
International Journal of Bifurcation and Chaos, Vol. 16, No. 3 (2006) 647–669
c© World Scientific Publishing Company

BASIN FRACTALIZATIONS GENERATED BY A
TWO-DIMENSIONAL FAMILY OF (Z1–Z3–Z1) MAPS

GIAN-ITALO BISCHI∗ and LAURA GARDINI†
Istituto di Scienze Economiche,

University of Urbino, Italy
∗bischi@econ.uniurb.it
†gardini@econ.uniurb.it

CHRISTIAN MIRA
CESNLA 19 rue d’Occitanie, Fonsegrives, 31130 QUINT,

and Istituto di Scienze Economiche,
University of Urbino, Italy

c.mira@free.fr

Received January 11, 2005; Revised February 14, 2005

Two-dimensional (Z1–Z3–Z1) maps are such that the plane is divided into three unbounded
open regions: a region Z3, whose points generate three real rank-one preimages, bordered by
two regions Z1, whose points generate only one real rank-one preimage. This paper is essentially
devoted to the study of the structures, and the global bifurcations, of the basins of attraction
generated by such maps. In particular, the cases of fractal structure of such basins are considered.
For the class of maps considered in this paper, a large variety of dynamic situations is shown,
and the bifurcations leading to their occurrence are explained.
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1. Introduction

This paper is devoted to some properties of a family
of (Z1–Z3–Z1) two-dimensional noninvertible maps
T : (x, y) → (x′, y′), defined by two polynomials, a
linear one and a cubic one, in the form:

x′ = x + y

y′ = ax + bx2 + cx3 + dy
(1)

This family of maps depends on the parameters
a, b, c, d. It is reminded that noninvertible maps are
identified by a symbolism based on the configura-
tion of regions Zk of the space, each point of Zk

having k distinct rank-one real preimages (see e.g.
[Mira et al., 1996a]). For the two-dimensional map
(1), (Z1–Z3–Z1) means that the plane is divided
into three unbounded open regions: a region Z3,

whose points generate three real rank-one preim-
ages, bordered by two regions Z1, whose points gen-
erate only one real rank-one preimage. The map
family considered here is such that the boundaries
of the regions Zk, k = 1, 3, are made up of two
parallel straight lines L, L′. These lines are the
branches of the rank-one critical curve LC = L∪L′,
locus of points such that two determinations of the
inverse correspondence T−1 are merging on the set
LC−1 = L−1 ∪ L′

−1, which is made up of two verti-
cal parallel straight lines. The set LC−1 is the locus
of points where the Jacobian determinant of T van-
ishes. For the maps (1) the plane may be considered
as made up of k sheets inside Zk, k = 1, 3, the sheets
joining along the set LC. This is related to what is
called a foliation of the plane [Mira et al., 1996a;
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Mira et al., 1996b; Cathala, 2003]. It is worth noting
that noninvertible polynomial maps are incompletely
identified by their degree. Indeed, two-dimensional
quadratic maps may lead to regions Zk, for which
the highest integer k is either 2 or 4. For two-
dimensional maps with cubic components the high-
est integer k may be either 3, or 5, or 7, or 9. The
map complexity depends on the highest value of
k. So a good map identification implies the recog-
nition of the Zk regions (k = 1, 3, here) con-
figuration. The (Z1–Z3–Z1) foliation structure is
the simplest one for cubic maps. More complex
situations occur when LC contains cusp points,
represented by a symbol “<”, or “>”. So if the
highest value of k is three, (Z1 < Z3) maps are
such that LC (separating only two areas Z1 and
Z3) has a cusp (“cape”) “penetrating” in Z1. Maps
of (Z1 < Z3 >) type are defined by LC as a closed
curve containing Z3, with two cusp points, giving
rise to a “lip” shape. Such arguments, with sev-
eral examples, are developed in [Mira et al., 1996a].
When the inverse map has a vanishing denomina-
tor along a curve (γ), the boundary of regions Zk

are made up of branches of LC, but also may be
constituted by arcs of (γ) (see [Bischi et al., 1999,
p. 147]).

