hence, we
have to split the sequence L2R6 (cyclically shifted
in an appropriate way) in two syllables ��, �r so
that at least one of them starts with a colliding
letter:

LLRRRRRR ≡ ���r (34)

As one can see, there are several possibilities for
that. Especially, for the calculation of the left bifur-
cation of the orbit OL2R6 we can use any of the
following replacements:

σ = LR
τ :=


L �→ L
R �→ RRRRRRL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷︸︸︷
L

τ(σ1)︷ ︸︸ ︷
RRRRRRL (35)

σ = LR
τ :=


L �→ LR
R �→ RRRRRL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷︸︸︷
LR

τ(σ1)︷ ︸︸ ︷
RRRRRL (36)

σ = LR
τ :=


L �→ LRR
R �→ RRRRL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRR

τ(σ1)︷ ︸︸ ︷
RRRRL (37)
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σ = LR
τ :=


L �→ LRRR
R �→ RRRL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRRR

τ(σ1)︷ ︸︸ ︷
RRRL (38)

σ = LR
τ :=


L �→ LRRRR
R �→ RRL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRRRR

τ(σ1)︷ ︸︸ ︷
RRL (39)

σ = LR
τ :=


L �→ LRRRRR
R �→ RL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRRRRR

τ(σ1)︷︸︸︷
RL (40)

σ = LR
τ :=


L �→ LRRRRRR
R �→ L−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRRRRRR

τ(σ1)︷︸︸︷
L (41)

Similarly, for the calculation of the right bifurcation the following replacements are admissible:

σ = LR
τ :=


L �→ LLRRRRR
R �→ R−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LLRRRRR

τ(σ1)︷︸︸︷
R (42)

σ = LR
τ :=


L �→ LRRRRR
R �→ RL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
LRRRRR

τ(σ1)︷︸︸︷
RL (43)

σ = LR
τ :=


L �→ RRRRR
R �→ RLL−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
RRRRR

τ(σ1)︷ ︸︸ ︷
RLL (44)

σ = LR
τ :=


L �→ RRRR
R �→ RLLR−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
RRRR

τ(σ1)︷ ︸︸ ︷
RLLR (45)

σ = LR
τ :=


L �→ RRR
R �→ RLLRR−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷ ︸︸ ︷
RRR

τ(σ1)︷ ︸︸ ︷
RLLRR (46)

σ = LR
τ :=


L �→ RR
R �→ RLLRRR−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷︸︸︷
RR

τ(σ1)︷ ︸︸ ︷
RLLRRR (47)

σ = LR
τ :=


L �→ R
R �→ RLLRRRR−−−−−−−−−−−−−−→ ρ =

τ(σ0)︷︸︸︷
R

τ(σ1)︷ ︸︸ ︷
RLLRRRR (48)

As one can see, the replacements (40) and (43)
are identical. Therefore the following calculation
scheme is applicable for the calculation of both,
the left and the right bifurcations of the orbit
OL2R6 :

ξ
�,0/r,1
LR

L �→ LR5

R �→ RL−−−−−−−−−−−−−−−→
a� �→ a�r5

µ� �→ µ�r5

ar �→ ar�

µr �→ µr�

ξ
�,1/r,7
L2R6 (49)

By contrast, all other replacements are admissible
for the calculation of only one (either the left or the
right) bifurcation. Nevertheless, there may be rea-
sons why one could prefer to use them. To explain
this, recall that the straight forward calculation of
the bifurcations of the period-8 orbit OL2R6 requires
to calculate the 8th iterated of f , what we pre-
fer to avoid. Using the map replacement approach

we calculate these bifurcations using the bifurcation
curves of the orbit OLR (calculated using the sec-
ond iterated of f) and the parameters according
to the particular replacement scheme. Using the
scheme (49) we need the parameters a�r5 and µ�r5

which are defined by the function f5
r ◦f�, that means

the sixth iterated of f . On the other hand, we can
further reduce the complexity of the calculations
using the replacements (38) and (45) which require
to calculate the fourth iterated of f only. Proceeding
in this way, we define the replacement parameters
as follows:

f�r3(x) = f3
r ◦ f�(x)

= a3
ra�︸︷︷︸

a�r3

x + a3
rµ� + a2

rµr + arµr + µr︸ ︷︷ ︸
µ�r3

(50)



November 11, 2010 19:24 WSPC/S0218-1274 02758

Calculation of Bifurcation Curves by Map Replacement 3115

fr3�(x) = f� ◦ f3
r (x)

= a3
ra�︸︷︷︸

ar�3

x + a�a
2
rµr + a�arµr + a�µr + µ�︸ ︷︷ ︸

µr�3

(51)

fr4(x) = f4
r (x)

= a4
r︸︷︷︸

ar4

x + a3
rµr + a2

rµr + arµr + µr︸ ︷︷ ︸
µr4

(52)

fr�2r(x) = fr ◦ f2
� ◦ fr(x)

= a2
ra

2
�︸︷︷︸

ar�2r

x + ara
2
�µr + ara�µ� + arµ� + µr︸ ︷︷ ︸

µr�2r

(53)

Now we can insert the parameters defined by
Eqs. (50) and (51) into the equation for the left
bifurcation of the orbit OLR which is given by

ξ�,0
LR =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
= − 1

ar

}
(54)

and the parameters defined by Eqs. (52) and (53)
into the equation for the right bifurcation of the
orbit OLR

ξr,1
LR =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
= −a�

}
(55)

Inserting the parameters and solving the resulting
expressions with respect to the original parameters
we obtain:

ξ�,1
L2R6 =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�r3

µr3�
= − 1

ar3�

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣ a3

rµ� + a2
rµr + arµr + µr

a�a2
rµr + a�arµr + a�µr + µ�

= − 1
a3

ra�

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�

µr
= −a�(a2

r + a5
r + a4

r + a3
r + ar + 1)

a6
ra� + 1

}
(56)

ξr,7
L2R6 =

{
(a�, ar, µ�, µr)

∣∣∣∣ µr4

µr�2r
= −ar4

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣ a3

rµr + a2
rµr + arµr + µr

ara2
�µr + ara�µ� + arµ� + µr

= −a4
r

}

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�

µr
= −a5

ra
2
� + a4

r + a3
r + a2

r + ar + 1
a5

r(a� + 1)

}
(57)

The question now arises whether LR is the only
starting sequence which can be used for the calcu-
lation of the bifurcations of the orbit OL2R6 . Espe-
cially, it seems to be a natural way to start with the
sequence LR2 or LR3 and to use the replacement
L → L2, R → R3 or R → R2, respectively. It can
be easily shown that this is not possible. For exam-
ple, starting with the sequence LR2 and calculating
the left bifurcation, we have to split the sequence
L2R6 in the following way: ρ = LRRRRRRL =
���r�r. Hence, the syllable �� must have the
form LRk for some k = 0, 1, . . . . Consequently, the
remaining suffix R6−kL must consist of two iden-
tical syllables �r what is obviously not possible,
so the sequence LR2 cannot be used for the cal-
culation of the left bifurcation. The proof for the
sequence LR3 is analogous. When dealing with the

right bifurcation, the situation is slightly different.
In this case the sequence L2R6 must be split in the
following way: ρ = RLLRRRRR = �r���r. As
one can see, there is exactly one possibility for this:
�� = L2R4, �r = R. Consequently, the sequence
LR2 can be used as a starting sequence for the
calculation of the right bifurcation of OL2R6 . How-
ever, the only admissible replacement L → L2R4,
R→ R requires to calculate the sixth iterated func-
tion f4

r ◦ f2
� and has therefore no advantage com-

pared to the way starting with the sequence LR
described above.

