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Abstract—Recently it has been demonstrated that the domain of robust chaos close to the
periodic domain, which is organized by the period-adding structure, contains an infinite number
of interior crisis bifurcation curves. These curves form the so-called bandcount adding scenario,
which determines the occurrence of multi-band chaotic attractors. The analytical calculation of
the interior crisis bifurcations represents usually a quite sophisticated and cumbersome task. In
this work we demonstrate that, using the map replacement approach, the bifurcation curves can
be calculated much easier. Moreover, using this approach recursively, we confirm the hypothesis
regarding the self-similarity of the bandcount adding structure.
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1. INTRODUCTION

Low-dimensional chaotic attractors represent one of the central concepts in nonlinear dynamics.
Therefore it seems to be a natural way to ask which bifurcation scenarios can be formed by chaotic
attractors? In the case of smooth dynamical systems the chaotic domain is typically interrupted
by periodic inclusions (“windows”) and the rules which govern the occurrence of these inclusions
are well known [1, 2]. By contrast, piecewise-smooth dynamical systems are able to demonstrate
additionally so-called robust chaos. This concept, introduced in [3], refers to the situation where
in some region of the parameter space (denoted as robust chaotic domain) the attractors remain
chaotic under variation of parameters in some interval, and there are no periodic inclusions in this
case. However, it is still possible that the geometrical structure of the attractors changes at some
bifurcations within the robust chaotic domain, so that we can observe bifurcation scenarios formed
by different multi-band chaotic attractors (cyclic chaotic intervals). This situation is especially
typical for piecewise-smooth dynamical systems (for examples we refer to [4, 5]).

The bifurcations leading the geometrical structure of chaotic attractors to change have been
known since [2, 6] (see also [7, 8]), and were later rediscovered in [9, 10]. These bifurcations,
frequently denoted as crises, are typically caused by contacts of chaotic attractors with some
unstable periodic orbits or their stable manifolds. These contacts may have several consequences
for the dynamics. If for example the unstable periodic orbit is located at the basin boundary of
the chaotic attractor, the attractor after the bifurcation is destroyed. This situation is typically
denoted as a boundary crisis. If by contrast the unstable periodic orbit is located inside the closure
of the basin, then the number of bands (connected components) of a multi-band chaotic attractor
may change after the bifurcation. This occurs in the case of band-merging crises and typically in
the case of interior crises.

“E-mail: Viktor.Avrutin@informatik.ini- stuttgart.de
“*E-mail: Michael.Schanz@informatik.ini- stuttgart.de
" E-mail: Laura.GardiniGuniurb.it

683



684

The current state of the art in this field can be summarized as follows: specific types of crises
are known, investigated from the theoretical point of view (especially it is demonstrated that all
the crises, interior or exterior, represent homoclinic bifurcations [8]) and observed in experiments in
several application fields. However, bifurcation structures (scenarios) formed by crisis bifurcations
and determining the structure of the robust chaotic domain are still insufficiently investigated.
One reason for that may be the fact that an investigation of these scenarios is not easy from
the numerical point of view. In [4] some appropriate numerical algorithms were reported, through
which it became possible to observe that the robust chaotic domain may be organized by complex
bifurcation structures formed by crisis bifurcations.
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Fig. 1. Bifurcation scenario in the chaotic domain of map (1.2) for a = 1.02, close to the boundary with the
adjacent periodic domain. Marked rectangles are shown enlarged.
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One of the bifurcation structures formed by chaotic attractors only, denoted as bandcount adding
scenario, was reported in [5]. It was shown that close to the boundary with the adjacent periodic
domain which is organized by the Farey-tree-like period adding structure, the robust chaotic domain
is organized by an infinite number of interior crisis bifurcations. One example of this structure for
the piecewise-linear map (1.2), which we will introduce below, is presented in Fig. 1. It can be
shown that all attractors in this figure are chaotic and no periodic inclusions are possible. In the
cited work this bifurcation structure is investigated in detail both using numerical techniques and
analytically. It is shown that both, the period adding and the bandcount adding structures are
connected, although the bandcount adding structure is significantly more complex. The results
presented lead to the hypothesis that the bandcount adding structure is self-similar.

As one can see, when enlarging a part of the bifurcation diagram shown in Fig. 1, one will find
more and more nested sub-structures (see the magnifications presented in Figs. 1b and lc and
the further magnifications shown in Figs. 1d and le). These seem to confirm the hypothesis that
the overall structure may be self-similar. However, when considering further magnifications (see
Figs. 1f and 1g) one observes that the number of nested sub-structures decreases rapidly. In the
example shown in Fig. 1 no sub-structures are observable in Fig. 1i. On the one hand, this may
lead us to some doubts regarding the self-similarity, but on the other hand it is obvious that the
self-similarity can not be verified by numerical calculations and requires an analytical description
of the bifurcation structure. Although first steps in this direction are reported in the cited work, it
was not clear until now how to obtain an analytical description of the bandcount adding structure
which confirms or disproves its self-similarity.

Unfortunately, an analytical calculation of the crisis bifurcation curves represents a quite
intricate and cumbersome task. Usually, it requires firstly to determine the unstable periodic orbit
which causes the crisis bifurcation to occur, secondly to determine the boundaries of the chaotic
attractor before the crisis bifurcation and eventually to find out which point of the unstable periodic
orbit collides with which boundary of the chaotic attractor. These steps become more and more
complex with increasing period and complexity of the unstable periodic orbit and of the chaotic
intervals.