This paper is essentially devoted to the basin
structures generated by T , more particularly when
they are fractal, and their bifurcations. For the
maps considered here, a large variety of dynamic
situations is shown, and the bifurcations leading to
their occurrence are explained. Taking into account
the complexity of the corresponding problems, the
modus operandi is not an abstract one. It imitates
the botanists approach, collecting piece by piece
unknown plants, hoping to find relations between
some of them in order to define classes of properties.
In the present case the identification of bifurcations
leading to a basin fractalization is the guideline.
As for the nonfractal basins, these bifurcations are
characterized by a common feature: the contact of
the basin boundary with the critical set LC. Even
if the structure of LC is simple, the basin bound-
ary may be very complex with a large variety of
geometrical situations, which leads to a large vari-
ety of contact bifurcations and fractalization of
the boundaries.

The basins generated by two-dimensional non-
invertible maps may be either simply connected,
or multiply connected, or nonconnected, depend-
ing on the position of their boundary with respect
to the critical set LC [Mira et al., 1996a; Mira

et al., 1996b]. We remind that a basin is multiply
connected when it is pierced by holes, called lakes
in the above references, and for a (Z1–Z3–Z1) map
these holes are necessarily infinitely many, because
each of them has infinitely many preimages. Anal-
ogously, when a basin of a (Z1–Z3–Z1) is noncon-
nected, it is always made up of infinitely many areas
(called islands) without any connection, contrarily
to (Z0–Z2) maps which may have only one island in
the Z0 area in certain cases. For the maps (1) here
considered, the limit set of lakes, or islands, may
include a finite number of cycles, or infinitely many
cycles, or invariant manifolds of saddle cycles, or
repelling invariant closed curves, or strange repellers
(SR henceforth) resulting from the destabilization
of chaotic attractors. In this last case the basin may
have a fractal structure. In general, when the limit
set of lakes or islands that constitute a basin include
an invariant set on which the dynamics are chaotic,
one can say that the basin has a fractal structure.
We can also say that the limit set includes a strange
repeller, formed by infinitely many unstable cycles
of any period, unstable sets of saddle cycles, the
limit set of their preimages when the period tends
toward infinity, and the preimages of any rank of all
these points.

As a repulsive set, a strange repeller belongs
to some basin boundaries [Mira et al., 1996a]. Its
unstable cycles and the limit sets of their preimages
come from some former chaotic attractor. When
generated by noninvertible maps, a strange repeller
SR gives rise either to chaotic transients toward an
attractor, or to a fractal basin. In the first case
the SR points are not limit points of lakes, or
islands, but are located inside the area bounded
by the “external” boundary of a simply connected
immediate basin, where immediate basin means the
connected portion of the basin that contains the
attractor. The SR points belong to the total basin
boundary. An initial point belonging to a small
neighborhood of a SR generates an orbit which
has an erratic behavior during a certain number of
iterations, then convergence toward the attractor
inside its immediate basin is observed. In the sec-
ond case the SR points are limit points of lakes (for
multiply connected basins), or islands (for noncon-
nected basins). Then a SR may be the nucleus of the
corresponding fractal basin, as it may correspond
to a fuzzy basin boundary separating the basins of
two, or more, attractors. A simply connected basin
with chaotic transients (i.e. including a SR) may
have not a fractal structure, but it may have a
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fractal boundary, because the SR which is at the
origin of the chaotic transient belongs to the basin
boundary.

About the situations giving rise to unstable
fractal sets SR, the paper shows and explains
some bifurcations leading to a qualitative change
of a fractal basin generated by the map (1). More
particularly:

(a) the transition from a simply connected basin,
containing a SR set, to a fractal multiply con-
nected basin,

(b) the transition from a fractal basin, associated
with a given nucleus SR1, to a fractal basin
associated with two strange repellers SR1 and
SR2,

(c) the transition from a fractal multiply con-
nected basin to a fractal nonconnected
basin.