The results obtained above — recalculated for
map (3) by using the substitution (4) — are illus-
trated in Fig. 2(b). As one can see, the shapes
of the regions PLR and PL2R6 are different. The
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region PLR consists of two parts, one of them on
the left side of the intersection point of the curves
ξ
Σ/∆:�,0
LR and ξ

Σ/∆:r,1
LR (at a < 1) where the orbit

OLR is stable, and the other one on the right side
of that point where OLR is unstable. By contrast,
the orbit OL2R6 exists only on the right side of the
intersection point of the curves ξ

Σ/∆:�,1
L2R6 and ξ

Σ/∆:r,7
L2R6

and is unstable in its complete existence region.
It is also remarkable that the intersection point of
the curves ξ

Σ/∆:�,1
L2R6 and ξ

Σ/∆:r,7
L2R6 is located at the

curve ξ
Σ/∆:�,0
LR . In fact, this intersection point where

the region PL2R6 originates from is the intersection
point of the curves ξ

Σ/∆:�,0
LR and ξ

Σ/∆:r,5
LR5 . However,

a detailed investigation of the question on how the
existence regions of several periodic orbits within
the chaotic domain are located with respect to each
other is beyond the scope of this work, even if the
map replacement approach simplifies this investiga-
tion significantly.

3. Period Adding: Symbolic Sequences

In the original work by Leonov the approach we
discuss here was used for the calculation of border-
collision bifurcation curves organized by the period
adding structure.2 In fact the application of the
map replacement approach is not restricted to a
specific bifurcation scenario or to a specific type of
bifurcation. Nevertheless, the period adding struc-
ture represents an impressive example of a recursive
application of the map replacement approach.

An example of the period adding structure in
map (3) is shown in Fig. 3. The bifurcation diagram
presented in Fig. 3(a) shows the well-known self-
similar structure consisting of an infinite number of
different periodic orbits with arbitrary high periods.
The periods of these orbits are shown in Fig. 3(b).
Similar results are presented in many works. How-
ever, Fig. 3(c) shows the same period diagram cal-
culated analytically. As a matter of fact, it would be
a very hard task to calculate this figure using usual
straight forward techniques. By contrast, using the
map replacement approach the calculation becomes
a much simpler task. In the following we intro-
duce the concept of complexity levels of periodic
orbits. The complete Fig. 3(c) is produced using
orbits of the first three complexity levels and — as
we will see — is defined by only seven equations.
Note also that a few of the numerically detected

periods are not calculated analytically — as we will
see, they belong to sequences with complexity levels
larger than 3.

It is known that the rule describing the period-
adding scenario is given by the infinite self-similar
symbolic sequence adding scheme, whose first lay-
ers are presented in Fig. 4. This scheme can be
seen as a symbolic representation of the Farey-
tree [Farey, 1816; Lagarias & Tresser, 1995; Bai-
Lin, 1989], which is a subtree of the Stern–Brocot
tree [Stern, 1858; Brocot, 1861]. As one can see
in Fig. 4, each sequence in the symbolic sequence
adding scheme, except the one-letter-sequences L
andR has two predecessors (which we call its parent
sequences) and is formed by the concatenation of its
parent sequences. Although the basic structure of
the symbolic sequence adding scheme is well-known,
there are several possibilities for how to define the
substructures within this scheme, or in other words,
how to group the sequences according to their loca-
tion in the overall structure.

3.1. Layers, generations and
complexity levels

The most obvious way to group the sequences is
according to their layers in the symbolic sequence
adding scheme. According to this idea, the one-
letter-sequences L and R belong to the layer 0,
the sequence LR belongs to the first layer, the
sequences LR2 and RL2 belong to the second layer,
the sequences LR3, LRLR2, RL2RL, and RL3 to
the third layer, and so on. It can be easily ver-
ified that for i > 0 in the ith layer there are
2i−1 sequences. However, this kind of grouping of
the sequences has an obvious disadvantage, namely
that sequences with similar forms, as for example,
the family {LRn |n > 0}, are distributed among
several layers, whereas the sequences of signifi-
cantly different forms (for example, LR4, LR2LR3

and LR(LR2)2) belong to the same layer. To
avoid this problem the sequences can be grouped
according to their generations [Avrutin et al., 2006;
Avrutin & Schanz, 2008]. Following this idea, the
two families {LRn |n > 0} and {RLn |n > 0}
are said to form the first generation. Then, the
two families of sequences whose both compos-
ing sequences belong to the first generation, that
means {LRnLRn+1 |n > 0} and {RLnRLn+1 |n >
0} form the second generation, the families

2Note that neither the concept of border-collision bifurcations nor the period adding phenomenon were known at that time!
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(a) (b)

(c)

Fig. 3. Period adding structure in map (3) for a = 0.93: bifurcation diagram (a), period diagram calculated numerically
(b) and analytically using the map replacement approach (c). In the analytically calculated period diagram periods of orbits
with first, second and third complexity levels are shown with the symbols �, × and �, respectively. In the background the
numerical results shown in (b) are repeated as light gray rectanges.

{(LRn)2LRn+1 |n > 0}, {LRn(LRn+1)2 |n > 0},
{(RLn)2RLn+1 |n > 0} and {RLn(RLn+1)2 |n >
0} (for which one of the composing sequences
belongs to the first generation and the other to the
second generation) form the third generation, and
so on. In general, the ith generations of sequences
in the symbolic sequence adding scheme with i > 2
is formed by concatenated sequences σ1σ2, whereby
the parent sequence σ1 belongs to the generation
i − 1. As a consequence, there are 2i−1 families of

sequences in the ith generation. Regarding the other
parent sequence σ2 one can only say that it is one
of the parent sequences of σ1 and belongs to one of
the layers 1, . . . , i− 2.

Note that the idea of generations seems at a
first look to be motivated by the structure of the
period diagram of the adding structure, as shown
in Fig. 3. It is clearly visible in this figure that
some periods form smooth curves, as for example,
the periods of the orbits corresponding to the first
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Fig. 4. First levels of the infinite symbolic sequence adding scheme. The numbers in front of the sequences refer to the
complexity levels according to Leonov.

and to the second generations. However, this first
impression is in general wrong, as can be seen in
Fig. 5. The periods of the orbits corresponding to
the fourth and to all higher generations do not form
these curves. Consequently, also the generations do
not represent a suitable grouping of the sequences
in the adding scheme.

As a prerequisite for the recursive applica-
tion of the map replacement approach, the sym-
bolic sequences in the symbolic sequence adding
scheme have to be grouped in a different way,
namely according to their complexity levels. The
first complexity level is identical with the above-
mentioned first generation and is given by the two
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Fig. 5. Period adding structure in map (3) for a = 0.93 (compare Fig. 3). Red and blue lines connect the periods which
belong to the same families of sequences of the first and of the second complexity levels, respectively, whereas the dashed cyan
lines connect the periods of the first four generations in the symbolic sequence adding scheme.

one-parametric families:

{LRn1 |n1 > 0} (58)

{RLn1 |n1 > 0} (59)

The term “one-parametric” refers here to the value
n1 > 0 which is unspecified in case of a family of
sequences but which is of course fixed for each spe-
cific sequence. The second complexity level is then
given by the four two-parametric families:

{LRn2(LRn2+1)n1 |n1 > 0, n2 > 0} (60)

{LRn2+1(LRn2)n1 |n1 > 0, n2 > 0} (61)

{RLn2+1(RLn2)n1 |n1 > 0, n2 > 0} (62)

{RLn2(RLn2+1)n1 |n1 > 0, n2 > 0} (63)

In Fig. 5 this two-parametric property is clearly
reflected by the U-shaped curves connecting the
periods of the orbits corresponding to the second
complexity level. One index belongs to each spe-
cific U-shaped curve whereas the other index runs
through the periods within one U-shaped curve. A
first look at these families (and all families of higher
complexity level) seems to reveal that they could be
obtained from the families (58) and (59) of the first
complexity level using the replacements

