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A dangerous border collision bifurcation has been defined as the dynamical instability that
occurs when the basins of attraction of stable fixed points shrink to a set of zero measure
as the parameter approaches the bifurcation value from either side. This results in almost all
trajectories diverging off to infinity at the bifurcation point, despite the eigenvalues of the
fixed points before and after the bifurcation being within the unit circle. In this paper, we
show that similar bifurcation phenomena also occur when the stable orbit in question is of a
higher periodicity or is chaotic. Accordingly, we propose a generalized definition of dangerous
bifurcation suitable for any kind of attracting sets. We report two types of dangerous border
collision bifurcations and show that, in addition to the originally reported mechanism typically
involving singleton saddle cycles, there exists one more situation where the basin boundary is
formed by a repelling closed invariant curve.

Keywords : Dangerous bifurcation; border collision bifurcation; piecewise smooth maps; border
collision normal form.
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1. Introduction

One of the main features of piecewise smooth sys-
tems is their ability to demonstrate border colli-
sion bifurcations which occur when a fixed point
or a periodic orbit collides with a switching mani-
fold in the state space. This results in a very rich
array of bifurcation phenomena which include a
direct transition from a periodic behavior to chaos
[Nusse & Yorke, 1992, 1995; Banerjee & Grebogi,
1999; Di Bernardo et al., 1999] or quasiperiodicity
[Zhusubaliyev et al., 2006], robust chaos [Banerjee
et al., 1998], coexistence of many (even an infinite
number of) attractors [Dutta et al., 1999; Simp-
son, 2014], etc. Examples of systems which may be
described by piecewise smooth maps can be found
in such areas as electronics (circuits including any
kind of switches) [Deane & Hamill, 1990; Kousaka
et al., 1999; Banerjee et al., 2000; Banerjee & Vergh-
ese, 2001; Zhusubaliyev & Mosekilde, 2003] and
mechanics (systems with impacts and/or dry fric-
tion) [Nordmark, 1991; Armstrong-Hélouvry et al.,
1994; Brogliato, 1999; Leine & Nijmeijer, 2013], as
well as in economics and social sciences [Puu &
Sushko, 2002, 2006; Bischi & Merlone, 2010; Mat-
suyama et al., 2016].

In this paper, we focus on the specific bifurca-
tion phenomenon known as “dangerous border colli-
sion bifurcation”. In the past, the term “dangerous”
has been used as adjective to many different kinds
of dynamical phenomena; even a saddle-node bifur-
cation or a subcritical period-doubling bifurcation
has been sometimes considered as “dangerous.” But
in the context of piecewise smooth systems the term
“dangerous border collision bifurcation” has a spe-
cific meaning.

Hassouneh et al. [2004] first reported a situa-
tion where the fixed point of a system remains sta-
ble before and after a bifurcation, and yet at the
bifurcation point the orbits diverge from almost all
initial conditions, because the basin of attraction
of the fixed point shrinks to a set of measure zero.
They termed it dangerous border collision bifurca-
tion because the eigenvalues of the system do not
give any signal of the impending catastrophe. The
prediction of this type of instability, being in no way
related to eigenvalues, requires one to analyze the
global structure of the phase space.

In [Hassouneh et al., 2004] the authors reported
the occurrence of dangerous border collision bifur-
cation in the 2D border collision form map (given
in Sec. 2) and obtained numerically some of the

parameter space regions where this phenomenon
was observed to occur. The mechanism behind the
occurrence of dangerous border collision bifurca-
tion was explained in [Ganguli & Banerjee, 2005].
The authors analytically obtained the parame-
ter space regions, which were the same as those
obtained numerically in [Hassouneh et al., 2004].
Even though the Jacobian of the fixed point is not
really defined at the bifurcation point, Do et al. [Do,
2007; Do & Baek, 2006] showed that the fixed point
has the character of a saddle.

In this line of work the dangerous border col-
lision bifurcation referred to the situation where
attractors before and after the bifurcation are fixed
points. Our subsequent work [Gardini et al., 2009]
has revealed that similar situation may also arise
when some other stable orbit (not necessarily a fixed
point) occurs before and after the bifurcation. This
has necessitated a broadening of the definition of
dangerous border collision bifurcation.

The paper is organized as follows. In Sec. 2
the original definition of a dangerous bifurcation is
recalled. Based on that, in Sec. 3 we provide an
extended definition and then in Sec. 4 we illustrate
it by several examples of bifurcations occurring in
the 2D border collision normal form. Thereafter, in
Sec. 5 we discuss two types of dangerous bifurcation.
The first one (Sec. 5.1) is related to the case where
the boundary of the basin associated with diver-
gent trajectories is unbounded (extends to infinity).
In particular, the case in which this boundary is
formed by the stable manifold of a singleton saddle
cycle as discussed for example in [Ganguli & Baner-
jee, 2005] in the context of the original definition of
a dangerous border collision bifurcation belongs to
this type. The second type (Sec. 5.2), related to the
case where the boundary of the basin associated
with divergent trajectories is bounded and formed
by a closed invariant curve, has not been reported
before.

2. Original Definition of a
Dangerous Border Collision
Bifurcation

Originally, in [Hassouneh et al., 2004], a dangerous
bifurcation was defined as a subclass of border col-
lision bifurcations with the following distinguishing
property:

In this bifurcation, although an attracting
fixed point exists for all parameter values
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before and after the critical bifurcation
parameter value, a striking feature occurs
in which the bifurcation typically leads to
“unbounded behavior” of orbits as a system
parameter is slowly varied through its bifur-
cation value in each of the two directions. At
the bifurcation value, for the corresponding
piecewise smooth linear map of the piece-
wise smooth system, all orbits with nonzero
initial condition diverge to infinity.1

The occurrence of a dangerous bifurcation in
the sense of this definition in the continuous piece-
wise-linear 2D border collision normal form2

Xn+1 = F (Xn, µ)

=

{
ALXn + B if xn ≤ 0

ARXn + B if xn > 0
(1a)

with

Xn =

(
xn

yn

)
, AL/R =

(
τL/R 1

−δL/R 0

)
, B = µ

(
1
0

)

(1b)

is illustrated in Fig. 1. In this figure, stable fixed
points and their basins of attraction are shown
before the bifurcation (for µ < 0) and after the
bifurcation (for µ > 0). The trajectories that
started outside these basins diverge. As µ tends to
zero from either side, the basins of attraction of
both fixed points shrink to a set of zero measure.
Accordingly, at µ = 0 orbits starting at typical ini-
tial conditions diverge. Since the piecewise-linear
normal form map embodies the local dynamics of
a generic piecewise smooth map in the neighbor-
hood of the borderline (under some nondegenerac-
ity conditions), a diverging orbit in the normal form
map signifies a locally divergent behavior in the con-
text of the piecewise smooth system. Therefore, a
dangerous bifurcation in a generic piecewise smooth
system is manifested in an abrupt onset of a differ-
ent dynamics as parameters approach the bifurca-
tion value from either side.

Fig. 1. Dangerous transition from one stable fixed point for
µ < 0 to another one for µ > 0. The basins of attraction
(shown in gray) shrink to zero as µ approaches zero from
either side, so that at µ = 0 orbits starting at typical initial
values diverge. The complementary set related to divergence
is shown in white.

In the following, when referring to cycles of the
normal form (1) we use the standard symbolic cod-
ing and associate with a period-m cycle {p0, p1, . . . ,
pm−1} a symbolic sequence σ = σ0σ1 · · · σm−1 with
σj = L if the point pj = (xj , yj)T is located in the
left half-plane, i.e. if xj < 0 and σj = R if xj > 0,
j = 0, . . . ,m−1.3 The cycle itself is denoted by Oσ ,
its existence region in the parameter space by Pσ.
The subregions of Pσ in which Oσ is stable/unstable
are denoted by Ps

σ and Pu
σ, respectively. Where it

is necessary, we specify by an upper index also if
a particular result applies for µ > 0 or for µ < 0.
For example P (+)

σ ⊂ Pσ refers to the part of Pσ

located above the boundary µ = 0 (i.e. for µ > 0),
and P (−)

σ ⊂ Pσ refers to the part located below (for
µ < 0). The basin of attraction of Oσ is denoted by
B(Oσ). In addition, the divergent domain, i.e. the
set of initial values leading to divergent trajectories,
is denoted by Bdiv.