All these bifurcations, as the ones related with
basins without a fractal structure, are due to con-
tacts between the critical set LC and a basin
boundary (stable set of saddle cycle). Each of these
bifurcations leads to a contact occurring in a differ-
ent way with respect to the others. In general, they
are of homoclinic type.

We follow the terminology of Mira et al. [1996a],
Mira et al. [1996b], where the structure of the basins
is described by using geographic analogies: sea and
continent denote two different basins separated by
a common boundary, for example, sea may denote
the basin of divergent trajectories and continent
the basin of bounded ones, and consequently lakes
and islands denote the nonconnected portions of
the sea and the continent, respectively. The term is
used roadstead when a “lake” communicates with
the “sea”.

Section 2 is devoted to some reminders about
general properties of two-dimensional noninvert-
ible maps, the conditions of existence of a non-
connected basin, those related to a multiply
connected basin, and also homoclinic and hetero-
clinic situations. Section 3 establishes the equation
of the critical set. Section 4 concerns noncon-
nected basins and multiply connected ones with
a nonfractal structure. Section 5 deals with such
basins, but with fractal structure. The bifurca-
tions denoted above as (a)–(c) are fully explained.
Section 6 concludes, and indicates some conse-
quences of the results on some extended problems
for which two-dimensional noninvertible maps play
a role.

2. Some Reminders

2.1. General properties

Consider a continuous two-dimensional noninvert-
ible map T , i.e. such that the highest degree k of
a region Zk is k ≥ 2. Whether T be smooth or
not, the rank-one critical curve LC is defined as
the locus of points such that at least two determi-
nations of the inverse correspondence are merging.
In general, a critical curve LC is made up of several
branches. The locus of these “coincident first rank
preimages” is a curve LC−1, called curve of merg-
ing preimages. As in any neighborhood of a point
of LC there are points for which at least two dis-
tinct inverses are defined, LC−1 is a set of points
for which the Jacobian determinant of T vanishes
if T is smooth, or for which the noninvertible map
T is not differentiable. The curve LC satisfies the
relations T (LC−1) = LC, and T−1(LC) ⊇ LC−1.

The simplest case is that of maps in which
LC (made up of only one branch) separates the
plane into two open regions Z0 and Z2. A point
X(x, y) belonging to Z2 has two distinct preimages
(or antecedents) of rank one, and a point X of Z0

has no real preimages. The corresponding maps are
said to be of (Z0–Z2) type. In more complex cases a
classification of noninvertible maps from the struc-
ture of the set of Zk regions can be made [Mira
et al., 1996a]. It is worth noting that with two-
dimensional noninvertible maps the organization of
bifurcations, for example in a parameter plane, may
be very different from that given by invertible maps

A closed and invariant set A is called an attract-
ing set if some neighborhood U of A exists such
that T (U) ⊂ U , and T n(X) → A as n → ∞,
∀X ∈ U . An attracting set A may contain one, or
several attractors. It may coexist with sets of repul-
sive points (strange repellers) giving rise to either
chaotic transients towards these attractors, or fuzzy
boundaries of their basin [Mira, 1987; Mira et al.,
1996]. The open set D =

⋃
n≥0 T−n(U) is the total

basin of A, i.e. D is the open set of points X whose
forward trajectories (set of increasing rank images
of X, or orbits) converge towards A. For the map
(1) the basin D is invariant under backward itera-
tion T−1 of T , but not necessarily invariant by T

T−1(D) = D, T (D) ⊆ D

For the boundaries ∂D in general the following rela-
tions hold

T−1(∂D) ⊇ ∂D, T (∂D) ⊆ ∂D
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The strict inclusions ⊂ hold iff D contains points of
a Z0 region, whereas the strict inclusion ⊃ occurs
only for particular classes of maps. For the fam-
ily (1) the equality holds in all the relations given
above.

If A is a connected attractor (simplest case: A
is a fixed point), the immediate basin D0 of A, is
defined as the widest connected component of D
containing A.