κ̂�
n2

:=
{L �→ LRn2

R �→ LRn2+1 (64)

and

κ̂r
n2

:=
{L �→ RLn2+1

R �→ RLn2
(65)

However, as already pointed out in the introduc-
tory example, these replacements can be used only
for the creation of the symbolic sequences but not
for the calculation of the corresponding bifurcation
curves. In fact, the replacements (64) and (65) do
not lead to the correct colliding letters in the com-
posite sequences and are therefore not admissible in
the sense of our conjecture. By contrast, the follow-
ing replacements

τ̂ �
n2

:=
{L �→ LRn2

R �→ RLRn2
(66)

and

τ̂ r
n2

:=
{L �→ LRLn2

R �→ RLn2
(67)

lead not only to the correct sequences via a cyclic
shift, but are also admissible. Note that the replace-
ments given by Eqs. (64)–(67) represent operators
in the space of symbolic sequences, as described
in more detail in Sec. 3.2. We want to emphasize
again, that the symbolic sequences of the fami-
lies (60) and (61) can be obtained from the fam-
ilies (58) and (59) of the first complexity level using
the replacements (64) or (66), whereas the corre-
sponding bifurcation curves can only be obtained
using the replacement (66). Note that the sym-
bolic sequences of the families (62) and (63) can be
obtained from the same families (58) and (59) using
the replacements (65) or (67), whereas the corre-
sponding bifurcation curves can only be obtained
using the replacement (67). For example, the fam-
ily {LRn2(RLRn2)n1 |n1 > 0, n2 > 0} resulting
directly from the family (58) using replacement (66)
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is identical with the family (60):

LRn2(RLRn2)n1 = LRn2 RLRn2 · · · RLRn2︸ ︷︷ ︸
n1 times

= LRn2R· · · LRn2R︸ ︷︷ ︸
n1 times

LRn2

= (LRn2+1)n1LRn2

≡ LRn2(LRn2+1)n1 (68)

The proofs for the remaining three cases (61)–(63)
are completely analogous.

In fact, the considerations presented above can
be generalized. As a final result we obtain the
following

Proposition 1. For an arbitrary symbolic sequence
σ let ρ be the symbolic sequence obtained from σ by
the replacement (64) and ρ′ the symbolic sequence
obtained from σ by replacements (66). Then ρ and

ρ′ are equivalent up to a cyclic shift: ρ ≡ ρ′. The
same holds for the replacements (65) and (67).

A proof of this proposition is given in the Appendix.
As a consequence, we have to distinguish between
the following two situations. When dealing with
symbolic sequences only, there is no difference
whether one uses the replacements (64), (65) or
(66), (67). Moreover, the replacements (64), (65)
lead to a shorter and typically “better read-
able” representation of the resulting sequences and
are preferred due to this reason. However, when
calculating the bifurcation curves using the map
replacement approach, only the replacements (66),
(67) are admissible whereas the replacements (64),
(65) are not.

Applying the replacements (66) and (67) — or
equivalently (64) and (65) — on the sequences of
the second complexity level given by Eqs. (60)–(63)
we obtain the eight families of the third complexity
level

{LRn3(LRn3+1)n2(LRn3(LRn3+1)n2+1)n1 |n1 > 0, n2 > 0, n3 > 0} (69)

{LRn3(LRn3+1)n2+1(LRn3(LRn3+1)n2)n1 |n1 > 0, n2 > 0, n3 > 0} (70)

{LRn3+1(LRn3)n2+1(LRn3+1(LRn3)n2)n1 |n1 > 0, n2 > 0, n3 > 0} (71)

{LRn3+1(LRn3)n2(LRn3+1(LRn3)n2+1)n1 |n1 > 0, n2 > 0, n3 > 0} (72)

{RLn3+1(RLn3)n2(RLn3+1(RLn3)n2+1)n1 |n1 > 0, n2 > 0, n3 > 0} (73)

{RLn3+1(RLn3)n2+1(RLn3+1(RLn3)n2)n1 |n1 > 0, n2 > 0, n3 > 0} (74)

{RLn3(RLn3+1)n2+1(RLn3(RLn3+1)n2)n1 |n1 > 0, n2 > 0, n3 > 0} (75)

{RLn3(RLn3+1)n2(RLn3(RLn3+1)n2+1)n1 |n1 > 0, n2 > 0, n3 > 0} (76)

Note that the index we use on the right-hand side of
Eqs. (66) and (67) is n3 and not n2 to distinguish it
from the index n2 already present in Eqs. (60)–(63).
Therefore, the eight families of sequences in the
third complexity level are three-parametric. We also
keep in mind that the families given by Eqs. (69)–
(76) are written in the shorter form as they result
from the replacements (64) and (65). As already
mentioned, for the calculation of the corresponding
bifurcation curves we have to use the admissible
replacements (66) and (67).

This recursive replacement procedure will be
continued ad infinitum. Since there are two replace-
ments, namely Eqs. (66) and (67), the number
of families of sequences will be doubled in each
step. Consequently, the ith complexity level is

represented by 2i families of sequences. Moreover,
since each replacement leads to one additional index
ni in the sequences, the families of the ith complex-
ity level are i-parametric.

The grouping of the sequences in the symbolic
sequence adding scheme according to their complex-
ity levels is shown in Fig. 6. Due to the lack of space,
the specific sequences are not labeled in this picture
(they can be looked up in Fig. 4), instead the com-
plete one-parametric families are marked by chains
of double-stroked arrows. Recall that the families
of the first complexity level are one-parametric,
whereas the families of the second (respectively
the third) complexity levels become one-parametric
for fixed values of n2 (respectively, n2 and n3).
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Fig. 6. Symbolic sequence adding scheme: complexity levels according to Leonov. Sequences of first, second, third and fourth
complexity levels are shown as ◦, •, �, and ∗, respectively.
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In this representation the self-similarity of the sym-
bolic sequence adding scheme becomes clearly vis-
ible. As one can see, the structure between certain
branches, for example the branches LR(LR2)n and
LR2(LR)n, is topologically identical with the over-
all structure located between the branches LRn and
RLn. This self-similarity reflects the recursive defi-
nition of the symbolic sequence adding scheme and
represents the basis for the recursive application of
the map replacement approach for the calculation
of the corresponding bifurcation curves.

Remarkably, the families of sequences in each
complexity level are disjoint except for the case
n1 = 1. For n1 = 1 we have pairs of families
starting with sequences which are identical up to a
cyclic shift. In Fig. 6 these pairs correspond to the
nodes from which two double-stroked arrows origi-
nate. For example, in the second complexity level,
the families given by Eqs. (60) and (61) start with
the sequences

LRn2LRn2+1 ≡ LRn2+1LRn2 (77)

Similarly, in the third complexity level, the families
given by Eqs. (69) and (70) start with the sequences

LRn3(LRn3+1)n2LRn3(LRn3+1)n2+1

≡ LRn3(LRn3+1)n2+1LRn3(LRn3+1)n2

(78)

The reason for this ambiguity is the recursive defi-
nition of the sequences and the fact that both fami-
lies of the first complexity level LRn and RLn start
with the same sequence LR. This ambiguity can be
resolved easily defining the families in the first com-
plexity level for n > 1 and treating the sequence LR
as an exceptional case.

3.2. Symbolic operators

The described generation rules for the symbolic
sequences with increasing complexity levels are suf-
ficient for the application of the map replacement
approach. However, for a deeper understanding of
the approach it is preferable to reconsider the sym-
bolic sequence adding scheme in some more detail.
Recall that the replacements (64)–(67) represent
operators in the space of symbolic sequences. In the
following we use these operators for the description
of the symbolic sequence adding scheme. Because
this description is on a symbolic level, both pairs of
operators, that means either (64), (65) or (66), (67),
can be used. In the following we use the operators

defined by (64) and (65), as the resulting symbolic
sequences are more compact and “better readable”.