For the bifurcations that a cycle Oσ may
undergo, the following notation is used. First, the
cycle may appear/disappear via a border collision
fold bifurcation at which also a complementary
cycle O� appears/disappears and the set of param-
eters at which this occurs is denoted by ξσ/�.4

1Strictly speaking, it should say almost all orbits with nonzero initial condition diverge to infinity.
2Originally introduced in [Nusse & Yorke, 1992], this normal form has four parameters τL, τR, δL, δR (τL/R, δL/R for short)
corresponding to the trace and determinant of the Jacobians evaluated at fixed points on the left and right sides of the border,
and the parameter µ which controls the border collision.
3For the purposes of the present paper we do not need to specify symbolic sequence of cycles containing points on the boundary,
i.e. points with xj = 0.
4Recall that cycles Oσ and O� are called complementary if the symbolic sequences σ and � differ by one letter. Accordingly,
an m-cycle Oσ may be involved in m different border collision fold bifurcations.
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The cycle may also appear/disappear via a degen-
erate transcritical bifurcation, say ησ, at which the
points of the cycle approach infinity, while one
eigenvalue tends to +1 [Sushko & Gardini, 2010;
Avrutin et al., 2010]. These two bifurcation bound-
aries may confine the region Pσ. Inside this region,
the cycle may change its stability via a degenerate
flip bifurcation θσ occurring when an eigenvalue of
the cycle crosses −1 [Sushko & Gardini, 2010].

The appearance of dangerous bifurcations in
map (1) under variation of the parameter µ can be
explained by observing that, as long as we do not
change the sign of µ, changing the absolute value
of µ leads only to a linear scaling of the complete
phase space. As

F (X,αµ) = αF

(
X

α
,µ

)
∀X ∈ R2, ∀α > 0

(2)

each bounded invariant set of map (1) scales lin-
early with µ, and in particular shrinks to zero as
µ tends to zero. Therefore, for map (1) the neces-
sary and sufficient condition for a dangerous bor-
der collision bifurcation according to the definition
given above is the coexistence of stable (but not

(a) (b)

Fig. 2. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable fixed
point OL to a stable fixed point OR. The basins of attraction B(OL), B(OR) are shown in light blue. Before the bifurcation,
the basin B(OL) is separated from the domain of diverging trajectories Bdiv by the stable manifold of the 3-cycle ORL2 =
{p0, p1, p2}; after the bifurcation B(OR) is separated from Bdiv by the stable manifold of the 3-cycle OLR2 = {p′0, p′1, p′2}.
Stable manifolds are shown in red, unstable in blue. Parameters: τL = −0.5, τR = −1.5, δL = δR = 0.9, (a) µ = −1; (b) µ = 1.

globally attracting) fixed points and diverging tra-
jectories before and after the bifurcation.

It is well known that fixed points OL and OR
of map (1) are stable (for µ < 0 and µ > 0, respec-
tively) in the parameter space region

P = {δL/R, τL/R; |τL/R| < 1 + δL/R, |δL/R| < 1}.
(3)

Hence, dangerous bifurcations in the sense of the
original definition can occur in map (1) only if the
conditions (3) are satisfied.

Figure 2 shows that the boundary of the basin
of attraction of the fixed point

OL =
µ

1 − τL + δL
(1,−δL)T (4)

before the bifurcation is constituted by the stable
manifold of the period-3 saddle cycle ORL2 . After
the bifurcation the basin boundary of the fixed
point

OR =
µ

1 − τR + δR
(1,−δR)T (5)

is formed by the stable manifold of another period-3
saddle cycle OLR2 .
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In [Ganguli & Banerjee, 2005] it is shown that
these bifurcations can be explained considering for
µ > 0 the stable basic cycles ORLn and their com-
plementary unstable cycles ORLn−1R, n ≥ 3. It was
shown that the regions of existence of such a pair
of complementary cycles in the parameter space are
different. The region of the existence of the stable
cycle PRLn is a subset of the region of the existence
of the unstable cycle PRLn−1R. If for some n the
region PRLn−1R\PRLn overlaps with the region P
given by Eq. (3), then for µ > 0 the stable fixed
point exists and the stable manifold of the unsta-
ble cycle PRLn−1R belongs to the boundary ∂Bdiv.
Since the complementary orbit PRLn does not exist,
if there are no attracting sets outside this basin of
attraction, then all trajectories starting from there
diverge.

For µ < 0 the situation can be described simi-
larly, by interchanging the letters L and R. In this
way, in [Ganguli & Banerjee, 2005] the regions lead-
ing to dangerous border collision bifurcations were
determined by calculating the existence boundaries
for the cycles ORLn and ORLn−1R.

3. Extended Definition of a
Dangerous Border Collision
Bifurcation

The question arises why the definition of danger-
ous bifurcation should be restricted to fixed points
only. Indeed, if the attractor before the bifurcation
is given by a fixed point and the attractor after the
bifurcation by an n-cycle, n ≥ 2, as shown in [Gar-
dini et al., 2009] and in the Example 1 below, then
the main distinguishing feature of the bifurcation
remains unchanged, i.e. at the bifurcation point an
infinitely small deviation leads to divergence. Nowa-
days, many kinds of border collision bifurcations
are known, that lead to the appearance of attrac-
tors of different kinds, and also to the appearance
of many (even infinity many) coexisting attractors
[Simpson, 2014]. There is no reason why these bifur-
cations cannot be dangerous. Therefore, it is natu-
ral to extend the original definition of a dangerous
bifurcation in the following way:

A border collision bifurcation in a piecewise
smooth system is called dangerous, when the related
border collision normal form (1) for µ < 0 and for
µ > 0 has

(i) at least one bounded attractor,

(ii) a set of initial conditions with a positive mea-
sure that leads to divergent behavior.

Note that the scaling property (2) together with (ii)
imply that as the parameters approach the bifurca-
tion value from either side, the basins of attraction
of all attractors tend to zero measure sets and at the
bifurcation point, all trajectories starting at typical
initial values diverge.

Similar to the one proposed in [Gardini et al.,
2009], this definition extends the previous one, as
it includes the cases in which not only fixed points
but other attractors are involved.

Over the years many classes of border colli-
sion bifurcation have been introduced [Di Bernardo
et al., 1999; Banerjee & Grebogi, 1999]. Out of
these, only the case of “persistence border colli-
sion bifurcation” was included in the original def-
inition of dangerous bifurcation. In this extended
definition, all the classes are shown to be capable
of displaying dangerous border collision bifurcation
under suitable parameter conditions.

4. Examples of Dangerous
Bifurcations

Before discussing mechanisms which may lead to
dangerous border collision bifurcations in the sense
of the extended definition given above, let us first
illustrate it by a few examples showing several cases
which do not fit the original definition of dangerous
border collision bifurcations but are covered by the
extended one.

Example 1. Fixed point ↔ n-cycle

Probably the simplest example of a dangerous bifur-
cation which does not fit the original definition
but fits the extended one is illustrated in Fig. 3.
Here, the situation before the bifurcation is as in
the previous example (the fixed point OL before
the bifurcation is stable and its basin boundary is
constituted by the stable manifold of the period-3
saddle cycle ORL2). But after the bifurcation, the
fixed point OR of map (1) is unstable, and there is
a stable 2-cycle OLR. The boundary between the
basin B(OLR) and the divergent domain Bdiv is
given by the stable manifold of the period-3 saddle
cycle OLR2 . As before, the orbits starting at initial
values outside these basins diverge, and the basins
shrink to zero as µ approaches zero from either side.
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(a) (b)

Fig. 3. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable
fixed point OL to a stable 2-cycle OLR = {q0, q1}. The corresponding basins of attraction are shown in light blue. Before
the bifurcation the basin B(OL) is separated from the divergent domain Bdiv by the stable manifold of the 3-cycle ORL2 =
{p0, p1, p2}, after the bifurcation the basin B(OLR) is separated from Bdiv by the stable manifold of the 3-cycle OLR2 =
{p′0, p′1, p′2}. Parameters: τL = −0.25, τR = −2, δL = δR = 0.9, (a) µ = −1; (b) µ = 1. The corresponding point in the
parameter plane (τL, τR) is marked with A in Fig. 10.