We remark that T−1(∂D) = ∂D implies that
∂D must contain the set of preimages of any of its
cycles, i.e. must contain the stable set W s of any
cycle of T belonging to ∂D, while T (∂D) ⊆ ∂D
means that the images of any of its points belongs to
∂D∩Zk, k ≥ 1. For unstable node and focus cycles,
it is worth noting that the stable set W s is made
up of the set of increasing rank preimages of cycle
points (such a set does not exist in the case of an
invertible map). For a saddle cycle, W s is made up
of the local stable set W s

l , associated with the deter-
mination of the inverse map for which this cycle is
invariant, and its preimages of any rank.

When A is the widest attracting set of a map T ,
its basin D (called continent in [Mira et al., 1994]
and [Mira et al., 1996a]) is the open set D contain-
ing A such that its closure D is the locus of points
of the plane having bounded trajectories. Its com-
plementary set, denoted by D′ (i.e. D ∪ D′ = R2)
when it is nonvoid, is the basin (called sea in [Mira
et al., 1996a]) of an attracting set at infinity (on
the Poincaré’s equator), i.e. the locus of points of
the plane having divergent trajectories. In such a
case the two basins have a common boundary (the
separating set).

A map T may also possess no attracting set at
finite distance (when only repellers, chaotic or not,
exist at finite distance). In such a case, the locus
of points of the plane having bounded trajectories
belongs to the boundary ∂D′ of D′ (and R2 = D′ ).
Then ∂D′ may be a strange repeller giving rise to a
chaotic transient toward the Poincaré’s equator.

2.2. Existence of a nonconnected
basin, and a multiply connected
basin. Their bifurcations

In the case of a (Z0–Z2) map we have T−1(LC) =
LC−1, see e.g. [Mira et al., 1996a; Mira et al.,
1996b]. Instead, a (Z1–Z3–Z1) map is characterized
by T−1(LC) ⊃ LC−1. In this case the inverse of
LC generates an extra-preimage, denoted by LC−1,
such that T−1(LC) = LC−1 ∪ LC−1 [Mira et al.,

1996a], where LC−1 = L−1 ∪ L′
−1 and LC−1 =

L−1 ∪ L
′
−1.

Before showing the numerical explorations of
the rich dynamic scenarios of the family of maps
(1) along some bifurcation paths in the space of
parameters, we now show some qualitative pictures
to explain exemplary situations leading to con-
tact bifurcations that change the topological struc-
ture of the basins of attraction in a (Z1–Z3–Z1).
Figures 1 and 2 describe the situations leading to
a nonconnected basin, and a multiply connected
basin. If X(x, y) ∈ Z3 the inverse map has three
determinations T−1(X) = T−1

1 (X) ∪ T−1
2 (X) ∪

T−1
3 (X). If X ∈ LC, then T−1

1 (X) = T−1
2 (X) ∈

LC−1. If X ∈ LC, then T−1(X) = X1−2
−1 ∪X3−1 with

X1−2
−1 ∈ LC−1. In this text, the symbolisms X1−2

−1 ,
D1−2

n , H1−2
n respectively indicate that a point X

belongs to LC−1, a rank-n island and a rank-n lake
[Mira et al., 1994; Mira et al., 1996a] are crossed
by LC−1.

Figure 1(a) corresponds to a nonconnected
basin D of an attracting set A (a fixed point P
in the figure). Let D0 be the immediate basin of
A. The basin D is nonconnected because D0 ∩ Z3

is nonconnected, and ∆0 ⊂ D0 ∩ Z3 (∆0 is called
headland) does not contain A. The three rank-one
inverses of ∆0 are given by T−1(∆0) = T−1

1 (∆0) ∪
T−1

2 (∆0) ∪ T−1
3 (∆0), T−1

1 (∆0) ∪ T−1
2 (∆0) = D1−2

1 ,
T−1

3 (∆0) = D3
1. In this figure the islands (noncon-

nected parts of the basin) D1−2
1 and D3

1 belong-
ing to Z1, they have only one rank-one preimage
D1−2

2 and D3
2 . If these islands, or one of their preim-

ages, belong to Z3, then it gives rise to three preim-
ages, and this process may lead to an arborescent
sequences of islands. In any case, for maps of type
(Z1–Z3–Z1), each island has at least one preimage,
so an infinite sequence of preimages always exist.