As one can easily see, each of these operators
κ̂�

n and κ̂r
n can be applied to a particular sequence

or on a family of sequences, as for example

κ̂�
5(LR3) ≡ LR5(LR6)3

κ̂�
n(LR3) ≡ {LRn(LRn+1)3 |n > 0}

κ̂�
5({LRn |n > 0}) ≡ {LR5(LR6)n |n > 0}

κ̂�
n2

({LRn1 |n1 > 0}) ≡ {LRn2(LRn2+1)n1

|n1 > 0, n2 > 0}
(79)

Recall that the symbolic sequence adding scheme
can be defined recursively. Therefore, each sym-
bolic sequence ρ of the ith complexity level can
be obtained from a sequence σ of the first com-
plexity level by application of a sequence of
operators:

ρ = κ̂
di−1
ni−1 ◦ κ̂

di−2
ni−2 ◦ · · · ◦ κ̂d1

n1
(σ), with

dk ∈ {�, r}, k = 1, . . . , i− 1 (80)

In the following, we denote the sequence

ρ′ = κ̂
di−2
ni−2 ◦ · · · ◦ κ̂d1

n1
(σ), with

dk ∈ {�, r}, k = 1, . . . , i− 2 (81)

as the first-order preimage of ρ. Similarly, the first-
order preimage of ρ′ is the second-order preimage of
ρ, and so on. Let us illustrate this by the following
example. The sequence

ρ = RL3(RL2)3(RL3(RL2)2)4

× (RL3(RL2)3(RL3(RL2)2)3)2 (82)

corresponding to a period-139 orbit, belongs to
the fourth complexity level. The corresponding
sequence of operators leading to ρ from a sequence
of the first complexity level is given by κ̂r

2 ◦ κ̂�
2 ◦ κ̂r

3.
This follows from the fact, that the sequence ρ′ =
LR3(LR2)4(LR3(LR2)3)2 of the third complexity
level is the first-order preimage of ρ. The sequence
ρ′′ = RL4(RL3)2 of the second complexity level
is the first-order preimage of ρ′ and hence the
second-order preimage of ρ. Finally, the sequence
ρ′′′ = LR2 of the first complexity level is the third-
order preimage of ρ. To demonstrate that, it is
sufficient to notice that the sequence ρ consists of
syllables RL3 and RL2. The operator which creates
these syllables, is κ̂r

2, defined by Eq. (65). Hence,
to obtain the first-order preimage of ρ we have to
collapse each of these syllables to single symbols L
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and R as follows:

ρ = RL3

L
(RL2

R
)3

︸ ︷︷ ︸
LR3

(RL3

L
(RL2

R
)2)4

︸ ︷︷ ︸
(LR2)4

(RL3

L
(RL2

R
)3(RL3

L
(RL2

R
)2)3)2

︸ ︷︷ ︸
(LR3(LR2)3)2

(83)

ρ′ →

This leads us to the sequence ρ′. It consists of the
syllables LR3 and LR2 which can be created by
applying the operator κ̂�

2, defined by Eq. (64). We
collapse them correspondingly to single symbols R
and L

ρ′ = LR3

R
(LR2

L
)4

︸ ︷︷ ︸
RL4

(LR3

R
(LR2

L
)3)2

︸ ︷︷ ︸
(RL3)2ρ′′ →

(84)

and obtain the sequence ρ′′. Eventually, the syl-
lables RL3 and RL4 will be collapsed using the
replacement (65) again:

ρ′′ = RL4

L
(RL3

R
)2

︸ ︷︷ ︸
LR2ρ′′′ →

(85)

The operator applied in this case is κ̂r
3. To summa-

rize, we yield ρ = κ̂r
2(ρ
′), ρ′ = κ̂�

2(ρ
′′), ρ′′ = κ̂r

3(ρ
′′′),

and therefore ρ = κ̂r
2 ◦ κ̂�

2 ◦ κ̂r
3(ρ
′′′).

Further examples for the described mechanism
are shown in Fig. 7. In this figure, the symbolic
sequences listed in Table 1 are labeled as σi, i =
1, . . . , 16 and the double-stroked arrows show the
paths connecting them with the sequences of the
first complexity level. Obviously, each specific arrow
in this figure corresponds to the application of one
of the operators κ̂�

n, κ̂r
n with a corresponding specific

value of n. As one can see, all four sequences σ11,
σ12, σ13, σ14 of the fourth complexity level have the
sequence σ1, that means LR, as third-order preim-
age. However, the application of the operators κ̂�

n

and κ̂r
n is different:

σ11 = κ̂�
1(σ5) = κ̂�

1 ◦ κ̂�
1(σ3) = κ̂�

1 ◦ κ̂�
1 ◦ κ̂�

1(σ1)
(86)

σ12 = κ̂�
1(σ6) = κ̂�

1 ◦ κ̂�
1(σ4) = κ̂�

1 ◦ κ̂�
1 ◦ κ̂r

1(σ1)
(87)

σ13 = κ̂�
1(σ7) = κ̂�

1 ◦ κ̂r
1(σ3) = κ̂�

1 ◦ κ̂r
1 ◦ κ̂�

1(σ1)
(88)

σ14 = κ̂�
1(σ8) = κ̂�

1 ◦ κ̂r
1(σ4) = κ̂�

1 ◦ κ̂r
1 ◦ κ̂r

1(σ1)
(89)

Note further that the sequences located in the
upper half of the symbolic sequence adding scheme
(above LR) consist of syllables of the form LRn,
while the sequences located in the lower half of
the symbolic sequence adding scheme (below LR)
consist of syllables of the form RLn. As one can
see, each application of the operator κ̂�

n leads to
a sequence located in the upper half of the sym-
bolic sequence adding scheme, whereas each appli-
cation of the operator κ̂r

n leads to a sequence located
in the lower half. Consequently, if a sequence ρ is
located, for example, in the upper half of the sym-
bolic sequence adding scheme, the preimages of ρ
may be distributed among the complete symbolic
sequence adding scheme and are not necessarily
located in the upper half. This is illustrated in
Fig. 7. The sequence σ15, for example, is located
in the upper half of the symbolic sequence adding
scheme and consists of the syllables LR and LR2,
whereas its preimage is located in the lower half
and is given by σ10 = RL5. Similarly, the first-
order preimage of σ16 consists of the syllables
RL2 and RL3, whereas the second-order preimage
is LR2.

Table 1. Abbreviations used in Fig. 7.

Label Sequence Level

σ1 LR 1

σ2 LR2 1

σ3 LRLR2 2

σ4 RL2 RL 2

σ5 LRLR2 LR (LR2)2 3

σ6 (LR)2 LR2 LRLR2 3

σ7 (RL)2 RL2 RLRL2 3

σ8 RLRL2 RL (RL2)2 3

σ9 RL3 (RL2)2 2

σ10 RL5 1

σ11 LRLR2 LR (LR2)2 LRLR2 (LR (LR2)2)2 4

σ12 LR (LR2)2 LRLR2 LR (LR2)2 (LRLR2)2 4

σ13 LR2 (LR)2 LR2 LRLR2 (LR)2 (LR2 LR)2 4

σ14 LR2 LR (LR2 (LR)2)2 LR2 LRLR2 (LR)2 4

σ15 LR2 (LR)5 2

σ16 RL (RL2)3 (RL (RL2)2)2 3
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Fig. 7. Symbolic sequence adding scheme: preimages of some sequences. As in Fig. 6, the sequences of first, second, third and
fourth complexity levels are shown as ◦, •, �, and ∗, respectively. The sequences labeled with σ1 — σ16 are given in Table 1.
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The question may arise why we start the paths
from the sequences of the first complexity level and
not from the one-symbol sequences L andR. In fact,
the complete symbolic sequence adding scheme can
be created starting with these two symbols. As one
can see, the family (58) results from the application
of the replacement (64) to the one-symbol sequence
L and the family (59) results from the application
of the replacement (65) to the one-symbol sequence
R. However, this mode of operation is useful for the
recursive creation of the symbolic sequences in the
symbolic sequence adding schemebutnot for themap
replacement approach. The reason for this is given
by the fact that for the recursive calculation of the
border-collision bifurcation curves, as explained in
Sec. 2,weneedorbitswhich collidewith theboundary
in the state space from the left and from the right side.
This is obviously not the case for the fixed points,
since OL collides with the boundary from the left side
and OR from the right side only.