(a) (b)

Fig. 4. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable
2-cycle ORL = {q0, q1} to a stable 5-cycle ORLRL2 = {q′0, q′1, . . . , q′4}. Before the bifurcation the basin B(OLR) is separated
from the divergent domain Bdiv by the stable manifold of the 7-cycle O(RL)2RL2 = {p0, p1, . . . , p6}; after the bifurcation the

basin B(ORLRL2) is separated from Bdiv by the stable manifold of the 7-cycle O(LR)2LR2 = {p′0, p′1, . . . , p′6}. Parameters:
τL = −2.56, τR = −1.5, δL = 0.3, δR = 2.5, (a) µ = −1; (b) µ = 1.
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Example 2. k-cycle ↔ m-cycle

Since [Nusse & Yorke, 1992], it is known that a bor-
der collision bifurcation in map (1) may lead from
one stable cycle with a period k > 1 to a different
stable cycle with another period m > 1, m �= k, not
involving any stable fixed points. Such bifurcations
may also be dangerous, as illustrated in Fig. 4. In
the presented case, as µ is varied from negative to
positive values, we observe a transition from a sta-
ble 2-cycle ORL to a stable 5-cycle ORLRL2. Before
the bifurcation, the basin B(ORL) is separated from
the divergent domain Bdiv by the stable manifold
of the saddle 7-cycle O(RL)2RL2 . After the bifurca-
tion, the basin B(ORLRL2) is separated from Bdiv by
the stable manifold of the saddle 7-cycle O(LR)2LR2 .

Example 3. Multiple
cycles ↔ multiple cycles

Border collision bifurcations may lead to appear-
ance (or disappearance) of multiple attractors
[Dutta et al., 1999; Sushko & Gardini, 2008;
Avrutin et al., 2012]. Such a bifurcation can also be

dangerous, as illustrated in Fig. 5. In the presented
case, before the bifurcation there are two attractors,
namely the stable 2-cycle OLR and the stable 9-
cycle O(RL)4R. Their basins are separated from the
divergent domain Bdiv by the period-7 saddle cycle
O(RL)3L. As a result of a dangerous multiple attrac-
tor bifurcation these two attractors disappear, and
three new attractors appear: the stable fixed point
OR, the stable 5-cycle ORLRL2 and the stable 12-
cycle O(LR)3(RL)3 . Their basins are separated from
the divergent domain by the stable manifold of a
saddle 7-cycle O(RL)3R.

Example 4. Fixed point ↔ chaotic
attractor

A transition from a fixed point directly to a chaotic
attractor can occur in a border collision bifurca-
tion. It is in fact quite common and occurs over
large regions in the parameter space especially if
the determinants δL, δR are negative. Figure 6 shows
that such a bifurcation can also be dangerous [Gar-
dini et al., 2009]. In the presented example, before

(a) (b)

Fig. 5. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from two
coexisting attractors (2-cycle OLR and 9-cycle O(RL)4R, marked in the inset by yellow and red points, respectively) to three
coexisting attractors (fixed point OR, 5-cycle ORLRL2 and 12-cycle O(LR)3(RL)3 , marked in the inset by green, red and
yellow points, respectively). Before the bifurcation the boundary of the divergent domain Bdiv includes the stable set of the
7-cycle O(RL)2LRL = {p0, p1, . . . , pr}; after the bifurcation it includes the stable set of the 7-cycle O(RL)3R = {p′0, p′1, . . . , p′6}.
Parameters: τL = −3.9, τR = −0.75, δL = δR = 0.9, (a) µ = −1; (b) µ = 1. The corresponding point in the parameter plane
(τL, τR) is marked with B in Fig. 10.
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(a) (b)

Fig. 6. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable
fixed point to a chaotic attractor. Parameters: τL = 1.28, τR = −2, δL = 0.9, δR = −0.9, (a) µ = −1; (b) µ = 1.

(a) (b)

Fig. 7. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a regular to
a fractal boundary ∂Bdiv. (a) Before the bifurcation, the only attractor is the fixed point OL. The boundary ∂Bdiv is formed
by the stable manifold of the 4-cycle ORL3 = {p0, . . . , p3}. The stable and the unstable manifolds of ORL3 are shown in
red and in blue, respectively. (b) After the bifurcation, the stable fixed point OR and the stable 3-cycle ORL2 = {q0, q1, q2}
coexist (the basins B(OR) and B(ORL2) are shown in blue and in orange, respectively). (c) Intersection of stable and unstable
manifolds of the 4-cycle OR2L2 = {p′0, . . . , p′3} (shown in red and in blue, respectively). In addition, OR, ORL2 and the saddle
3-cycle OR2L = {q′0, q′1, q′2} are shown. (d) Magnification of the rectangle marked in (b). Parameters: τL = 0.9, τR = −1.85,
δL = δR = 0.9, (a) µ = −1; (b)–(d) µ = 1. The corresponding point in the parameter plane (τL, τR) is marked with D in
Fig. 10.
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(c) (d)

Fig. 7. (Continued)

(a) (b)

Fig. 8. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable
fixed point to infinitely many attracting cycles. Parameters: τL = 0.5, τR = −1.139755486, δL = 1/δR, δR = 1.378851759,
(a) µ = −1; (b) µ = 1. Notice that for µ > 0 the basin boundary is formed by a closed invariant curve — a homoclinic
connection between the points of a 4-cycle.
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the bifurcation the fixed point OL is stable and its
basin of attraction is separated from Bdiv by the
stable manifold of the saddle 4-cycle ORL3 . The
border collision occurring at µ = 0 leads a chaotic
attractor to appear, with a basin of attraction sepa-
rated from Bdiv by the stable manifold of a different
saddle 4-cycle, namely ORL2R.

Example 5. Fixed point ↔ infinitely
many attracting cycles

It is shown in [Simpson, 2014] that map (1) may
exhibit infinitely many coexisting attracting cycles.
The appearance of these cycles may be associ-
ated with a dangerous bifurcation, as illustrated in
Fig. 8. Before the bifurcation, there is an attract-
ing fixed point OL and its basin boundary is
given by the stable manifold of the period-4 saddle
cycle ORL3 . After the bifurcation attracting cycles
O(RLLR)kRLL exist for all k ≥ 1, and the union of all
their basins is separated from the divergent domain
Bdiv by a closed invariant curve formed by a homo-
clinic connection between points of the period-4
saddle cycle ORLLR (see Sec. 5.2 for details).

Example 6. Fractal basin boundary

In the examples described so far, the unbounded
boundary ∂Bdiv of the divergent domain has a quite
simple structure, but it is also possible to have ∂Bdiv

with a fractal structure [Gardini et al., 2009], as
illustrated in Fig. 7.

Similar to the previous examples, before the
bifurcation [see Fig. 7(a)] the fixed point OL is
the unique attractor and the boundary ∂Bdiv is
given by the stable manifold of the period-4 sad-
dle cycle ORL3 . After the bifurcation the attracting
fixed point OR coexists with the attracting 3-cycle
ORL2 , and the boundary ∂Bdiv has a fractal struc-
ture [see Fig. 7(b)]. In this case the boundary ∂Bdiv

includes homoclinic points which appear for exam-
ple due to the intersection of stable and unstable
manifolds of the singleton cycle OR2L2 as well as
other homoclinic connections and heteroclinic loops
[see Fig. 7(c)].