Noninvertible maps with an area Zk, k > 2, can
generate islands without the presence of a headland,
as represented in Fig. 1(b). This occurs when the
immediate basin D0 of the stable fixed point P is
such that ∂D0∩L = ∅, ∂D0∩L′ 
= ∅ (or conversely).
Let B0 = D0 ∩ Z3, with T−1(B0) = T−1

1 (B0) ∪
T−1

2 (B0) ∪ T−1
3 (B0). As shown from the positions

of the points a, b, and their rank-one preimages,
T−1

1 (B0) ∪ T−1
2 (B0) = D0, and T−1

3 (D0) belongs
to the island D1, as T−1

3 (B0) is part of D1 on the
left of L

′
−1. The rank-one inverses of P are given

by T−1
1 (P ) = P , T−1

2 (P ) = P−1, T−1
3 (P ) = P ′

−1.
The island D1 belonging to Z1 has only a rank-one
preimage D2. Let B2 = D2∩Z3 due to D2∩Z3 
= ∅,
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(a) (b)

(c) (d)

Fig. 1. (a) Nonconnected basin D of the fixed point P . Let D0 be the immediate basin of P . The three rank-one inverses
of the headland ∆0 are the islands (nonconnected parts of the basin) given by T−1(∆0) = T−1

1 (∆0) ∪ T−1
2 (∆0) ∪ T−1

3 (∆0),

with T−1
1 (∆0)∪ T−1

2 (∆0) = D1−2
1 , T−1

3 (∆0) = D3
1. (b) Islands generated without a headland presence. The immediate basin

D0 of the stable fixed point P is such that ∂D0 ∩ L = ∅, ∂D0 ∩ L′ �= ∅. (c) A global bifurcation happens when ∂D0 has a
tangential contact with L at the point c. It results from a tangential contact of ∂D0 with the extra-preimage L−1 at the point
c3−1 = T−1

3 (c) and a nontangential contact with L−1 at the point c1−2
−1 = T−1

1 (c) = T−1
2 (c), angular contact point of D0 with

D1. (d) After the bifurcation, a connection of an island subset with the immediate basin D0 occurs. A larger immediate basin
DS results, with aggregation of some island sets nonconnected with DS , such as the preimages of BS = DS ∩ Z3.
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(a) (b)

(c) (d)

Fig. 2. (a) Multiply connected basin D of the stable fixed point P . The hatched area H0 is called a bay, the holes
Hn = T−n(H0), n = 1, 2, 3, . . . , are called lakes. The rank-one lake is given by H1 = T−1

1 (H0) ∪ T−1
2 (H0). The lakes

Hn, remaining in the Z3 region, do not form an arborescent sequence when n → ∞. (b) The lakes Hn form an arborescent
sequence. Indeed H1 intersects Z3 and L′, as some of its increasing rank preimages. (c) Bifurcation from Fig. 2(a) when the
boundary ∂D has a contact with the critical arc L. This leads to an opening of the lakes in the sea (domain of divergent orbits),
with creation of roadsteads Rn, n = 1, 2, 3, . . . . (d) Bifurcation from Fig. 2(b), leading to a direct bifurcation multiply connected
basin � nonconnected basin. The point c is the contact point between ∂D and L, c1−2

−1 = T−1
1 (c) = T−1

2 (c) ∈ L−1 being an
angular contact point between H0 and H1. (e) After the bifurcation the basin D is nonconnected, made up of arborescent
sequences of islands T−n

0 (D0).
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(e)

Fig. 2. (Continued )

D2 ∩ L′ 
= ∅, one has T−1(D2) = D1−2
3 ∪ D3

3,
with D1−2

3 = T−1
1 (B2) ∪ T−1

2 (B2), island crossed
by L′−1, D3

3 = T−1
3 (D2), island crossed by L

′
−1.