3.3. Colliding letters

Let us note one further useful property of the
described approach. As we have seen, to decide
which replacement is admissible for the calculation
of the bifurcation curves and which is not, we have
to know the colliding letters in the starting sequence
σ and in the target sequence ρ. In general, to find
the two bifurcations (left and right), from the fol-
lowing three facts: (A) what are the colliding letters
in σ, (B) what are the colliding letters in ρ, and
(C) what are the admissible replacements leading
from σ to ρ, only two are required and the third
comes as a consequence. Typically, we use (A) and
(B) to obtain (C). However, it is possible to use for
example (A) and (C) to obtain (B). That means, if
the colliding letters in the starting sequence σ are
known and if it is also known that some replacement
is admissible, then it becomes an easy task to deter-
mine the colliding letters in the target sequence ρ.
As an example, let us consider the orbit Oρ with

ρ = LRRLRRLRRLRLRRLRRLRRLRLRRLRRLRRLRLRRLRRLR (90)

It can be shown that the sequence ρ belongs to the symbolic sequence adding scheme. Calculating its
preimages in this scheme we obtain

LRRR
L �→ LRR
R �→ RLRR−−−−−−−−→ LRRRLRRRLRRRLRR
L �→ LR
R �→ RLR−−−−−−−→ LRRLRRLRRLRLRRLRRLRRLRLRRLRRLRRLRLRRLRRLR (91)

and this leads us to conclude that the orbit Oρ col-
lides with the boundary with its first point from the
left and with its 31st point from the right.

4. Period Adding: Border-Collision
Bifurcations

Let us demonstrate the application of the map
replacement approach in the case of the Σ/∆-
modulator model given by the map (3). This model
is considered in several publications, where analyti-
cal expressions for the border-collision bifurcations
involving periodic orbits of the family {OLRn |n >
0} are used. Note that the sequences of these orbits
correspond to the first generation of the symbolic
sequences. Due to the symmetry of the map (3)
given by

f(a, µ, x) = −f(a,−µ,−x) (92)

the calculation of the border-collision bifurcations
involving periodic orbits of the family {ORLn |n >
0} is not necessary, as Eq. (92) implies that iff a
periodic orbit OLRn undergoes a border-collision

bifurcation at parameter values (a∗, µ∗), then at
the parameter values (a∗,−µ∗) the same bifurcation
occurs for the periodic orbit ORLn . However, the
bifurcation curves involving periodic orbits which
are more complicated than OLRn and ORLn are typ-
ically calculated only numerically, because the ana-
lytical calculation becomes too complicated with
increasing generation of the symbolic sequences.
Now we are going to demonstrate that using the
map replacement approach has become an easy task
to calculate these curves analytically.

To simplify the notation we denote in the fol-
lowing periodic orbits corresponding to symbolic
sequences of the ith complexity level as orbits of
complexity level i. Similarly, the bifurcation curves
for the orbits of complexity level i will be denoted
as bifurcation curves of complexity level i.

4.1. First complexity level

According to the map replacement approach we
start with the calculation of the bifurcation curves
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for periodic orbits corresponding to symbolic
sequences of the first complexity level, which are,
as already mentioned in Sec. 3.1, the same as the
sequences of the first generation of the general
map (1). It is known that the existence region of the
periodic orbit OLRn is bounded in the parameter
space by border-collision bifurcation curves where

the periodic orbit collides with the boundary x = 0
with its first point xLRn

0 from the left side (corre-
sponding to the letter L) and with its last point
xLRn

n from the right side (corresponding to the last
letter R). The same holds for periodic orbits ORLn

up to an exchange of L with R and “left” with
“right”. Straight forward calculation shows that
these points are given by

xLR
n

0 = −−an
r µl + an

r ar µ� + µr an
r − µr

−an
r a� + an+1

r a� + 1− ar

(93)

xLR
n

n = −−an−1
r a� µr + an

r a� µr − an−1
r µ� + an

r µ� − µr + µr an−1
r

−an
r a� + an+1

r a� + 1− ar

(94)

xRL
n

0 = −−a�
nµr + an

� a� µr + µ� an
� − µ�

−an
� ar + an+1

� ar + 1− a�

(95)

xRL
n

n = −−an−1
� ar µ� + an

� ar µ� − an−1
� µr + an

� µr − µ� + µ� an−1
�

−an
� ar + an+1

� ar + 1− a�

(96)

Then using the conditions xLRn

0 = 0 and xLRn

n = 0, respectively, we obtain the border-collision bifurcation
curves of the periodic orbits OLRn of first complexity level in the general map (1):

ξ�,0
LRn =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
= − an

r − 1
an

r (ar − 1)

}
(97)

ξr,n
LRn =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
=

an−1
r (a� − 1)− a�a

n
r + 1

an−1
r (ar − 1)

}
(98)

The bifurcation curves for the family {ORLn |n > 0} can be calculated either straight forward using
the conditions xRLn

0 = 0 and xRLn

n = 0, or more easily (due to the symmetry (2)) by exchanging the
indexes � and r in Eqs. (97) and (98). Either way we get

ξr,0
RLn =

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
= −an

� (a� − 1)
an

� − 1

}
(99)

ξ�,n
RLn =

{
(a�, ar, µ�, µr)

∣∣∣∣∣ µ�

µr
=

an−1
� (a� − 1)

an−1
� (ar − 1)− an

� ar + 1

}
(100)

Comparing the bifurcation curves of the first
complexity level calculated analytically [Fig. 8(b)]
with the bifurcation structure calculated numeri-
cally [Fig. 8(a)], one can see quite a number of bifur-
cation curves which usually will not be calculated
analytically (see for example Fig. 4.5 in [di Bernardo
et al., 2007]). In the next section we will show, that
they can be easily calculated using the map replace-
ment approach.

Note that the degenerated cases a�/r = 0
and a�/r = 1 are not considered here. Under this
assumption the denominators in all expressions for
bifurcation curves presented above are nonzero. In
the degenerated cases the bifurcation curves can be

calculated similarly but must be written in a differ-
ent form.