5. Types of Dangerous Bifurcations

One of the key points in the extended definition of
a dangerous border collision bifurcation is the exis-
tence, before and after the bifurcation, of a domain
with a positive measure associated with divergent

trajectories. Divergent trajectories can be seen as
trajectories converging to an attractor located at
infinity. Therefore, to understand possible types of
dangerous bifurcations it is necessary to identify
the boundary of this domain of divergent trajec-
tories. Then, for µ approaching zero, this boundary
shrinks to the zero measure and causes a dangerous
bifurcation to occur. Note that there are basically
two types of boundaries:

• Type-I: Unbounded boundary ∂Bdiv,
• Type-II: Bounded boundary ∂Bdiv.

Below we take up these two cases separately.

5.1. Unbounded boundary ∂Bdiv

Historically, the occurrence of dangerous border col-
lision bifurcations was first analyzed in [Ganguli &
Banerjee, 2005] for the specific case that the basin
of the stable fixed point extends to infinity. The
standard set of parameter values considered first
in [Hassouneh et al., 2004] and thereafter in many
other publications is δL = δR = 0.9. It has been
shown in [Ganguli & Banerjee, 2005] that, for these
parameter values, the regions of the (τL, τR) param-
eter plane for dangerous border collision bifurcation
given in [Hassouneh et al., 2004] can be understood
by considering the basic (k + 1)-cycles ORLk and
their complementary cycles ORLk−1R. Below we
briefly summarize the mechanism leading to dan-
gerous bifurcations in this case. Note that for histor-
ical reasons the discussion below is given for basic
cycles, although the same mechanism may apply to
other cycles as well, both for original and extended
definitions of dangerous bifurcations.

Recall that both for µ > 0 and µ < 0, for
each k ≥ 1 a pair of complementary (k + 1)-cycles
ORLk and ORLk−1R appear via a border collision fold
bifurcation ξRLk/RLk−1R. For µ > 0 the basic cycle
ORLk may appear stable or unstable (an attracting
node or a saddle), while its complementary cycle
ORLk−1R appears unstable (a saddle or a repelling
node, respectively). The existence regions P(+)

RLk and
P (+)

RLk−1R
(here the upper index refers to the sign of

µ) are confined by the common boundary given by
the border collision bifurcation curve ξRLk/RLk−1R
and additionally by the curves ηRLk , ηRLk−1R of
degenerate transcritical bifurcations of the cycles
ORLk and ORLk−1R, respectively, [Sushko & Gardini,
2010], also known as Poincaré equator collisions
[Avrutin et al., 2010] [see Fig. 9(a)]. At these bifur-
cations the corresponding cycles tend to infinity and
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(a) (b)

Fig. 9. Schematic representation of the regions D(+)

RLk−1R ≡ D(−)

RLk and D(+)

LRk ≡ D(−)

LRk−1L in the (τL, τR) parameter plane
related to dangerous bifurcations for (a) µ > 0 and (b) µ < 0, shown in green.

disappear. It is essential for the occurrence of dan-
gerous bifurcations related to cycles ORLk−1R that
the region of existence of ORLk is smaller than the
regions of existence of ORLk−1R [Ganguli & Baner-
jee, 2005], i.e. the regions P (+)

RLk and P (+)

RLk−1R
satisfy

P (+)

RLk � P (+)

RLk−1R ≡ P (+),u
RLk−1R (6)

i.e. there exists a nonempty region

D(+)

RLk−1R
= P (+)

RLk−1R
\P (+)

RLk (7)

in which the cycle ORLk−1R exists, while the cycle
ORLk does not. In the region P(+)

RLk there exists a het-
eroclinic connection from ORLk−1R to ORLk , i.e. an
unstable manifold of the saddle cycle ORLk−1R con-
verges to ORLk . In this case, if the cycle ORLk is not
the only attractor, then the stable manifold of the
saddle cycle ORLk−1R separates the basin B(ORLk)
from the basin of a different attractor (for exam-
ple, if the parameters belong to the region P, then
this different attractor may be the stable fixed point
OR). As the cycle ORLk disappears after the degen-
erate transcritical bifurcation, an unstable mani-
fold of the saddle cycle ORLk−1R goes to infinity,
while the stable manifold of ORLk−1R belongs to the
boundary of the divergent domain Bdiv.

As µ passes through zero, all the cycles existing
for µ > 0 disappear in a nonregular border collision

bifurcation at which all points of the cycle col-
lide simultaneously with the origin. Which attract-
ing and repelling sets appear after the bifurcation
depends on the parameter values. For our pur-
poses it is only important that for µ < 0 and any
k ≥ 0 there exists again a pair of complementary
(k + 1)-cycles ORLk−1R and ORLk . As proved in
Appendix A, their existence regions P(−)

RLk−1R
and

P (−)

RLk differ from the existence regions P (+)

RLk−1R
and

P (+)

RLk of these cycles for µ > 0 but have (neglect-
ing the sign of µ) a nonempty overlap with these
regions. As for µ > 0 the cycles appear via a border
collision fold bifurcation ξRLk−1R/RLk but by con-
trast to the case µ > 0 the cycle ORLk−1R may
appear stable or unstable, while its complemen-
tary cycle ORLk appears always unstable. Similar
to the previous case, the existence regions P (−)

RLk−1R
and P (−)

RLk are confined by the common bound-
ary ξRLk−1R/RLk and additionally by the degenerate
transcritical bifurcation curves ηRLk and ηRLk−1R
[see Fig. 9(b)]. However, for µ < 0 the regions
P (−)

RLk−1R and P(−)

RLk satisfy

P (−)

RLk−1R
� P (−)

RLk ≡ P (−),u
RLk (8)

so that there exists a nonempty region

D(−)

RLk = P (−)

RLk\P (−)

RLk−1R
(9)
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in which the unstable cycle ORLk exists and the
cycle ORLk−1R does not. Moreover, as proved in
Appendix A, the shapes of the regions D(+)

RLk−1R
and

D(−)

RLk coincide, i.e. for all µ > 0

(τL/R, δL/R, µ) ∈ D(+)

RLk−1R

⇔ (τL/R, δL/R,−µ) ∈ D(−)

RLk . (10)

Therefore, for the values of τL/R, δL/R belonging to
these regions the condition (ii) is satisfied both for
µ < 0 and µ > 0. Accordingly, if the condition (i) is
satisfied as well, then the variation of µ through zero
at these values of τL/R, δL/R leads to a dangerous
bifurcation.

In addition to the stability regions P (+)

RLk , for
µ > 0 there exists a sequence of regions in which
the cycles OLRk−1L are stable. These cycles appear
at a border collision fold bifurcation ξLRk−1L/LRk

together with the cycles OLRk which are unstable
everywhere [see Fig. 9(a)]. Similar to the cycles
described above, the existence regions are confined
by the curves of degenerate transcritical bifurca-
tions ηLRk−1L and ηLRk , respectively, at which the
corresponding cycles tend to infinity and disappear.
The regions satisfy

P (+)

LRk−1L � P (+)

LRk ≡ P (+),u
LRk (11)

so that in the nonempty region

D(+)

LRk = P(+)

LRk\P (+)

LRk−1L
(12)

the cycle OLRk−1L does not exist and the unstable
manifold of the saddle cycle OLRk goes to infin-
ity. Similarly, for µ < 0 there exists a sequence of
regions P(−)

LRk and P(−)

LRk−1L associated with cycles
OLRk (which may appear stable or unstable) and
OLRk−1L (which appears unstable). The regions
satisfy

P(−)

LRk � P(−)

LRk−1L ≡ P (−),u
LRk−1L (13)

which gives rise to the nonempty region

D(−)

LRk−1L
= P (−)

LRk−1L
\P (−)

LRk . (14)

As before, the shapes of the regions D(+)

LRk and
D(−)

LRk−1L
coincide, i.e. for all µ > 0

(τL/R, δL/R, µ) ∈ D(+)

LRk

⇔ (τL/R, δL/R,−µ) ∈ D(−)

LRk−1L
(15)

so that if the values of τL/R, δL/R belong to these
regions and the condition (i) is satisfied then the

variation of µ through zero at these values of τL/R,
δL/R lead to a dangerous bifurcation. Together with
Eq. (10), Eq. (15) is proved in Appendix A.