A significant simplification of the described procedure turns out to be possible using the map
replacement approach described in [11]. This approach allows a very efficient calculation of periodic
orbits as well as their bifurcations, and goes back to the ideas presented by Leonov [12-14] almost
50 years ago. The idea of this approach is based on the following observation. It is an obvious
way to consider instead of an n-periodic orbit the fixed points of the corresponding nth iterated
function. This allows a unified and typically very descriptive reasoning. Unfortunately, from the
point of view of computational effort, the calculation of the nth iterated function for large n is in
general a complicated task. However, for the piecewise-linear map

fo(zn) = apxy + ppifr, <0
Tpy1 = fzn) = (1.1)
fr(xn) = apxy + prifx, >0

which we consider in the following, we can make use of the fact that the iterated functions remain
piecewise-linear. In general, the map replacement approach works for any system where the iterated
function has the same functional form (form invariance) as the original system function. Let us now
assume that the n-periodic orbit O, for which we are going to calculate the bifurcation curves,
corresponds to the symbolic sequence p (hereby we write the symbols £ and R if for a point z;
of a periodic orbit holds z; < 0 and x; > 0, respectively). Let us further assume that the sequence
p results from a different (shorter) sequence o by replacement of all symbols £ with a syllable
wy and all symbols R with a syllable w,. For example, for p = LRRLRL and ¢ = LRR we have
wy = LR and w, = RL. Under these (and some more, see [11]) assumptions it is possible to define a
composite map consisting of the linear functions iterated according to the sequences wy and w,.. For
this composite map we can adjust its parameters (which depend on the parameters of the original
system function f) in such a way that its shape coincides exactly with the shape of the original
map. This can be done especially at the bifurcation points, so we can transfer the bifurcation curves
obtained for the original map and the orbit O, to the same orbit in the composite map. Moreover,
since the orbit O, for the composite map corresponds to the orbit O, for the original map, from
the bifurcation curves for the orbit O, we obtain the bifurcation curves for the orbit O,.
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The main idea of the map replacement approach is to calculate the bifurcation curves for a
periodic orbit with a large period not by using the fixed points of the corresponding iterated
function but by using a periodic orbit with a preferably much smaller period, and a map which is
composed in an appropriate way from “not too high”-iterated functions. For example, to calculate
the bifurcation curves of the period-6 orbit Oyrrrrre Wwe consider not the fixed points of the
6th iterated function but the period-3 orbit Oyrr and the composite map consisting of the two
linear functions fy. = f, o fy and f.» = fe o f, which represent parts of the second iterated of f.
In the original works by Leonov [12-14] as well as in [11] the map replacement approach is used
for the calculation of border-collision bifurcations. However, the approach is not restricted to this
type of bifurcations. In the current work we demonstrate that this approach is also useful for the
analytical calculation of crisis bifurcations. Therefore, the current work represents a synthesis of
two preliminary works, namely [5] where the bandcount adding structure was introduced and [11]
where the map replacement approach was reported. In conformity with the cited works, we use for
the graphical representation of the results obtained for (1.1) the map

fo(zyp) = axp +p+1if 2, <0

fr(xn) = azp +p—1if 2, >0

which has only two parameters. Obviously, using the substitution ay =a, a, =a, puy=p+1,
fr = it — 1 the results obtained for (1.1) will be transformed into corresponding results for (1.2).
Note that for any period-n orbit of system (1.2) the eigenvalue is given by a", and hence no stable
periodic orbits are possible in system (1.2) for a > 1.

The work presented below is organized as follows. First, in Section 2 we discuss a motivating
example and demonstrate why the map replacement approach, which was initially developed for
the calculation of border collision bifurcations, can also be applied for the calculation of crisis
bifurcation curves. Then, in Section 3 we discuss the main structure of the domain of robust
chaos in system (1.2). Hereby all calculation steps are performed for the general map (1.1) and
are therefore directly applicable for any other 1D piecewise-linear map of particular interest. As a
next step, in Section 4 and Section 5 we investigate self-similar substructures in the robust chaotic
domain. Whereas in [5], only a few of their substructures were reported, by applying the map
replacement approach we are able to calculate them analytically up to a precision level which is
currently far beyond any possibilities of numerical calculations.

2. MOTIVATING EXAMPLE

Let us consider here a motivating example by using the map (1.2) at g = 0 for which (as we
shall see in the next section) a cycle of period 2 always exists. The 2-cycle is stable for a < 1 and
unstable for a > 1, where we have bounded dynamics in chaotic intervals up to a = 2. In order
to appreciate the whole self-similar structure we shall comment on decreasing the parameter a,
starting from a > 2 (see Fig 2a). The situation at a = 2 corresponds to the homoclinic bifurcation
of the unstable fixed points P} and P* of f. Fig. 2b shows the map f at a =2, when we have
fi(0) = P} and f.(0) = P*. The map f is invariant in the interval I = [f,(0), f¢(0)], and in this
invariant interval the map is the well-known full shift-map. Thus f is fully chaotic inside I. The
properties of the shift map are well known: any point in I has two distinct rank-one preimages, and
the two inverses are such that f, '(I) = I and f,"'(I) = I (thus f~!(I) = I also holds). All possible
cycles exist and are homoclinic, which is very simple to prove. Consider for example the second
iterate f2 also shown in Fig. 2b. It consists of four pieces defined by the functions fg, frofe, feo fr,
f?, and the discontinuity points of f? are given by the point z = 0 and the two rank-1 preimages
of this point. As one can see in Fig. 2b, all four pieces together take all the values in I, and clearly
the same property occurs for the iterates f2* for any k > 2. This is true not only for the integer 2:
the same holds for any other integer n. For example, the function f3 consists of 8 = 23 branches
(the discontinuity points between the branches are given by the point = 0 and its rank-1 and -2
preimages), all of them together take all the values in I.