4.2. Second complexity level

As a next step, let us calculate the border-collision
bifurcation curves involving periodic orbits corres-
ponding to sequences of the second complexity level.
As stated above, there are four families of sequences
in the second complexity level given by Eqs. (60)–
(63). Recall that the bifurcation curves of the fam-
ilies given by Eqs. (60) and (63) result from the
replacements (66) and (67), respectively, applied to
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(a) (b)

Fig. 8. (a) Numerically calculated bifurcation structure, with some of the periods marked. (b) Analytically calculated border-

collision bifurcation curves ξ
Σ/∆:�,0
LRn , ξ

Σ/∆:r,0
RLn , ξ

Σ/∆:r,n
LRn and ξ

Σ/∆:�,n
RLn for n = 1, . . . , 50.

the families (58) and (59). In other words, the bifur-
cation curves of the families (60) and (63) result
from the application of the operators τ̂ �

n and τ̂ r
n on

the families (58) and (59). Therefore, to calculate

the bifurcation curves involving periodic orbits
corresponding to the families given by Eqs. (60)
and (61), we can use the following calculation
schemes:

ξ
�,0/r,n1

LRn1

τ̂�
n2


L �→ LRn2

R �→ RLRn2

a� �→ a�rn2

µ� �→ µ�rn2

ar �→ ar�rn2

µr �→ µr�rn2

�� ξ
�,0/r,n1(n2+2)−1
LRn2 (RLRn2 )n1


L �→ R
R �→ L

��

ξ
�,n1/r,0
RLn1

τ̂r
n2


L �→ LRLn2

R �→ RLn2

ar �→ ar�n2

µr �→ µr�n2

a� �→ a�r�n2

µ� �→ µ�r�n2

�� ξ
�,n1(n2+2)−1/r,0
RLn2(LRLn2 )n1

��

(101)

The vertical double-arrow on the right side refers
to the fact, that there are two equivalent possi-
bilities to apply this scheme. The first one is to
calculate the bifurcation curves ξ

�,0/r,n1(n2+2)−1
LRn2 (RLRn2 )n1

from the curves ξ
�,0/r,n1

LRn1 by applying the opera-
tor τ̂ �

n2
and after that to obtain the bifurcation

curves ξ
r,n1(n2+2)−1/�,0
RLn2 (LRLn2)n1

from the bifurcation curves

ξ
�,0/r,n1(n2+2)−1
LRn2 (RLRn2 )n1

by exchanging the symbols L and
R and the indexes � and r. The second possibil-
ity is vice versa, that means the bifurcation curves
ξ
r,n1(n2+2)−1/�,0
RLn2 (LRLn2)n1

can be calculated by applying the

operator τ̂ r
n2

to the bifurcation curves ξ
r,0/�,n1

RLn1 . After
that the bifurcation curves ξ

�,0/r,n1(n2+2)−1

LRn2(LRn2+1)n1
will
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be calculated from ξ
r,n1(n2+2)−1/�,0

RLn2 (RLn2+1)n1
by exchanging the symbols L and R and the indexes � and r.

The substitution coefficients a�rn2/r�rn2 , ar�n2/�r�n2 , µ�rn2/r�rn2 and µr�n2/�r�n2 required by the calcula-
tion scheme (101) are defined by the coefficients of the functions f� and fr iterated in the following
way:

f�rn(x) = fr ◦ · · · ◦ fr ◦ f�(x)

= a�a
n
r︸︷︷︸

a�rn

x +
−an

r µ� + an+1
r µ� + µr an

r − µr

−1 + ar︸ ︷︷ ︸
µ�rn

(102)

fr�rn(x) = fr ◦ · · · ◦ fr ◦ f� ◦ fr(x)

= a�a
n+1
r︸ ︷︷ ︸

ar�rn

x +
−an

r a� µr + an+1
r a� µr − an

r µ� + an+1
r µ� − µr + µr an

r

−1 + ar︸ ︷︷ ︸
µr�rn

(103)

fr�n(x) = f� ◦ · · · ◦ f� ◦ fr(x)

= an
� ar︸︷︷︸

ar�n

x +
−an

� µr + an+1
� µr + µ� an

� − µ�

−1 + a�︸ ︷︷ ︸
µr�n

(104)

f�r�n(x) = f� ◦ · · · ◦ f� ◦ fr ◦ f�(x)

= an+1
� ar︸ ︷︷ ︸
a�r�n

x +
−an

� ar µ� + an+1
� ar µ� − an

� µr + an+1
� µr − µ� + µ� an

�

−1 + a�︸ ︷︷ ︸
µ�r�n

(105)

Note that the general parameter n in Eqs. (102)–(105) has to be replaced by the particular value given by
the used specific operator, which was n2 in the example above.

Similarly, the families given by Eqs. (62) and (63) result from the application of the opera-
tors τ̂ �

n and τ̂ r
n on the families (58) and (59). Therefore, the calculation schemes are given in this

case by

ξ
�,0/r,n1

LRn1

τ̂r
n2


L �→ LRLn2

R �→ RLn2

ar �→ ar�n2

µr �→ µr�n2

a� �→ a�r�n2

µ� �→ µ�r�n2

�� ξ
�,0/r,n1(n2+1)+1
LRLn2(RLn2 )n1


L �→ R
R �→ L

��

ξ
�,n1/r,0
RLn1

τ̂�
n2


L �→ LRn2

R �→ RLRn2

a� �→ a�rn2

µ� �→ µ�rn2

ar �→ ar�rn2

µr �→ µr�rn2

�� ξ
�,n1(n2+1)+1/r,0
RLRn2 (LRn2 )n1

��

(106)

Again, due to the symmetry (2), there are two
equivalent calculation ways, one of them using the
operator τ̂ �

n2
and the other using the operator τ̂ r

n2
.

Consequently, all four families of bifurcation curves
of the second complexity level can be calculated
using only one operator (either τ̂ �

n2
or τ̂ r

n2
). Hence,

from the eight replacement coefficients defined by

Eqs. (102)–(105) only four are really needed for the
calculation.

Let us demonstrate the described procedure
using the families of periodic orbits correspond-
ing to the sequences given by Eqs. (60) and (61).
According to the calculation scheme (101) we
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substitute the coefficients a�rn/r�rn and µ�rn/r�rn into Eqs. (97)–(100) and obtain the expressions for these
bifurcation curves:

ξ�,0
LRn2 (RLRn2 )n1

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�rn2

µr�rn2

= − an2
r�rn2 − 1

an2
r�rn2 (ar�rn2 − 1)

}
(107)

ξ
r,n1(n2+2)
LRn2 (RLRn2 )n1

=

{
(a�, ar, µ�, µr)

∣∣∣∣∣ µ�rn2

µr�rn2

=
a�rn2 − ar�rn2 a�rn2 + a−n2+1

r�rn2 − 1
−1 + ar�rn2

}
(108)

ξr,0
LRn2+1(LRn2 )n1

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�rn2

µr�rn2

= −an2
�rn2 (a�rn2 − 1)
−1 + an2

�rn2

}
(109)

ξ
�,n1(n2+1)+2
RLRn2 (LRn2 )n1

=

{
(a�, ar, µ�, µr)

∣∣∣∣∣ µ�rn2

µr�rn2

=
an2

�rn2 (a�rn2 − 1)
an2

�rn2ar�rn2 − an2+1
�rn2 ar�rn2 + a�rn2 − an2

�rn2

}
(110)

Equations (107)–(110) can be easily resolved with respect to the original parameters a�/r, µ�/r. This leads
us to the final result for the bifurcations involving the orbits OLRn2 (LRn2+1)n1

ξ�,0
LRn2(RLRn2 )n1

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�

µr
=

N

D

}
(111)

N = an1+1
� an1n2+n1+2n2+1

r − an1+1
� an1n2+n1+n2

r + a�a
n2
r − a�a

n2+1
r + 1− an2

r

D = an1+1
� an1n2+n1+2n2+1

r − an1+1
� an1n2+n1+2n2+2

r − an2
r + an2+1

r

ξ
r,n1(n2+2)

LRn2(RLRn2+1)n1
=

{
(a�, ar, µ�, µr)

∣∣∣∣ µ�

µr
=

N

D

}
(112)

N = a−n1+1
� an1n2−n1+2n2+1

r − a3
�a

3n2+2
r + 2a2

�a
2n2+1
r + a3

�a
3n2+1
r

− a� a2n2+1
r + a2−n1

� a−n1n2−n1+2n2+1
r − a2−n1

� an1n2−n1+2n2+1
r

− a2
�a

3n2+1
r − a2

�a
2n2
r − a�a

2n2
r − a−n1+1

� a−n1n2−n1+n2+1
r

D = −a−n1+1
� a−n1n2−n1+2n2+2

r + a−n1+1
� a−n1n2−n1+2n2+1

r − 2a�a
2n2+1
r

+ a�a
2n2+1
r + a�a

2n2
r + a2

�a
3n2+2
r − a2

�a
3n2+1
r

and for the bifurcations involving the orbits O(LRn2+1)(LRn2 )n1

ξ
�,n1(n2+1)+2
RLRn2 (LRn2 )n1

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�

µr
=

N

D

}
(113)