An analytic calculation of the boundaries of the
regions D(+)

RLk−1R
≡ D(−)

RLk and D(+)

LRk ≡ D(−)

LRk−1L
can

easily be done for any k, in particular using recently
developed technique reported in [Saha & Banerjee,
2016] (a brief description is given in Appendix B).

Figure 10 presents the structure of the (τL, τR)
parameter plane at δL = δR = 0.9 for µ > 0
and µ < 0, showing regions in which condition (i)
[Figs. 10(a) and 10(b)] and condition (ii) [Fig. 10(c)]
are satisfied. Examples for the above mentioned
regions D(+)

RLk−1R
≡ D(−)

LRk−1L
and D(+)

LRk ≡ D(−)

RLk are
marked in Fig. 10(c). As one can see in this fig-
ure, in addition to the regions, there are several
other regions in the (τL, τR) parameter plane for
which divergent behavior exists. To explain their
appearance, consider as an example, the sequence
of regions P (+)

(RL)kRL2 marked in Fig. 10(a). In the
same way as the regions P(+)

RLk described above,
these regions are confined by two bifurcation bound-
aries, one associated with a fold border collision
bifurcation ξ(RL)kRL2/(RL)kR2L, and the other one
with degenerate transcritical bifurcation η(RL)kRL2 .
Similarly, in Fig. 10(b) the regions P(−)

(RL)kR2L
are

marked, confined by the fold border collision bifur-
cation boundary ξ(RL)kR2L/(RL)kRL2, and the degen-
erate transcritical bifurcation boundary η(RL)kR2L.
As a consequence, we observe a sequence of regions
D(+)

(RL)kR2L ≡ D(−)

(RL)kRL2 confined (both for µ > 0
and for µ < 0) by the degenerate transcritical bifur-
cation boundaries and their shapes coincide in the
same way as for the regions D(+)

RLk−1R
≡ D(−)

LRk−1L
,

as proved in Appendix A. In these regions, if some
attractors exist both for µ > 0 and µ < 0, then they
are associated with dangerous bifurcations.

Note also that not every region associated with
a stable cycle shown in Fig. 10(a) is accompanied by
the corresponding dangerous region. For example,
at the considered parameter values the boundaries
of the regions P (+)

R2L2 and P (+)

R2L3 marked in Fig. 10(a)
are not associated with degenerate transcritical
bifurcations, so that no dangerous regions appear.
However, for other parameter values a boundary
associated with a degenerate transcritical bifur-
cation and the associated dangerous region may
appear [see the region D(+)

R3L2 ≡ D(−)

R2L3 in Fig. 11(a)].
As one can see in Fig. 10(c), many other dan-

gerous regions exist outside the region P given in
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(a) (b)

(c)

Labels:

Fig. (a): 1©: P (+)
R ,

2©– 5©: P(+)

RLk , k = 1, . . . , 4,

6©– 10©: P(+)

(RL)kRL2 , k = 1, . . . , 5,

11©: P(+)

LRLR2, 12©: P (+)

L2R2L2R, 13©: P (+)

R2L2 , 14©: P (+)

R2L3 ;

Fig. (b): 15©: P (+)
L , 16©: P (+)

LR,

17©– 19©: P(+)

RLk−1R, k = 2, . . . , 4,

20©– 24©: P(+)

(RL)kR2L
, k = 1, . . . , 5,

Fig. (c): 25©– 27©: D(+)

RLk−1R
≡ D(−)

RLk , k = 2, . . . , 4,

28©– 31©: D(+)

(RL)kR2L ≡ D(−)

(RL)kRL2, k = 1, . . . , 4,

32©: D(+)

RL2R2L2 ≡ D(−)

RL2RL3 , 33©: D(+)

RL3R2L3 ≡ D(−)

RL3RL4.

Fig. 10. Regions in the (τL, τR) parameter plane for (a) µ > 0 and (b) µ < 0 associated with bounded attractors. Gray
scales correspond to the number of attractors (in the white regions there are no attractors, in the light gray regions only one
attractor, and so on). In (c) regions with divergent behavior are shown (both for µ > 0 and µ < 0). Parameters: δL = δR = 0.9.

Eq. (3). Such regions have not been considered
in [Ganguli & Banerjee, 2005], as at the param-
eter values considered in this work they do not
intersect the region P and hence do not fulfill the
original definition of a dangerous border collision
bifurcation. However, they may fulfill the extended

definition and be associated with dangerous bifur-
cations. An example for that has been discussed in
Sec. 4 (see Example 3, Fig. 5), the corresponding
point in the (τL, τR) parameter plane is marked with
B in Fig. 10. Moreover, for increasing values of δL/R
these regions enter the region P, so that the original

1630040-13

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
01

/1
7/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 5, 2017 14:51 WSPC/S0218-1274 1630040

V. Avrutin et al.

(a) (b)

Fig. 11. Regions in the (τL, τR) parameter plane associated with divergent behavior (both for µ > 0 and µ < 0) at (a)
δL = δR = 0.98 and (b) δL = 0.999, δR = 0.5. In (a), the regions D(+)

R3Lk−1 ≡ D(−)

R2Lk , k = 3, . . . , 6, are labeled with 1©– 4©,
respectively.

definition of a dangerous border collision bifurca-
tion becomes fulfilled as well [see Fig. 11(a) for an
example].

Even at the parameter values considered in
[Ganguli & Banerjee, 2005], dangerous bifurcations
occurring inside the region P may be associated
with more complex behavior than described in the
previous publications. In particular, depending on
the actual parameter values one or more stability
regions of cycles coexisting with stable fixed points
may overlap inside P and intersect some of the
D-regions. As an example, one can consider the
point inside the region P marked with C in Fig. 10
(τL = 0.6847, τR = −1.196). When µ is varied
through zero at these parameter values, a dangerous
bifurcation occurs and leads from the stable fixed
point OL not only to the stable fixed point OR but
also the stable 3-cycle ORL2 and the stable 7-cycle
OL2R2L2R. Indeed, it can be seen in Fig. 10 that for
µ < 0 this point belongs to the intersection of the
regions D(−)

RL3 and PL while for µ > 0 it belongs to
the intersection of the regions D(+)

RL2R, PR, PRL2, and
PL2R2L2R.

It is worth noticing that for increasing values of
δL and δR, more and more regions which can lead
to dangerous bifurcations appear and also enter the
region P (so that not only the extended but also the

original definition is satisfied). To give an example,
Fig. 11(a) shows these regions for δL = δR = 0.98
and µ > 0. In addition to the regions already
described for δL = δR = 0.9, inside the region
P one can observe the regions D(+)

R3Lk ≡ D(−)

R2Lk+1 ,
k = 2, 3, 4, 5.

Note also that the symmetry of the regions
related to dangerous bifurcations with respect to
the diagonal τL = τR in the examples shown above
is caused by the particular setting δL = δR used
in these examples. Figure 11(b) illustrates that this
symmetry is broken for δL �= δR.

Note also that Example 5 in Sec. 4 (Fig. 8)
presents a peculiar case that falls between Type-I
and Type-II. For µ < 0 the situation is similar to
the cases shown above. The stable set of a saddle
4-cycle forms the basin boundary of the attracting
fixed point OL. But for µ > 0 [Fig. 8(b)] the basin
boundary includes a homoclinic connection between
points of a single saddle 4-cycle. This is a closed
invariant curve, and so it has some resemblance with
Type-II. At µ = 0, the basin of attraction shrinks
to a set of measure zero. But the stable set of the
4-cycle (shown in red) extends to infinity which is
similar to Type-I.