The islands are obtained in an equivalent way, and
are infinitely many.1 A global bifurcation happens
when ∂D0 has a tangential contact with the crit-
ical segment L at the point c [Fig. 1(c)]. Conse-
quently, a tangential contact occurs between ∂D0

and the extra-preimage L−1 at the point c3
−1 =

T−1
3 (c) and a nontangential contact with L−1 at

the point c1−2
−1 = T−1

1 (c) = T−1
2 (c), which is an

angular contact point of D0 with D1. This situa-
tion leads to an aggregation of a islands subset with
the immediate basin D0, as indicated in Fig. 1(c).
A larger immediate basin DS results, with aggre-
gation of some islands sets nonconnected with DS ,
such as the first one DS1 = T−1

1 (BS) ∪ T−1
2 (BS),

BS = DS ∩ Z3, which has an annular aspect due
to ∂DS ∩ L′ = d ∪ e ∪ f ∪ g 
= ∅. If a basin inter-
sects simultaneously the two branches L and L′ of
LC, then the basin becomes simply connected. This
would have been the case if, instead of having a
local maximum M of ordinate in Z3 [Fig. 1(d)], ∂DS

would have intersect L.
Figure 2(a) corresponds to a multiply con-

nected basin D of an attracting set A (here a stable

fixed point P ). Let D∗ be the simply connected
region obtained by eliminating all the holes of D.
D is multiply connected because T−1(D∗) ⊂ D∗,
T (D∗ ∩ LC−1) ⊃ D∗ ∩ LC. The hatched area H0

is called a bay, Hn = T−n(H0), n = 1, 2, 3, . . . ,
are holes (lakes) inside D∗. The first lake H1 =
T−1

1 (H0) ∪ T−1
2 (H0) intersects L−1, and is gener-

ated by the bay. The third inverse T−1
3 (H0) does not

generate a hole. The lakes of Fig. 2(a) belong to Z1,
and so the lakes Hn (although infinitely many) do
not form an arborescent sequence when n → ∞. In
Fig. 2(b) for which H1 intersects Z3 and L′, as some
of its increasing rank preimages. Then T−1(H1) =
T−1

1 (H1) ∪ T−1
2 (H1) ∪ T−1

3 (H1), with T−1
1 (H1) ∪

T−1
2 (H1) = H1−2

2 intersecting L′
−1, T−1

3 (H1) = H3
2

intersecting L
′
−1, H3;2−1

3 = T−1
1 (H3

2 ) ∪ T−1
2 (H3

2 )
intersecting L−1, etc. We may have a finite num-
ber of lakes belonging to Z3 or infinitely many, and
only in the latter case the lakes form an arborescent
sequence.2

Figure 2(a) shows a multiply connected basin
that undergoes a bifurcation when ∂D∗ has a
contact with the critical arc L which leads to
an opening of the lakes in the sea (domain of
divergent orbits), with creation of roadsteads Rn,
n = 1, 2, 3, . . . [Fig. 2(c)]. Thus Fig. 2(c) shows the

1Only a few of them are represented in the qualitative figures.
2In fact, even if a point belonging to Z3 has three preimages, such preimages may all belong to Z1.
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bifurcation multiply connected basin � simply con-
nected basin. The same type of contact of Fig. 2(b),
with infinitely many sequences of lakes, may lead
to a direct bifurcation multiply connected basin �
nonconnected basin. This bifurcation corresponds
to Fig. 2(d), where c is the contact point between
∂D ≡ ∂D∗ and L, c1−2

−1 = T−1
1 (c) = T−1

2 (c) ∈ L−1

being an angular contact point between H0 and H1.
After the bifurcation the basin D is nonconnected,
made up of infinitely many sequences of islands
T−n

0 (D0) [Fig. 2(e)].