Notice that outside I the trajectories are diverging (as the fixed points are unstable). Thus for
a > 2 (see Fig. 2a) the generic trajectory is divergent: the interval I is no longer invariant and the
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invariant set inside [ is a chaotic repellor A, with periodic points of any period and any symbolic
sequence constructed as described in Section 3, Section 4 and Section 5.

Along the path (@ = 0) here chosen, we know that a 2-cycle always exists (stable or unstable)
thus the map which interests us, as the parameter a is decreased, is the second iterate f? which
clearly has two fixed points corresponding to the 2-cycle. Decreasing the parameter from a = 2
(when all the cycles are homoclinic) we have that the 2-cycle persists homoclinic in some interval,
say for as < a < 2 (where, as we shall see, ay = 21/2 = 1.4142...). For a value of a in this range
the map f2 has the interval bounded by the limiting values of the function f? in z = 0, namely
J = [fr o fe(0), fe o f(0)] which includes the unstable points of the 2-cycle (see Fig. 2c at a = 1.7),
and thus J it is not invariant. Locally the map f2 behaves on J like the map f on I for a > 2.
However, while the map f for a > 2 has no other branches and no feed-back mechanism, here the
map f2 has other branches, so that a trajectory exiting from J will always be confined in I D J
as the map f is invariant in I. Also notice that f? in the interval bounded by the 2-cycle behaves
like the map f for a > 2 between the two unstable fixed points, thus a chaotic set A exists which
is here invariant for f2 but being f2(J) D J in a few steps we have f2*(.J) = I and thus the map
is chaotic in the whole interval I (i.e. chaotic bands cannot exist). Notice that for a < 2 the chaos
in the interval I is no longer a full shift for f. In fact, while the points of the interval J still have
two distinct rank-1 preimages in I, the points of the intervals I\ J (see Fig. 2c¢) have only one
rank-one preimage inside I and the other one is external to I (inside the basin of attraction of the
absorbing interval I'). Clearly repelling periodic points are also in the portions I \ J. However, the
periodic points belonging to I \ J can be homoclinic only on one side (as the other has a preimage
outside I). Thus, in this interval ay < a < 2 the map f is chaotic in I, and not only the 2-cycle is
homoclinic: due to the shape of f2 in .J we have that all the fixed points of (f?)* also belong to
homoclinic cycles of period 2F.

It is clear that as a is decreased the homoclinic bifurcation of the 2-cycle is approached and at
a=ay =22 locally, for the map f? in J, we are in the same situation as for the map f at a = 2.
Comparing Figs. 2d and 2a one can clearly see that f2 in .J is a full shift. Hence, we can repeat
for f2 the same properties stated above for f at a = 2. The boundary of J consists of two unstable
fixed points. However now outside J we have not divergence, instead the two intervals of I\ J are
now two cyclic chaotic intervals. The invariant interval I of f consists of two invariant chaotic sets:
the interval J and two cyclic chaotic intervals in I\ J.

For a < ag (exactly for ay < a < ag, a4 = 21/4 — 1.1892...) we can repeat the same reasoning.
Now the maps f2 and f* play the same role as the maps f and f? in the previous arguments. In
Figs. 2e and 2f for a = 1.2 we can see that f? is invariant in an interval I’ = J and f* has two
unstable fixed points inside J' = [fy o f2 0 f4(0), f» o f? o £-(0)] (that means, J is bounded by the
limiting values of the function f* in x = 0) which are homoclinic. For the map f the points of
the 2-cycle are no longer homoclinic. In fact, they no longer belong to a chaotic interval, and are
outside the invariant intervals, which are detected via f2. The invariant intervals are given by I’
and its images by f (thus in total three intervals because I includes the discontinuity point). The
complementary sets has "two holes” between the cyclic chaotic intervals, which include the points
of the unstable 2-cycle.

As the parameter a is decreased we can see all the self-similar bifurcations (the self similarity
is clearly in the shapes of the maps inside the intervals I’ and J’). And this can be repeated for
any k, dealing with all the homoclinic bifurcations of the cycles of period 2¥ which, starting from
a = 2, we know all exist and are all homoclinic (while in @ = 1 no one is homoclinic).