N = an1n2+n1+2n2+1
� an1+1

r − a
(n1+2)(n2+1)
� an1+1

r − an2
� − an2+1

�

D = an1n2+n1+2n2+1
� an1+1

r − an1n2+n1+n2
� an1+1

r + an2
� ar − an2+1

� ar + 1− an2
�

ξr,0
RLRn2 (LRn2 )n1

=
{

(a�, ar, µ�, µr)
∣∣∣∣ µ�

µr
=

N

D

}
(114)

N = −an1n2+n1+n2
� an1

r − an2+2+n1n2+n1
� an1

r + 2a(n1+1)(n2+1)
� an1

r

an1n2+n1+2n2+1
� an1+1

r − a
(n1+2)(n2+1)
� an1+1

r + an2+2
� − an2+1

�

D = −an1n2+n1+2n2+1
� an1+2

r − 2a(n1+1)(n2+1)
� an1+1

r + a
(n1+2)(n2+1)
� an1+2

r

+ an1n2+n1+2n2+1
� an1+1

r + an2+1
� ar − an2+2

� ar + a
(n1+1)(n2+1)
� an1

r + a�

+ an1n2+n1+n2
� an1+1

r − an2+1
� − an1n2+n1+n2

� an1
r
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Fig. 9. Analytically calculated border-collision bifurcation curves of second complexity level for n1 = 1, . . . , 25, n2 = 1, . . . , 25.
The marked rectangle in the left figure is shown enlarged in the right figure where some of the bifurcation curves are labeled.

As already stated, the remaining four bifurcation
curves can be obtained by exchanging the indexes �
and r in Eqs. (111)–(114).

For the visualization of the results we use
again the map (3). The substitution (4) leads us
to the bifurcation curves of the second complex-
ity level for this map, shown in Fig. 9. Note that
this figure shows 1250 bifurcation curves calculated
analytically and reflects the bifurcation structure
calculated numerically almost completely. Adding
the bifurcation curves of the third complexity level
we will obtain a structure which is really difficult to
distinguish from the numerical results.

4.3. Third complexity level

As a next step, we wish to calculate the bifurca-
tion curves for the orbits of the third complexity
level. Recall that there are eight three-parametric
families of the symbolic sequences in this level
[see Eqs. (69)–(76)], so we have to calculate eight
pairs of families of bifurcation curves. By contrast
to the second complexity level, where the calcula-
tion scheme is unique for each family, in the third
complexity level there are two possible ways for
calculation.

Let us consider, for example, the family of
orbits corresponding to the sequences of the third
complexity level given by Eq. (69). It can be eas-
ily seen that this family can be obtained from the
family (58) of the first complexity level using the
following two-parametric replacement:

τ̂ �
n3
◦ τ̂ �

n2
:=

{L �→ LRn3 (RLRn3)n2

R �→ RLRn3 LRn3 (RLRn3)n2

(115)

which represents a consecutive application of the
operators τ̂ �

n3
and τ̂ �

n2
. The same replacement leads

from the family (59) to the family given by Eq. (70).
The remaining six families of sequences [Eqs. (71)–
(76)] of the third complexity level can be calcu-
lated from the corresponding sequences of the first
complexity level using similar composite operators
τ̂ r
n3
◦ τ̂ �

n2
, τ̂ �

n3
◦ τ̂ r

n2
and τ̂ r

n3
◦ τ̂ r

n2
. This calculation

scheme is illustrated in Fig. 10(a). Hence, to cal-
culate the bifurcation curves for orbits of the third
complexity level, one has to calculate four sets of
four substitution coefficients each, defined analo-
gously to the two sets of four substitution coeffi-
cients given by Eqs. (102)–(105). After that, one has
to substitute the coefficients into Eqs. (97) and (98).
Of course, half of the calculations can be avoided if
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(a) (b)

Fig. 10. Nonrecursive (a) versus recursive (b) calculation of the bifurcation curves for the families of complexity level 3.
Specific families of symbolic sequences are labeled with their corresponding equation numbers. Circled numbers refer to com-
plexity levels. In the nonrecursive case the calculation is done in one step starting with the families of complexity level 1 and
requires four new (composite) replacement operators. By contrast, the recursive calculation for the families of complexity level
3 uses the same two operators as already used for the calculation of the families of complexity level 2.

the considered map has a symmetry similar to the
one given by Eq. (2), as it was demonstrated for the
map (1) and the bifurcation curves of the second
complexity level. Nevertheless, the described calcu-
lation scheme is not the most efficient one.

To demonstrate a more efficient calculation
scheme, let us note that the described procedure
represents a nonrecursive application of the map
replacement approach. That means, the bifurcation
curves of the third, fourth and all further complex-
ity levels can be calculated using the bifurcation
curves of the first complexity level. However, this
requires a recalculation of the substitution coeffi-
cients in each step. Recall that there are 2i fam-
ilies of sequences in the complexity level i. To
calculate the bifurcation curves of the orbits cor-
responding to all these families, 2i−1 sets of substi-
tution coefficients are required. For systems with
a symmetry similar to Eq. (2) only 2i−2 sets of
substitution coefficients are required. Therefore,

when calculating the bifurcation curves for all orbits
up to a certain complexity level, it is more efficient
to use explicitly the recursive definition of the sym-
bolic sequence adding scheme. Recall that all 8 = 23

families of sequences of the third complexity level
can be obtained from the 4 = 22 families of the
second complexity level using the operators τ̂ �

n3
and

τ̂ r
n3

. Hence, we can replace the coefficients in the
equations of the bifurcation curves for the 22 fami-
lies of orbits of the second complexity level by the
already calculated substitution coefficients (102)–
(105) and obtain the bifurcation curves for the
23 families of orbits of the third complexity level.
This recursive calculation scheme is illustrated in
Fig. 10(b). Of course, the symmetry of the map (1)
leads to the possibility to calculate the bifurca-
tion curves for only four of these families and to
obtain the bifurcation curves for the remaining four
families by exchanging the indexes � and r. As
an example, for the bifurcation curves involving
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the orbits corresponding to the sequences given by Eqs. (69) and (76) we get the following calculation
schemes:

ξ
�,0/r,n1(n2+2)−1
LRn2(RLRn2 )n1

τ̂�
n3


L �→ LRn3

R �→ RLRn3

a� �→ a�rn3

µ� �→ µ�rn3

ar �→ ar�rn3

µr �→ µr�rn3

�� ξ
�,0/r, n1(n2+1)(n3+2)+

(n1−1)(n3+1)−1

LRn3(RLRn3)n2

(RLRn3LRn3(RLRn3)n2 )n1


L �→ R
R �→ L

��

ξ
�,n1(n2+2)−1/r,0
RLn2 (LRLn2 )n1

τ̂r
n3


L �→ LRLn3

R �→ RLn3

ar �→ ar�n3

µr �→ µr�n3

a� �→ a�r�n3

µ� �→ µ�r�n3

�� ξ
�, n1(n2+1)(n3+2)+

(n1−1)(n3+2)−1
/r,0

RLn3 (LRLn3)n2

(LRLn3RLn3(LRLn3)n2 )n1

��

(116)

Similar calculation schemes allow us the calcula-
tion of all bifurcation curves for the orbits cor-
responding to the remaining sequences of the
third complexity level. The resulting expres-
sions are too long for being presented here
(for example, the numerator in the bifurcation
curve ξ�,0

LRn3 (LRn3+1)n2 (LRn3 (LRn3+1)n2+1)n1
contains

17 terms) but can be easily obtained using computer
algebra software like Maple or Mathematica. The
obtained bifurcation curves for all eight families of

orbits of the third complexity level for the map (3)
are shown in Fig. 11.