However, as mentioned in [Simpson, 2014], the
structure of the phase space is not robust in this
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case, and a generic parameter perturbation destroys
the homoclinic connection, leading either to an
attractor with a basin extending to infinity, or to
the absence of any attractor. However, a repelling
closed invariant curve at the boundary of the diver-
gent domain may also be robust. In such a case it
may be formed by a heteroclinic connection between
a saddle and a repelling focus (or repelling node),
or, alternatively, it can also be associated with
quasiperiodic dynamics. This leads to the Type-II
situation, which is described in the next section.

5.2. Bounded boundaries ∂Bdiv

In the situations described above, the basin of
the actual attractor extends to infinity because
the stable manifold of the saddle cycle forming its
boundary originates from infinity. However, it is
also possible that this manifold originates from a
different repelling cycle (saddle or focus), forming
a repelling closed invariant curve. Moreover, such a
repelling closed invariant curve may also be associ-
ated with quasiperiodic dynamics. Such curves may
separate the basin of attraction of the actual attrac-
tor (or attractors) from the divergent domain Bdiv,
leading to dangerous bifurcations.

We now illustrate it with a few examples.

Example 7. Closed invariant curves

Let us consider an example of a dangerous bifur-
cation for which the basin of attraction of a stable
motion is separated from the divergent domain Bdiv

by a repelling closed invariant curve.
For µ < 0 the stable fixed point OL is sur-

rounded by a repelling closed invariant curve that
is formed by a saddle 23-cycle OLR2LR2(L2R2)4L and
a repelling 23-focus OR3LR2(L2R2)4L and the stable
manifolds of the saddle [see Fig. 12(a)]. Similar to
the examples discussed before, the stable manifold
of the period-23 saddle cycle separates the basin of
attraction of the stable fixed point OL from Bdiv,
while the unstable manifolds WU−, W U

+ of the sad-
dle either converge on the attractor or approach
infinity.

As discussed in detail below, for µ > 0
the structure of the phase space is different [see
Fig. 12(b)]. The fixed point OR now is a repelling
focus and around it there is an attracting closed
invariant curve formed by a saddle-focus connection
between a saddle 4-cycle OLR3 and the attracting
focus OL2R2 . In this case, the basin of attraction of
this attractor is separated from Bdiv by a repelling
closed invariant curve associated with (numerically
observed) quasiperiodic dynamics, since no cycles
seem to exist outside this curve. Accordingly, as

(a) (b)

Fig. 12. Structure of the state space (a) before and (b) after a dangerous border collision bifurcation leading from a stable
fixed point to a stable 4-cycle. Before and after the bifurcation the basin boundaries are bounded. In (a) the basin boundary is
a closed invariant curve formed by a saddle-repelling focus connection. In (b) the closed invariant curve at the basin boundary
is associated with quasiperiodic dynamics. Parameters: τL = −0.5, τR = 0.35, δL = 0.5, δR = 1.8, (a) µ = −1; (b) µ = 1.
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µ is varied through zero, a dangerous bifurcation
occurs, whereby the basin is bounded before and
after the bifurcation, but the dynamics at the basin
boundary differ.

Appearance of a pair of closed
invariant curves

The question may arise regarding the mechanism
leading to the appearance of a pair of closed invari-
ant curves mentioned above. Indeed, often a pair
of closed invariant curves appear simultaneously,
one attracting and one repelling. In our case the
mechanism leading to the appearance of the pair
of closed invariant curves is similar to homoclinic
tangles, as often occurs in two-dimensional maps,
see e.g. [Foroni & Agliari, 2011; Zhusubaliyev &
Mosekilde, 2015]. The main steps of this mechanism
are illustrated in Figs. 13–17 when we change the
value of τR from τR = 0.33 to τR = 0.35. Figure 18
gives schematic diagrams to explain the succession
of events.

Figure 13 shows the phase portrait of the map
for τR = 0.33, where a stable focus OL2R2 and a
saddle 4-cycle OLR3 coexist with a repelling fixed
point OR. The stable manifold WS± of the saddle

4-cycle forms a saddle-repelling focus connection
around the periodic points of the stable focus 4-
cycle and separates the basin of attraction B(OL2R2)
of the stable 4-cycle from the divergent domain Bdiv.
As illustrated in Figs. 13 and 18(a), the branches
WU− of the unstable manifold of the saddle cycle
converge to the stable focus 4-cycle, and the others
WU

+ diverge to infinity.
As τR increased, the homoclinic bifurcation (or

a homoclinic contact) occurs which is similar to a
homoclinic tangency in smooth maps. Figures 14
and 18(b) show the phase portrait of the map near
the first homoclinic bifurcation. After this bifurca-
tion the stable WS± and unstable WU± manifolds of
the saddle 4-cycle intersect transversely forming a
homoclinic structure [see Figs. 15 and 18(c)]. Note
that the transversal homoclinic structure exists
in a very narrow parameter region confined by
two homoclinic bifurcation boundaries [Kuznetsov,
2004] corresponding to collisions between stable and
unstable invariant manifolds from opposite sides in
the phase plane. The phase portrait in Fig. 14 corre-
sponds to the “first homoclinic contact” boundary.

As the parameter τR increases, the second
homoclinic bifurcation occurs. At this bifurcation
the unstable manifolds WU± of the saddle 4-cycle

(a) (b)

Fig. 13. Structure of the state space before the first homoclinic bifurcation. A stable focus and a saddle 4-cycle coexist with a
repelling fixed point. The stable manifold WS± of the saddle cycle forms a saddle-repelling focus connection around the periodic
points of the stable focus 4-cycle and separates the basin of attraction of the stable cycle from the divergent domain. The
branches WU− of the unstable manifold of the saddle cycle converge to the stable focus 4-cycle, while the branches W U

+ diverge
to infinity. Schematically this structure is shown in Fig. 18(a). The area marked by a rectangle in (a) is shown magnified in
(b). Parameters: τL = −0.5, τR = 0.33, δL = 0.5, δR = 1.8, µ = 1.
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(a) (b)

Fig. 14. Structure of the state space close to the first homoclinic bifurcation. At this bifurcation, the branches WS
+ of the

stable manifold of the saddle cycle are touched “from outside” by the branches WU
+ of the unstable manifold (similarly to a

homoclinic tangency in smooth maps). Schematically this structure is shown in Fig. 18(b). The area marked by a rectangle in
(a) is shown magnified in (b). Parameters: τL = −0.5, τR = 0.3385, δL = 0.5, δR = 1.8, µ = 1.

(a) (b)

Fig. 15. Structure of the state space between the first and the second homoclinic bifurcations. The branches W S
+ and WU

+

of the stable and the unstable manifolds of the period-4 saddle cycle intersect transversely forming a homoclinic structure.
Schematically this structure is shown in Fig. 18(c). The area marked by a rectangle in (a) is shown magnified in (b). Parameters:
τL = −0.5, τR = 0.34, δL = 0.5, δR = 1.8, µ = 1.

1630040-17

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
01

/1
7/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 5, 2017 14:51 WSPC/S0218-1274 1630040

V. Avrutin et al.

(a) (b)

Fig. 16. Structure of the state space close to the second homoclinic bifurcation. At this bifurcation, the branches WS
+ of

the stable manifold of the saddle cycle are touched “from inside” by the branches WU
+ of the unstable manifold (similarly

to a homoclinic tangency in smooth maps). The area marked by a rectangle in (a) is shown magnified in (b). Parameters:
τL = −0.5, τR = 0.3405, δL = 0.5, δR = 1.8, µ = 1.