Let us now reconsider the similarity between the roles of the function f at the point a = 2 and
the function f? at the point a = 21/2 Suppose, we have a description of the bifurcation which
occurs in map (2) at a =2, in terms of the coefficients of the general map (1), that means ay,
ey ar, pir,. Then the same description is also valid for the bifurcation which occurs in map (2) at
a =2Y2 in terms of the coefficients of the second iterated of the general map (1). The relevant
two branches of the second iterated are fp. = f.o fp and f., = fr o f., and their coefficients ag,,
Lery Qre, e, can be calculated easily (see Section 4). That means, we can proceed as follows. Fist,
we calculate the analytical expressions for the bifurcation curves caused in the original map by
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the period-2 orbit Oy . Then, in these expressions we replace the coefficients ay, g, a,, p by the
composite coefficients agy., tier, are, pre. The resulting expressions represent the bifurcations of the

period-2 orbit for the function f? and consequently the bifurcations of the period-4 orbit for the
original function f.
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Fig. 2. Evolution of the system function of map (1.2) for x =0 and a decreasing. a) a = 2.2, b) a =2, ¢)
a=1.7d) a=2"2 ef) a=1.22. The square marked dotted in e) is shown enlarged in f).
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3. OVERALL BANDCOUNT ADDING

It is shown in [5] that the domain of robust chaos in system (1.2) is structured by the bandcount
adding scenario. As system (1.2) represents a special case of system (1.1), it is clear that system (1.1)
shows this scenario as well. Within this scenario for system (1.2), each periodic orbit which is stable
in the periodic domain and becomes unstable at the boundary a = 1, is involved in two interior

crisis bifurcations. For an orbit O, the curves in the parameter space of these bifurcations confine

the region Q71" \here chaotic attractors consist of |o| + 1 bands whereby |o| denotes the length

of the symbolic sequence |o|. As the orbits within the stable, or periodic, domain are organized by

the period adding structure, the multi-band regions QLU‘H are organized similarly. As one can see

in Fig. 3, the chaotic domain is linked to the periodic domain: each periodic region for a < 1 is
continued for a > 1 with a corresponding multi-band region.
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Fig. 3. Numerically calculated bifurcation structure of map (1.2). For a < 1 the dynamics is periodic, some
of the periods are marked. For a > 1 the dynamics is chaotic, some of the bandcounts are marked.

An analytical calculation of the interior crisis bifurcation curves is presented in [5] mainly for
the basic orbits, that means for orbits corresponding to the two families of symbolic sequences

{LR" | n; >0} and {RL™ |ny >0} (3.1)

. . . . C . ¢ ¢ .
As shown in the cited work, the interior crisis bifurcation curves 775/72711 and nn/znl corresponding to

these sequences, confine the regions QZ%?I and Q%ZC?I of (n1 + 2)-band chaotic attractors. As an
example, for the calculation of the curves 172/72”1 the conditions xéﬁn = xf?e can be used where the

values 2§° = fyn-1(0) and 2¥° = f,n-1(0) define the boundaries of the chaotic attractors with
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Prr(rC?):

Fig. 4. Analytically calculated period adding and bandcount adding structures of map (1.2). In both domains,
the periodic and the chaotic one, the bifurcation curves corresponding to complexity level one, two and three
are shown as black, dark gray and light gray curves, respectively. They are plotted for n; = 1..12, ny = 1..10,
ns = 1..5.

which the points %c]i" of the unstable periodic orbits collide. From this conditions we obtain

e (ar — 1)2 + aga™ (a, — 1)
pe  aa ™t —a, —ap+1 }

i _agaﬁl(agar —ap+1) — 2apa, +ar +ap— 1 }

Tlﬁ:’Rnl = {(CLg, G, by, NT)
(3.2)

e (ap —1)% — am?lﬂ(ar - 1)

”7272"1 = {(aé> Gp, g, MT)

The bifurcation curves 77%/2711 can be obtained analogously. In principle, the crisis bifurcation
curves for other orbits can be calculated in a similar way. As these calculations represent a quite
cumbersome task, it was not done in the cited work. As we will demonstrate, using the map
replacement approach, the calculations become a comparably easy task.

Recall that according to Leonov the families of orbits Oyrni and Orni form the first level of
complexity or complexity level one of the period adding structure. The regions located between
the regions of complexity level one belong to the complexity level two, whereby the corresponding
symbolic sequences form the families

[LR™(RLR™)™ | ny > 0,19 > 0}, (3.3)
[RLR™(LR™)™ | ny > 0,19 > 0}, (3.4)
[RLM2(LRL™)™ | ny > 0,na > 01, (3.5)
(LRLM2(RL™)™ | ny > 0,n > 0} (3.6)
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and can be obtained from the sequences of complexity level one using the replacements

L — LR™ L — LRL™
- (3.7) - (3.8)

R — RLR™ R — RL™

It was already demonstrated in [5] that the calculation of the border-collision bifurcations involving
orbits of complexity level two can be done in the following way: firstly we calculate the coefficients
Qgpny Jhgpny Qrgeny reen Of the composite function

oy — Jorn(xn) = apmay + pen  if (3.9)

frorn (l'n) = Qppyn Ty + [pgrn if z, >0

defined as the coefficients of the following iterated functions

fon(x) = fro---o fro fi(z) (3.10)
= aza:} T _|_ —a?lue + a?“l‘llue + NT a?T‘/L - NT
~—~— —1+a,
Agrn
Hern
frorn(x) = fro---ofrofro fr(z) = aa™ ' z+ (3.11)
——
Qrprn
(afag —alag+af — Dy + (a2 — a)
—14+a,
Mrern

(the coefficients agn, firen, Gpeon, perem are defined analogously exchanging ¢ and r). Secondly,
these coefficients will be inserted in the equations of the border-collision bifurcations of the orbits
of complexity level one instead of the coefficients ay, we, ar, pr. As a consequence, the composite
map (3.9) demonstrates in this case the same behavior as the original map (1.1) at the corresponding
parameter values, that means undergoes the same bifurcations. Eventually we resolve the obtained
expressions with respect to the original coefficients ag, pe, a,, pr and get the border-collision
bifurcations of the orbits of complexity level two for the original map (1.1).