The calculation of the bifurcation curves for
further complexity levels can be performed in the
same way. For example, for the recursive calculation
of the bifurcation curves of the fourth complexity
level we can use the curves of the third complexity
level and the same substitution coefficients (102)–
(105). In general there are 2i−2 possible ways to

Fig. 11. Border-collision bifurcation curves of third complexity level calculated analytically for n1 = 1, . . . , 25, n2 = 1, . . . , 10,
n3 = 1, . . . , 5. The marked rectangles are shown enlarged, some of the bifurcation curves are labeled.
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calculate the bifurcation curves of a given family
of complexity level i. One of them uses only the
operators τ̂ �

ni
and τ̂ r

ni
whereas all other calculation

ways require composite operators. This is obvious,
because the number of possible calculation ways
W (i) for complexity level i is determined by the
sum over the possible ways of calculation of all lower
complexity levels, that means: W (i) =

∑i−1
k=1 W (k)

with W (1) = 1. As an example, one can see that the
same family of the fourth complexity levels can be
calculated either by applying the composite opera-
tor τ̂ �

n4
◦ τ̂ �

n3
◦ τ̂ �

n2
to the family of the first com-

plexity level given by Eq. (58) or by applying the
composite operator τ̂ �

n4
◦ τ̂ �

n3
to the family of the

second complexity level given by Eq. (60) or by
applying the operator τ̂ �

n4
to the family of the third

complexity level given by Eq. (69) for which we
have already two ways of calculation. Of course, the
resulting expressions for the bifurcation curves are
quite long (the number of terms in the numerators
of the bifurcation curves of the fourth complexity
level is between 29 and 53), but can be calculated
straight forward.

5. Embedding of the Bifurcation
Curves and Self-Similarity

Finally let us provide a geometrical interpretation of
the presented results concerning the period-adding
structure. This can be done more easily considering
the results obtained for the 2D parameter space of
map (3), although the same interpretation is valid
for the 2D parameter space of the general map (1).
Recall that in each calculation step we used the
operators τ̂ �

n and τ̂ r
n defined in the space of admis-

sible symbolic sequences.
With each of these operators a mapping �2 →

�
2 in the 2D parameter space a × µ of map (3),

denoted in the following by φ̂�
n and φ̂r

n, respec-
tively, can be associated. This mapping defines a
correspondence between the region in the parame-
ter space where some bifurcation curve ζσ is located,
and the region containing the bifurcation curves
ζτ̂�

n(σ) and ζτ̂r
n(σ), respectively.

Let us denote the rectangular region a ∈ [0, 1],
µ ∈ [−1, 1] containing the period-adding structure
by R and its corner points by A, B, C and D
as shown in Fig. 12. Then φ̂�

1 maps R onto the

(a) (b)

Fig. 12. (a) Region R (rectangle ABCD) and its images R
�/r
i (shown white) under the application of the mappings φ̂

�/r
i for

i = 1, 2, 3. (b) Regions bounded by the bifurcation curves of the first complexity level (shown red in both figures) and the
images of these regions (shown blue) by the mappings φ̂�

1 and φ̂r
2 (bounded by the bifurcation curves of the second complexity

level located in R�
1 and Rr

2, respectively).
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triangular-like region R�
1 as follows: the complete

segment AB is mapped onto the point A, the seg-
ment CD is mapped onto the segment ED1, the seg-
ment AD is mapped onto the curve AD1 ≡ ξ

Σ/∆:r
LR2 ,

and the segment BC is mapped onto the curve
AE ≡ ξ

Σ/∆:�
LR . Similarly, φ̂r

1 maps R onto the region
Rr

1: the segment AB is mapped onto the point
B, the segment CD is mapped onto the segment
C1E, the segment AD is mapped onto the curve
BE ≡ ξ

Σ/∆:r
LR , and the segment BC is mapped onto

the curve BC1 ≡ ξ
Σ/∆:�
RL2 . Figure 12(a) shows the

images R
�/r
i of the region R under the applica-

tion of the mappings φ̂
�/r
i for i = 1, 2, 3. As one

can see, these images (shown white) are located
between the periodicity regions of the orbits of the
first level of complexity (shown red). Hereby, all
bifurcation curves of the first complexity level con-
tained in R are mapped by φ̂�

1 (respectively, φ̂r
1)

onto the bifurcation curves of the second complexity
level contained in R�

1 (respectively, Rr
1). For exam-

ple, Fig. 12(b) shows the images of the periodicity
regions of the orbits of the first level of complexity
by the mappings φ̂�

1 and φ̂r
2. Of course, this map-

ping process can be continued ad infinitum. In other
words: applying the transformation φ̂�

1 to all the
bifurcation curves of the first complexity level in R,
we obtain all the bifurcation curves of the second
complexity level inside R�

1, and similarly, applying
the transformation φ̂�

n to all the bifurcation curves
of the first complexity level in R we obtain all the
bifurcation curves of the second complexity level
inside R�

n. In the same way, the transformation φ̂r
n

maps all bifurcation curves of the first complexity
level in R on all bifurcation curves of the second
complexity level inside Rr

n.

6. Conclusions and Outlook

We presented in this work, the map replacement
approach, which allows us to calculate bifurcation
curves in a very efficient and elegant way. Our work
follows and extends the brilliant work by Leonov,
which was published already in 1959 but remained
unfortunately mainly unregarded. Although we
demonstrated the approach by considering border-
collision bifurcations, it is also applicable to other
types of bifurcations like for example crisis bifurca-
tions in the chaotic domain. The class of dynamical
systems for which the approach is applicable
includes not only 1D piecewise-linear maps but
also multidimensional piecewise-linear maps as well

as piecewise-linear-fractional maps. As these sys-
tems appear naturally in many applications and are
therefore intensively investigated, the map replace-
ment approach might accelerate this research.
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Appendix A

Proof of Proposition 1

We have to demonstrate that for an arbitrary
sequence σ, the sequences ρ and ρ′ resulting from
σ by replacements (64) and (66) are equivalent up
to a cyclic shift: ρ ≡ ρ′. The proof for the replace-
ments (65) and (67) is identical up to exchanging
symbols L and R. Note that for sake of clarity we
write the index n instead of n2 in replacements (64)
and (66).

First we can exclude from the consideration the
sequences Lk and Rk for any k > 0: in the first case,
the replacements (64) and (66) lead to the same
sequence ρ = ρ′ = (LRn)k and in the second case,
we get

ρ = (LRn+1)k = LRn(RLRn)k−1R
≡ (RLRn)k = ρ′ (A.1)

Hence, we have to consider only sequences σ con-
taining both letters L andR. It can be easily shown,
that the sequence σ can be cyclically shifted so that
it starts with the symbol R and ends with the sym-
bol L. Therefore it can always be written in the
following form

σ ≡ Rm1Lp1Rm2Lp2 · · · RmkLpk (A.2)

for some k > 0 and mi, pi > 0 with i = 1, . . . , k. For
k = 1 we have

ρ = (LRn+1)m1(LRn)p1

= LRn(RLRn)m1−1RLRn(LRn)p1−1

= LRn(RLRn)m1(LRn)p1−1

≡ (RLRn)m1(LRn)p1 = ρ′ (A.3)

Similarly, for k = 2:

ρ = (LRn+1)m1(LRn)p1(LRn+1)m2(LRn)p2

= LRn(RLRn)m1−1RLRn(LRn)p1−1

×LRn(RLRn)m2−1RLRn(LRn)p2−1

= LRn(RLRn)m1(LRn)p1(RLRn)m2(LRn)p2−1

≡ (RLRn)m1(LRn)p1(RLRn)m2(LRn)p2

= ρ′ (A.4)

and for any k > 2 the proof is completely
analogous. �
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