(a) (b)

Fig. 17. Structure of the state space after the second homoclinic bifurcation at which a pair of closed invariant curves appear.
The attracting closed invariant curve Ca includes two cycles, a saddle and a stable focus, and the saddle-focus connection
composed of the unstable manifolds WU± of the saddle cycle. The branches W U

+ of the saddle cycle come from the repelling
closed curve Cr, which separates the basin of attraction of the stable motion from the divergent domain. The other branches
WU− issue from the repelling focus fixed point. Schematically this structure is shown in Fig. 18(d). The area marked by a
rectangle in (a) is shown magnified in (b). Parameters: τL = −0.5, τR = 0.35, δL = 0.5, δR = 1.8, µ = 1.
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(a) (b)

(c) (d)

Fig. 18. Schematic representation of the structure of the state space (a) before the first homoclinic bifurcation (see Fig. 13);
(b) at the first homoclinic bifurcation (see Fig. 14); (c) between the first and the second homoclinic bifurcations (see Fig. 15);
(d) after the second homoclinic bifurcation (see Fig. 17).

contact the stable WS± manifolds from the differ-
ent side (see Fig. 16) than at the first homoclinic
bifurcation. As a result of this bifurcation, a pair
of closed invariant curves appear simultaneously,
one attracting and one repelling, as illustrated in
Figs. 17 and 18(d). The attracting set Ca includes
two cycles, a saddle and a stable focus, and is
formed by the saddle-focus connection composed

of the unstable manifolds W U± of the saddle cycle
(Fig. 17). The stable manifolds of the saddle cycle
come from different invariant repelling sets: the
branches WS

+ come from a repelling closed curve Cr,
which separates the basin of attraction of the sta-
ble focus from the divergent domain Bdiv, and the
other branches W S− issue from the repelling focus
fixed point OR.

1630040-19

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
01

/1
7/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



January 5, 2017 14:51 WSPC/S0218-1274 1630040

V. Avrutin et al.

6. Conclusion

Dangerous border collision bifurcations have been
introduced as a special kind of border collision
bifurcations in which the system under consider-
ation has stable fixed points before and after the
bifurcation, while the fixed point at the bifurcation
moment is unstable as its basin of attraction shrinks
to a set of measure zero. Later, this phenomenon
has been understood from the theoretical point of
view and has been observed experimentally. How-
ever, subsequent developments in the area of piece-
wise smooth systems have shown that the original
definition of a dangerous border collision bifurca-
tion is too restrictive as it excluded the possibility
of attractors other than fixed points to be involved
in a dangerous bifurcation.

In this paper we have proposed an extended def-
inition which incorporates the possibility of having
any kind of attractors before and after the bifur-
cation. Using the piecewise-linear normal form, we
have explored some of the dynamical features that
this extension offers. In particular, we found that
there are two different types of dangerous border
collision bifurcation in the sense of the extended
definition.

The first mechanism was already known (as it
applies for dangerous bifurcations in the sense of
the original definition) and is typically (although
not always) related to the existence of a singleton
saddle cycle at the boundary between the basins
of bounded and unbounded trajectories before and
after the bifurcation. For this mechanism we have
proved a general result that the same pair of cycles
are associated with the event before and after
the bifurcation, exchanging roles at the bifurcation
point. That is why the regions of dangerous border
collision bifurcation are symmetric in the parameter
space with respect to the µ = 0 subspace. We have
also summarized the calculation procedure for these
regions. We have discovered a second type of dan-
gerous bifurcations in the sense of the extended def-
inition, in which the boundary between convergent
and divergent domains in the phase space is formed
by a repelling closed invariant curve. This invariant
curve may be associated either with phase-locked
or with quasiperiodic dynamics. In the presented
example of the latter case we have shown how this
invariant curve appears together with an attract-
ing one, which is formed by a saddle-focus connec-
tion. Both invariant curves appear simultaneously

as a result of a sequence of two homoclinic bifurca-
tions which are similar to homoclinic tangencies in
smooth maps.
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Appendix A

Proof of Eqs. (10) and (15)

Instead of proving particular Eqs. (10) and (15)
we can prove the following more general statement,
describing the equivalence of regions related to dan-
gerous bifurcations for µ > 0 and µ < 0:

Proposition 1. Suppose that for µ > 0

(i) There exist two cycles Oσ and O� and with the
existence regions satisfying P(+)

� � P (+)
σ .

(ii) The region D(+)
σ ⊂ P (+)

σ \P (+)
� is confined by

two boundaries ησ and η� associated with
codimension-1 degenerate transcritical bifurca-
tions of the cycles Oσ and O�, respectively.

(iii) The region D(+)
σ is not intersected by any curves

Nj = 0 or D = 0 where Nj and D are as given
by Eq. (A.3) for Oσ and O�.

Then for µ < 0

• the cycles Oσ and O� exist ;
• the existence regions of the cycles P (−)

σ and
P (−)

� (neglecting the sign of µ) differ from P (+)
σ

and P (+)
� ;
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• however, there is a region D(−)
� ⊂ P (−)

� \P (−)
σ which

is confined by the same two boundaries ησ and η�

as for µ > 0 and therefore coincides with D(−)
σ

(neglecting the sign of µ).

To prove this proposition, we use the following
notation. Let

Oσ = {Xj = (xj , yj)T}m−1
j=0 (A.1)

be an m-cycle of map (1) corresponding to the sym-
bolic sequence

σ = σ0σ1 · · · σm−1 (A.2)

with σj ∈ {L,R}.
Remark 1. It can be shown that the analytic expres-
sions of the x-components of the points of Oσ can
be written as

x0 =
µN0

D
,x1 =

µN1

D
, . . . , xm−1 =

µNm−1

D
(A.3)

with the following properties:

(i) All expressions for xj , j = 0, . . . ,m − 1 have
the same denominator D.

(ii) All expressions for Nj, j = 0, . . . ,m− 1 and D
do not depend on µ but on τL, τR, δL, δR only.

(iii) All expressions for xj , j = 0, . . . ,m − 1 have
the same linear factor µ.

Remark 2. Recall that the cycle Oσ exists if the
points Xj are located in the left/right half-planes
in accordance with the symbolic sequence σ. More
precisely, the cycle exists iff each of the conditions
from the following set

C = {cj}m−1
j=0 with cj =

{
xj ≤ 0 if σj = L
xj ≥ 0 if σj = R

(A.4)

is satisfied. Otherwise the cycle does not exist and
is called virtual.

Now let us introduce the virtuality index κ of
a cycle Oσ defined at a point τL/R, δL/R, µ in the
parameter space as the number of the conditions
from the set C which are violated at this point:

κ : {σ, τL/R, δL/R, µ} → {0, . . . ,m}. (A.5)

Clearly, the cycle exists iff κ is zero.
The key point of the proof of Proposition 1

is to show how the virtuality index κ changes if
the parameters are varied across several bifurcations
boundaries. For the proof below we need the follow-
ing two properties:

Property 1. If µ is kept fixed and τL/R, δL/R are
varied across a codimension-1 degenerate transcrit-
ical bifurcation boundary from inside the existence
region of a cycle to outside, then for this cycle the
index κ changes from zero to m.

Proof. Recall that a degenerate transcritical bifur-
cation corresponds to the condition D = 0 in
Eq. (A.3). If the parameters are varied across such
a boundary, then each value xj, j = 0, . . . ,m − 1,
changes its sign. Accordingly, as before the bifurca-
tion all m conditions (A.4) from the set C are sat-
isfied (κ = 0), so after the bifurcation all of them
are violated (κ = m). �

Property 2. If τL/R, δL/R are kept fixed and for µ >
0 the virtuality index of a cycle is κ = k with 0 ≤
k ≤ m, then for µ < 0 the virtuality index of this
cycle is κ = m − k.

Proof. Since Nj , j = 0, . . . ,m − 1, and D depend
on τL/R, δL/R only, and these parameters are kept
fixed, the effect of µ varied through zero is that each
value xj , j = 0, . . . ,m−1, changes its sign. Accord-
ingly, each condition in (A.4) which is satisfied for
µ > 0 becomes violated, and each violated condition
becomes satisfied. This corresponds to a transition
from κ = k to κ = m − k. �

Now we can provide the following.