Repeating the same procedure one more time we calculate the crisis bifurcation curves
corresponding to orbits of complexity level three. As there are two replacements (3.7) and (3.8),
the number of families is doubled with each complexity level. Hence, in complexity level three there
are 2% = 8 families, the first four of them are

{LR™(RLR™)"™2((LR™ (RLR™)"2 )™ | ny > 0,n9 > 0,n3 > 0} (3.12)
{LR"™(RLR™)™2H((LR")(RLR™)™2)™ | ny > 0,n9 > 0,n3 > 0} (3.13)
{RLR™(LR™)™TLH(RLR™)(LR™)2)™ | ny > 0,m5 > 0,n3 > 0} (3.14)
{RLR™ (LR™)™2((RLR™)(LR™)™2TH)™ | ny > 0,m9 > 0,13 > 0} (3.15)

and the remaining four families result from the families listed above by simply exchanging £
and R. This calculation procedure can be continued recursively, that means using the 2 families
of bifurcation curves in complexity level i and the two replacements (3.7), (3.8) we obtain the 2¢+1
families of bifurcation curves in complexity level i + 1. The results of the calculation for the first
three levels of complexity for system (1.2) can be seen in Fig. 4 for a < 1.

Exactly the same steps can be performed for the calculation of the crisis bifurcation curves.

In this case the replacement coefficients agyn, g, arpen, peern will be inserted in the equations

for 7]2/7;11 and T]%/an leading to the four families of crisis bifurcation curves 77%2,12(

7751/273712(57@2)”17 77%/2”2 (LRLP2)™ 772/7202(7%”2)”1 involving orbits of complexity level two. The

calculation results for system (1.2) for the first three levels of complexity can be seen in Fig. 4
for a > 1.

RLR™2)"1 >
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Let us now consider the described procedure from a different point of view. From the steps
discussed above it becomes clear, that each application of the replacements (3.7) and (3.8) for any
fixed n represents some kind of area-to-area mapping in the parameter space. Let us consider for
example the area bounded by the line @ = 1 and the envelope &' shown in Fig. 4. For n = 1 the
calculation according to the replacement (3.7) maps each bifurcation curve located in this area onto
the small part of this area bounded by the line @ = 1 and the envelope £2 marked in Fig. 4. Hereby
the bifurcation curves of complexity level one will be mapped onto the curves of complexity level
two, the curves of complexity level two will be mapped onto the curves of complexity level three,
and in general the curves of complexity level ¢ will be mapped onto the curves of complexity level
1+ 1. This area-to-area mapping represents a strong evidence for the self-similarity of the overall
bandcount adding structure.

4. BANDCOUNT DOUBLING INSIDE Q%

The overall bandcount adding scenario is not the only bifurcation scenario occurring in
system (1.1) within the domain of robust chaos. It was demonstrated in [5] for system (1.2) that
along the middle curve of each region involved in the overall bandcount adding structure there
exists an infinite bandcount doubling cascade. As an example for the first steps of this cascade,
let us consider the bifurcation scenario presented in Fig. 5. This scenario occurs along the line
p =0 which represents the middle line of the region Q%, (see Eqgs. 3.2 for n; = 1). In Fig. 5a
the boundary of this region can be clearly seen, given by the crisis bifurcation where the one-band
attractor becomes a three-band attractor. Also the next bifurcation in this cascade which leads from
a three-band to a seven-band attractor is clearly visible in Fig. 5a. As the magnification in Fig. 5b
shows, in the region of the seven-band attractor the region of 15-band attractor is nested, and so on.
As illustrated by a series of magnifications shown in Figs. 5¢— 5f, the sequence of bandcounts in the
nested regions is 3, 7, 15, 31, 63, .... As shown in [5], this cascade represents an infinite sequence of
nested regions confined by interior crisis bifurcation curves involving unstable periodic orbits with

doubled periods. In general, the bandcounts in the cascade occurring within the region Q'f 1 are
given by
i—1 '
Kp=1+]o] Y 2"=1+10/(2" = 1) = |o| + 1,30 + 1,7|o| + 1,... (4.1)
k=0

and are caused by unstable periodic orbits with periods 2k|a|. In the special case of the cascade
within the region Q% that means for |o| =2, Eq. (4.1) implies that the bandcounts in the
bandcount doubling cascade are 3, 7, 15, 31, 63,..., whereby the corresponding crisis bifurcations
are caused by the orbits with periods 2, 4, 8, 16, 32. Note that the first steps of this cascade are
shown not only in Fig. 5 but also in Figs. 1b, 1d, 1f, and 1h. Similarly, within the region Q4£R2,
that means for |o| = 3, the bandcount doubling cascade is caused by the orbits with periods 3, 6,
12, 24. .. and the resulting bandcounts are 4, 10, 22, 46. .., as illustrated in Figs. 1c, le, 1g, and 1i.
Note that for increasing bandcounts the size of specific bands decreases rapidly, so that numerical
observations become an intricate task.