2.3. Homoclinic and heteroclinic
situations

Let U be a neighborhood of an unstable fixed point
(saddle, node or focus) p∗. The local (i.e. in U)
unstable set of p∗ is defined as the locus of points in
U having a sequence of preimages in U which tend
toward p∗. The global unstable set is the locus of all
points of the domain having a sequence of preim-
ages that converge toward p∗, and can be obtained
by constructing the images of the local unstable set.
When the map T is continuous and noninvertible,
the invariant unstable set W u(p∗) of a saddle point
p∗ is connected and self-intersections may occur (so
that it may not be a manifold). This cannot happen
for invertible maps. Self-intersections and loops of
W u(p∗) are described in [Gumowski & Mira, 1980a,
pp. 373–374; Gumowski & Mira, 1980b, pp. 203–
222; Mira et al., 1996a, pp. 506–515]. The role of
critical curves and curves of merging preimages is
again essential in the understanding of the forma-
tion of self-intersections of the unstable set of a sad-
dle fixed point.

The stable set W s(p∗) of a saddle p∗ is back-
ward invariant, T−1[W s(p∗)] = W s(p∗), and it is
mapped onto itself by T , T [W s(p∗)] ⊆ W s(p∗).
The stable set is invariant if T is invertible, while
for a noninvertible map it may be strictly mapped
onto itself. When T is continuous, self-intersections
cannot occur (so that it may be called manifold,
being a connected manifold, or the union of dis-
joint connected components which are manifolds).
When T is noninvertible, W s(p∗) may be non-
connected and made up of infinitely many closed
curves, passing through the increasing rank preim-
ages of p∗. An equivalent property holds for higher
dimensions.

While in invertible maps an expanding fixed
point (unstable node, or focus) p∗ has no stable set,
when T is noninvertible the stable set of p∗ is given

by all the preimages (of any rank) of this point:
W s(p∗) =

⋃
n≥0 T−n(p∗).

A point q is said to be homoclinic to the non-
attracting fixed point p∗ (or homoclinic point of
p∗) iff q ∈ W s(p∗) ∩ W u(p∗). Heteroclinic points
are obtained when the stable and unstable sets are
related to two different fixed points. A “contact
bifurcation” (between a critical set and a stable
(or unstable) set) may correspond to homoclinic
and heteroclinic bifurcations, and critical curves
are useful for interpreting such problems, and the
related bifurcations. Classically homoclinic and het-
eroclinic situations are defined for n-dimensional
diffeomorphisms, for n > 1, only for saddle points.
It is worth noting that the first “extended” notion
(with respect to the classical one) of homoclinic
and heteroclinic points in one-dimensional nonin-
vertible maps, with indication of its generalization
for m-dimensional maps, m > 1, was introduced by
Sharkovsky [1969].

2.4. The problem of numerical
simulations

Numerical simulations are used to obtain the results
of the paper, in particular, to obtain a delimita-
tion of the basins and to discuss their bifurcations.
Based on finite precision of computer calculations,
such a method gives only a macroscopic view of the
map behavior, and consequently it requires a crit-
ical analysis of the results. Considering the micro-
scopic point of view, it is worth to note that in
1979 Newhouse formulated a very important theo-
rem. It states that in any neighborhood of a Cr-
smooth (r ≥ 2) dynamical system, there exist
regions of the space of dynamical systems (or a
parameter space) for which systems with homo-
clinic tangencies (with structurally unstable, or
nonrough homoclinic orbits) are dense. Domains
having this property are called Newhouse regions.
This result was completed by V. S. Gonchenko,
D. V. Turaev and L. P. Shilnikov who assert that
systems with infinitely many homoclinic orbits of
any order of tangency, and with infinitely many
arbitrarily degenerate periodic orbits, are dense
in the Newhouse regions of the space of dynam-
ical systems (cf. [Shilnikov, 1997]). This fact has
an important consequence: systems belonging to a
Newhouse region are such that a complete study
of their dynamics and bifurcations is impossible.
Indeed in many smooth cases, due to the finite
time of a simulation, what appears numerically as
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a chaotic (strange) attractor may contain a “large”
hyperbolic subset in presence of a finite or an infi-
nite number of stable periodic solutions. Generally
such stable solutions have high periods, and narrow
“oscillating” tangled basins, which are impossible to
exhibit numerically due to the finite time of obser-
vation, and unavoidable numerical errors. So it is
only possible to consider some of the characteristic
properties of the system, their interest depending
on the nature of the problem. Such complex behav-
iors occur for p-dimensional flows, p > 2, and thus
for p ≥ 2 invertible and noninvertible maps.