Proof of Proposition 1. The idea of the proof is sim-
ple: when starting in the existence region of a cycle
(κ = 0) and changing the parameters across the
boundary given by a degenerate transcritical bifur-
cation curve, we obtain for this cycle κ = m. Even-
tually changing the sign of µ we recover κ = 0, so
that the cycle necessarily exists again.

More precisely, let us consider first the case
µ > 0. In the schematic picture shown in Fig. 19(a)
the region D(+)

σ is confined by the curves ησ and
η� associated with degenerate transcritical bifurca-
tions of the cycles Oσ and O�, respectively. Let P (+)

1
be the region in the parameter space separated from
D(+) by η� [on the right side of D(+) in Fig. 19(a)]
and P (+)

2 the region separated from D(+) by ησ [on
the left side of D(+) in Fig. 19(a)]. Let A(+)

1 be a
point in the region P (+)

1 sufficiently close to η� and
B(+)

1 be a point in the region D(+) sufficiently close
to A(+).

As at η� the cycle O� undergoes a degener-
ate transcritical bifurcation, it is guaranteed that
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(a) (b)

Fig. 19. Schematic representation of the regions in the (τL, τR, δL, δR) parameter space in which the cycles Oσ and O� exist
for (a) µ > 0 and (b) µ < 0.

before the bifurcation the cycle exists, and hence
also Oσ (by assumption (i)), i.e. κ(σ,A(+)

1 ) = 0
and κ(	,A(+)

1 ) = 0. Then, after the parameters
are varied across η� the virtuality index becomes
κ(	,B(+)

1 ) = m by Property 1, while κ(σ,B(+)

1 ) = 0
remains. By assumption (iii) these values are valid
in the complete region D(+)

σ and in particular at a
point B(+)

2 located inside D(+)
σ close to the boundary

ησ. Then at a point A(+)

2 located sufficiently close to
B(+)

2 but outside D(+)
σ we obtain κ(σ,A(+)

2 ) = m (by
Property 1), while κ(	,A(+)

2 ) = m remains.
Next let us change the sign of µ. As D does

not depend on µ, the curves ησ and η� do remain
the same. Property 2 implies that in the region
between these curves it holds κ(σ,B(−)

1,2) = m

and κ(	,B(−)

1,2) = 0, i.e. cycle O� exists in the
region between these curves (denoted accordingly
by D(−)

� ) while the cycle Oσ does not. Similarly,
κ(σ,A(−)

2 ) = 0 and κ(	,A(−)

2 ) = 0, i.e. both cycles
exist in the region P (−)

2 , and κ(σ,A(−)

2 ) = m,
κ(	,A(−)

2 ) = m, i.e. no one cycle exists in the region
P (−)

1 . �

Clearly, Eqs. (10) and (15) follow from the
Proposition 1 with σ = RLk−1R, 	 = RLk and
σ = LRk, 	 = LRk−1L, respectively.

Remark 3. The described structure can be summa-
rized as follows. For µ > 0 in the region P(+)

1 both
cycles Oσ and O� exist. When the parameters are
varied across the boundary η� the cycle O� disap-
pears in a degenerate transcritical bifurcation. After
this boundary the cycle does not exist for µ > 0
but necessarily appears for µ < 0. Note also that
the degenerate transcritical bifurcation corresponds
to the condition that one of the eigenvalues of the

cycle is +1, and the expressions for the eigenvalues
do not depend on µ. Hence, the stability of the cycle
changes at η� in the following way:

(a) if the cycle O� disappears at η� for µ > 0 stable,
then it appears at η� for µ < 0 unstable, and
vice versa;

(b) the same applies to the cycle Oσ which exists for
µ > 0 in the regions P (+)

1 and D(+)
σ , disappears

at ησ, and appears at this curve again for µ < 0,
changing its stability.

Appendix B

Calculation of the Parameter

Regions of Dangerous Bifurcations

The calculation of the parameter regions in which a
variation of µ across zero leads to a dangerous bifur-
cation differs depending on the type of the bifur-
cation. For the novel type reported in this paper
and leading to the bounded basin boundary (see
Sec. 5.2), the possible calculation procedures are
closely related to the detection of pair of cycles
saddle-repelling node or saddle-repelling focus and
to the existence of related homoclinic connections
or homoclinic tangles. These procedures are not
yet well developed. By contrast, for the previously
known mechanism leading to the basin boundary
of Bdiv that extends to infinity (see Sec. 5.1), the
calculation procedure is as follows:

(1) determine the pair of complementary cycles
related to the particular region of dangerous
bifurcations;
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(2) determine the bifurcation boundaries associ-
ated with degenerate transcritical bifurcations
of these cycles.

Note that for the calculation of the degenerate tran-
scritical bifurcation curves one can use the condi-
tion that one of the eigenvalues of the corresponding
cycle becomes +1. However, it is easier to use the
condition that the denominator in the expression of
any point of the cycle becomes zero. In [Ganguli &
Banerjee, 2005] it is shown that the later condition
implies the former one.

Clearly, the applicability of the described pro-
cedure for analytic calculation of the boundaries
of regions associated with dangerous bifurcations is
restricted by the complexity of the involved expres-
sions which grows with increasing periods of the
corresponding cycles. Therefore, in previous publi-
cations the described procedure has been applied
for cycles with relatively low periods. However,
the results reported recently in [Saha & Baner-
jee, 2016] make it possible to extend the appli-
cability of the calculation procedure. To illustrate
the idea of this extension let us consider as an
example the calculation of the boundaries of the
regions of dangerous bifurcations reported in the
original publications [Ganguli & Banerjee, 2005].
These boundaries are given by the degenerate tran-
scritical bifurcation curves ηLRk and ηLRk−1L of the
cycles OLRk and OLRk−1L, respectively. To obtain
the analytic expression for these curves we can com-
pute any one point for each of the associated cycles.
Then, equating the denominators in these expres-
sions to zero, we obtain parameter values at which
the points of the cycle approach infinity, and the
cycle appears/disappears via a degenerate transcrit-
ical bifurcation. By extension of Leonov’s method
[Leonov, 1959, 1962] as used in [Avrutin et al.,
2012], it can be shown that for the map (1) a point
on the cycle ORLk is given by

(I − Ak
LAR)−1(Ak

L + φL,k)B, (B.1)

where

φL,k = (I − AL)−1(I − Ak
L). (B.2)

Similarly, a point of the cycle ORLk−1R is given by

(I − Ak−1
L A2

R)−1(Ak
L(I + AR) + φL,k)B. (B.3)

As one can see, expressions in Eqs. (B.1) and (B.3)
force us to calculate high powers of the matrix AL.
Similar calculations for other cycles may require to
calculate high powers of the matrix AR as well. This
can easily be done due to the following

Proposition 2. For all k ≥ 1 the kth power of the
matrix

A =

(
τ 1

−δ 0

)
(B.4)

is given by

Ak =

(
ak ak−1

−δak−1 −δak−2

)
(B.5)

where
ak = τak−1 − δak−2,

a0 = 1, a−1 = 0.
(B.6)

This result has been mentioned in [Sushko & Gar-
dini, 2008]. A proof which applies not only in R2

but also in the general case Rn, n ≥ 2 can be found
in [Saha & Banerjee, 2016]. Note also that Eq. (B.6)
has an explicit solution so that the necessary pow-
ers of the matrices AL and AR can be calculated
immediately, without iterating Eq. (B.6):

ak =
1
∆

((
2δ

τ − ∆

)k+1

−
(

2δ
τ + ∆

)k+1
)

if τ2 − 4δ > 0 (B.7)

ak = (1 + k)
(τ

2

)k
if τ2 − 4δ = 0 (B.8)

ak =
√

δk

(
cos(θk) +

τ√
4δ − τ2

sin(θk)
)

if τ2 − 4δ < 0 (B.9)

where

∆ =
√

τ2 − 4δ, cos(θ) =
τ

2δ
,

sin(θ) =
√

4δ − τ2

2δ
.
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