For the analytical description of the bandcount doubling cascades it is necessary to determine
the symbolic sequences of the orbits undergoing the crisis bifurcations. In [5] the rules for the
creation of these sequences were reported. Especially, within the region Q?[’:R these sequences are
given by

oy = LR2L,
o3 = LR2LRLPR,
o4 = LRPLRLPRALPRLRL, (4.2)

o5 = LR2LRLPR2LPRLRPLRLPRLRALPR2LRLPR,

Remarkably, in the general case (for an arbitrary o) the creation rule reported in [5] for the

lo|4+1
o

symbolic sequences in the bandcount doubling cascade nested in Q represents a 2D mapping
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.
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1.0 : 1.0 :
1 a 2]/52 1 a 21/()4

Fig. 5. Bifurcation structure along the line p = 0 forming the first steps of the bandcount doubling cascade
within the region Q% in system (1.2). Rectangles marked in figures a—e are shown enlarged in figures b—f,
respectively.

in the space of symbolic sequences. However, it turns out that in the special case of the structures
nested in Q%R these sequences can also be created by repeated application of the following simple
replacement

L—LR, R—RL (4.3)

starting with o1 = LR. This allows us to calculate all bifurcation curves forming the bandcount
doubling cascade nested in Q%R using the map replacement approach and the following recursive
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replacement scheme:

L— LR

R RL
0y e (4.4)

Qp = Qpp Gp F Qg

Mg 7= gy oy 7= fhrg
where the replacement coefficients are defined as follows:

ffr(x) = fro ff(x) = QpQy T + Qpflg + [y

o e (4.5)
fre(x) = foo fr(x) = arar x + agpr + puo '
Qre Hre

Following Eq. (4.4) we substitute the coefficients ag,, per, are, pr¢ into the equations for the

interior crisis bifurcation curves involving the orbit O,z (given by Eq. (3.2) for n; = 1) and obtain

the interior crisis bifurcation curves 172/722 . caused by the orbit Opgap:

aza? + ala, —aga, + 1

‘ e
= g, Gy by, — =— 4.6
TR {( £ rs 16, i) ‘ fhr (a2a?2 —apar + ag+ 1) ar } (4.6)

for aZa? +aga? —aga, + 1

2,2
- +ar+1
e (aZa? —apa, +ar+1) ay } (47)

7727125 = {(afvam:uénuT) ‘

Similarly, substituting these coefficients into the equations for 772/722 , Wwe obtain the equations for

{4
775/722573527%, and so on
¢ —{ (ag,a ) Be a?af—aﬁa?—i-a;’a?—i-a%ar—agar—i—l (4.8)
NeR2LRL2R 0y Qg [gy [ [0y (a?a,?z n a?a,?: — a?a% o, +ag+ 1) a .
r — apa ) e ajay —ajal + aja + ata, —aga, +1 (4.9)
NeR2LRL2R 0y Qg [lgy [ 1Ly (a?a% n a?a% — a?a% g +ag+ 1) a .
He N
niﬁRQL’RE2R2E2RL’R2L = {(CLE, Gy g, ,UT) /L_ = _5 } (410)
T

N = a?af + a?az — aZaZ — a?a? + ai’a? + a?afi — a?af — a?a,?i + a?a,?i + agQar —apa, +1

D = (afa? — ajal + ajal + ajal — aja} — ajay + ajad + aja’ — aja? — ava, +ar+ 1) a,

r r r

He N
77271257%272%273571% = {(CLE, Gy g, ,UT) /L_ = _5 } (411)

T

N = (afa? — ajal + afal + aja® — al*a® — ajay + aja} + aja? — ajad — apa, +a, + 1) ag

8 o 5 4 4

D = a?af + azar —apa, — ai?a? + ajal + a@‘ar —a;a, — ag’af + ag’a,?f + ay a? —apar +1

For increasing k the expressions for the crisis bifurcation curves nﬁ{f become too complicated to
be presented here. However, in the special case of map (1.2) it is possible to generalize the results
and to obtain the expressions for the crisis bifurcation curves caused by the unstable (2¥)-periodic
orbits O, with arbitrary k£ > 2:

k—2 .

(a® —2)(a—1)* bmamg N\
775{: = 9 (ag, ar, pug, pir) | = $(—1)k (a2k71 T 1) a2k H <a2 "+ 1) (4.12)
j=1
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The first 12 regions forming the bandcount doubling cascade within Q%R calculated by Eq. (4.12)
are shown in Fig. 6. As one can see, the size of the regions decreases rapidly with increasing k.
Recall that the last shown region has the bandcount 8191 and its boundaries are defined by the
interior crisis bifurcation curves caused by an orbit with period 4096.

3.8-102 1.8-1073
a b

) w0 ) w0
-3.8-1072 -1.8-1073

-5.5-1075 -9.0-10~7 ‘
1 a 21/8 1 a 21/16
3.6-107 11
oo
791079 > ‘ 3.6-1011
1 a 21/32
8.4.10"14 1.0-10—16
127
o7 )
9 4o ) o
£
[eard
-8.4-10—14 -1.0-10~16
1 a 91/128
6.0-10-20 1.8-10—23
i .
) Lo 7 o
-6.0-10~20 -1.8-10—23
2.8-10727 2.2.10~31
- 4095
T12
k l ‘
) w0 ) w0 8191 77‘;12
¢ 7]012
g12
—27 —31
-2.8-10 1 4 9173048 -2.2-10 a 9174096

Fig. 6. Analytically calculated first twelve regions forming the bandcount doubling structure in map (1.2)

within the region Q%. Small numbers in the figures refer to the bandcounts in the corresponding regions.
Vertical dashed lines in figures a—e mark the value a = 1.02 which corresponds to the bifurcation scenario shown
in Figs. 1b, 1d, 1f, and 1h. Horizontal dashed lines in figures (a)—(f) mark the line © = 0 and correspond to
the bifurcation scenario shown in figures 5a—5f.

Now we can easily explain the situation regarding the self-similarity of the scenario shown in
Fig. 1. As we already know, the region located in the middle of Fig. 1a is Q?[’:R. Its interior structure
is shown enlarged in Fig. 1b. In the middle of this figure the region QZQ is located, shown enlarged
in Fig. 1d. Continuing this sequence of magnifications, Figs. 1f and 1h show the regions Q},g and
Q31 respectively. In the middle of Qi’i the next region Qgi can still be recognized, but if we

g4
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would consider the next magnification, no further sub-structures could be observed, similar to the
situation in Fig. 1i. To explain that, consider Eq. (4.12) and Figs. 6a—e where the regions Q3

SO
Qgi are shown. As one can see, the most right point of the kth region is located at the line up =0

and represents the intersection of the curves ngk and 7, . From Eq. (4.12) we can easily see that
this point is given by pu =0, a? = 2, that means a = 21/2" " As the value a = 1.02 used in Fig. 1
lies between 21/64 ~ 1.010889 and 21/32 ~ 1.021897, the region Qgg’ will be intersected by the line
a = 1.02 but not the region Q},?.

5. BANDCOUNT ADDING INSIDE Q3%

As one can clearly see in Fig. 1, there are much more nested regions with higher bandcounts than
we described above. In fact, it was already mentioned in [5] that within each region Q involved in
a bandcount doubling cascade there is a complete bandcount adding structure originating from the
same point where the region O originates from. As an example, Fig. 7 shows the interior structure
of the region Q% in system (1.2) calculated numerically.

Fig. 7. Numerically calculated bandcount adding structure in map (1.2) within the region Q%%. The marked
rectangle is shown enlarged. Vertical lines marked with (a) and (b) correspond to Figs. 9 and 10, respectively.

As one can see, within the region Q%R we observe a complete bandcount adding structure
originating from the big bang bifurcation point @ = 1, p = 0. Typical bifurcation scenarios across
this structure are shown Figs. 9 and 10, which correspond to the vertical lines marked in Figs. 7 and 8
with (a) and (b), respectively. It is clearly visible that for increasing bandcounts the corresponding
regions in the parameter space become very narrow and are difficult to observe. Therefore, the
question arises how the described structure can be calculated analytically. Fortunately, it turns out
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that the replacement (4.3) is useful not only for the calculation of the bandcount doubling scenario
in the middle part of the region Q?ZR' By contrast, it can be used for the calculation of the complete
bandcount adding structure within the region Q3. In [5] it was shown that the complexity level

one of this structure is formed by interior crisis bifurcation curves of the orbits corresponding to
the following two families of sequences

{(LR)RL)™ |n >0} and {(RL)(LR)™|n > 0} (5.1)

It is not difficult to see that these sequences result from the sequences forming the first complexity
level of the overall bandcount adding structure (see Eq. (3.1)) by the replacement (4.3). Therefore,
there is no need for the intricate calculations of a few of the interior crisis bifurcation curves forming
this structure nested in Q3 as presented in [5]. Instead, it is much more easy and convenient to
substitute the coefficients ag,, per, are, pre given by Egs. (4.5) into the equations for the crisis

bifurcation curves 772/72”1 and 77%2”1 obtaining all crisis bifurcation curves involving the orbits
corresponding to the sequences (5.1). For the curves nfga)m £yn We get in this way
1 He N
MRy R = {(aévam#bﬂr) — = —5} (5.2)
Hor

N = (a?af - a%a,« + aga, + ag — 1)(agaT)"+1 - 2&(&,«(&%&7« —ap+1)+ a%af —ap+1

D = (alga% + aga% — apa, — a, + 1)(&4%)"“ — 2aga,(aga, + a, — 1) + a%ai’ +a, —1

pe N
k= D} (5.3)

n+2

TI&R)(RL)n = {(aéaaraufaur)

N = (apa, + ap — 1)(aga,) — 2aga,(ag — 1) — al%a% +ap—1

D = (apa? — a, + 1)(aga,)" % + 2a4a,(ay — 1) — afad — a, + 1

and the curves 77?7/5 L) (LR result from nfga)m oy by exchanging ¢ and r. In Fig.8 both families of

crisis bifurcation curves are shown for n = 1... 20.

The same procedure can be easily continued further. Using the same replacement (4.3) and
the interior crisis bifurcation curves of complexity level two of the overall bandcount adding we
obtain the interior crisis bifurcation curves of the complexity level two of the bandcount adding

?ﬂthin Q%R. It can be easily seen that the corresponding symbolic sequences are given by the
amilies

{LR(RL)™(RLAR(RL)™)™} (5.4)
{RL2R(RL)"™(LR(RL)")™ } (5.5)

and the two further families resulting from (5.4) and (5.5) by exchanging £ and R. The expressions
of these bifurcation curves are too large to be presented here. Nevertheless, Fig. 8 shows the
interior crisis bifurcation involving orbits corresponding to these families of orbits. Of course, the
same calculation procedure can be continued for all further complexity levels.

To illustrate the obtained results let us consider the bifurcation structures along the lines

marked with (a) and (b) in Figs. 7 and 8. The first of them (obtained for @ = 1.06) is shown in

Fig. 9. As one can see, in this case only three regions from the family Q%L;(?z £y (complexity level

one) are intersected within the considered interval of p, namely QZRQ r Q%R(R £)? and Q}}R(R L)

Additionally, one region of complexity level two, namely Qleg rre2r2 e 18 intersected. As one can
see, Figs. 7 and 8 suggest that no further regions can be expected in the considered parameter
interval, and Fig. 9 confirms that. However, it is also clear from Figs. 7 and 8 that for decreasing
values of a more and more sub-regions with higher bandcounts appear in the bifurcation diagram.
This can be seen in Fig. 10 (a = 1.04). The sequence of the regions of complexity level one continues
in this case up to QILQR(R £y Note that this region is very narrow and can hardly be observed, but
still exists. By contrast, the next region Q%IR(R £)® does not exist for the used value of a. Also, three

further regions of the complexity level are shown in Fig. 10.
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LR2LRLAPR?L

-0.03

1

Fig. 8. Analytically calculated bandcount adding structure in map (1.2) within the region Q% . The
bifurcation curves of the first two complexity levels are shown for ny = 1..20, no = 1..7. The marked rectangle
is shown enlarged. Vertical lines marked with (a) and (b) correspond to Figs. 9 and 10, respectively.

As one can see, also the calculation according to the replacement (4.3) can be interpreted as some
kind of area-to-area mapping in the parameter space. In this case the overall bandcount adding
structure will be mapped inside the region Q%R. To be more precise, the area bounded by the
line @ = 1 and the envelope £' will be mapped onto the area bounded by the envelope £% marked
in Fig. 8. Although both situations are very similar, let us emphasize a few differences between
them. First, the replacements (3.7) and (3.8) contain n; as a parameter, hence the mapping defined
by each of these replacements transforms one curve of a certain complexity level into an infinite
family of curves in the next complexity level. By contrast, the replacement (4.3) is one-to-one: each
curve from the overall bandcount adding structure will be mapped onto exactly one curve in the
bandcount adding structure within the region Q%R. Note additionally that the mapping defined by
replacement (4.3) transforms the complete line a = 1 from p = —1 to 4 = +1 to one point a = 1,
1 = 0. Consequently, the image of each region of the overall bandcount adding structure originates
now from this unique point.

Due to the self-similarity of the bandcount adding structure not only the region Q%R but also
all other regions mentioned above contain nested sub-structures organized exactly in the same way
as the overall bandcount adding structure. As an example let us consider the bandcount adding

structure nested inside the region QZRQ , located in the middle of Q%R. Therer the regions of
complexity level one correspond to the sequences
{(LR2L)(RL*R)™Y and {(RL*R)(LRL)"} (5.6)
for the complexity level two we have
{(LRPL)(RLR)™ ((LRPL)(RL*R)™ )™}
{(LRPL)(RLR)™H((LRL)(RLPR)"2)™ )
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Fig. 9. Bifurcation structure along the line marked with (a) in Figs. 7 and 8. In (a) the complete bifurcation
diagram is shown, in (b), (c), (d) the relevant parts are enlarged.

and the two further families resulting from (5.7) and (5.8) by exchanging the symbols £ and R.
Note that there are two ways for the calculation of the corresponding bifurcation curves by the map
replacement approach. The first one is to start with the bifurcation curves involved in the bandcount
adding structure within the region Q%R and to use the replacement defined by Eq. (4.3). The second
way is to start again with the bifurcation curves forming the overall bandcount adding structure.
As one can see, in this case the following replacement must be used:

L— LR?’L, R —RLL (5.9)
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Fig. 10. Bifurcation structure along the line marked with (b) in Figs. 7 and 8.

Like the replacement defined by Eq. (4.3), also the replacement defined by Eq. (5.9) is one-to-one.
In general, the bandcount adding structure within each of the regions involved in the bandcount

doubling cascade described in Section 4 can be calculated similarly. The sub-structures within the
i i—1_
region Q},ZQQ 1 can be calculated either from the sub-structures in the region chrj (2 1 using

the replacement defined by Eq. (4.3), or from the sub-structures of any other previous region using
a corresponding more complex replacement.

6. SUMMARY

The idea behind the map replacement approach was initially reported in 1959 by Leonov [12—
14]. In his works, the border-collision bifurcation curves forming the period-adding structure were
calculated using one specific replacement. Later, in [11] we demonstrated how this approach can
be used for the calculation of the border-collision bifurcation curves forming other bifurcation
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scenarios. Furthermore we presented the rules how to find a replacement which allows to calculate
the bifurcation curves for a given periodic orbit. In the current work we presented a next
generalization step and demonstrate that the map replacement can also be used for the calculation

of

interior crisis bifurcation curves. It is shown that the bandcount adding structure formed by

these bifurcations can be calculated using this approach in a very elegant and much more efficient
way than using usual techniques. The fact that the calculation is done by a recursive procedure
confirms the hypothesis regarding the self-similarity of the bandcount adding structure.
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