From a macroscopic point of view (the one con-
sidered in this paper) the union of the numerous,
and even infinitely many stable solutions, which
are stable cycles for a map, forms an attracting
set denoted by A. A numerical simulation, by defi-
nition, is made of a limited number of iterations.
Consider the case of a noninvertible map giving
rise to a chaotic attractor, and the elimination of
a transient, made up of a sufficiently large set of
“initial” iterations. Then either the numerical simu-
lation reproduces points of the chaotic area, related
to a “strict” strange attractor in the mathematical
sense, or represents a transient toward an attract-
ing set A including stable cycles of large periods.
The first case for example is that of some piece-
wise smooth maps (i.e. with points of nonsmooth-
ness), not permitting stable cycles (i.e. the Jacobian
determinant cannot be sufficiently small). In the
second case, supposing numerical iterations with-
out error, the transient would be toward a sta-
ble cycle having a period larger than the number
of iterations, this transient occurring inside a very
narrow basin, intermingled with similar basins of
the other stable cycles of large period. In the pres-
ence of unavoidable numerical errors, the iterated
points cannot remain inside the same narrow basin.
They sweep across the narrow tangled basins of
cycles of the attracting set A. Then they repro-
duce a chaotic area bounded by segments of critical
curves of increasing rank until a certain rank (see
e.g. [Mira, 1987]). This means that the boundary of
the chaotic area is the one observed numerically, in
the smooth case as a transient toward an attract-
ing set located inside the area, in the nonsmooth
case as the boundary of a strange attractor. Such a
property constitutes an important characteristic of
the system dynamics. This shows the interest of the
notion of chaotic area bounded by critical arcs (cf.
[Mira et al., 1996a]), even if in the smooth case it is
impossible to discriminate numerically a situation

of a strange attractor in the mathematical sense,
from that of an attracting set made up of stable
cycles with very large period.

3. Determination of the Critical Sets

The map (1) has three fixed points O = (0; 0),
P = (xP , yP ) and Q = (xQ, yQ), where

xP =
−b +

√
b2 − 4ac

2c
,

xQ =
−b −√

b2 − 4ac

2c

yP = yQ = 0

In the following, the multipliers (eigenvalues) of the
Jacobian matrix of T , evaluated at the fixed points,
will be denoted by S1 and S2.

The inverses of T are given by the solutions of
the cubic equation

cx3 + bx2 + (a − d)x + dx′ − y = 0, y = x′ − x

(2)

For d = −1 the map T 2, obtained after two itera-
tions, turns into a map with separated variables (x,
u = x + y)

x′′ = ax + bx2 + cx3

u′′ = au + bu2 + cu3
(3)

The boundaries of the regions Zk, k = 1, 3, are made
up of two parallel straight lines L, L′, branches of
the rank-one critical curve LC = L ∪ L′.

The set LC, defined as the locus of points such
that two determinations of the inverse map T−1 are
merging on the set LC−1 = L−1 ∪ L′−1, is given
by LC = T (LC−1) = T (L−1) ∪ T (L′

−1), where the
two branches of LC−1 can be obtained by equating
to zero the Jacobian determinant of T , i.e.:

L−1 :x =
−b +

√
b2 − 3c(a − d)

3c
= α+,

L′−1 :x =
−b − √

b2 − 3c(a − d)
3c

= α−

(4)

The extra-preimages L−1 and L
′
−1 are defined

from (2) taking into account (4). Put f(x) ≡ ax +
bx2 + cx3, then

L : y = f(α+) + d(x − α+),

L′ : y = f(α−) + d(x − α−)
(5)



656 G.-I. Bischi et al.

4. Nonconnected and Multiply
Connected Basins with a
Nonfractal Structure

4.1. Transition simply connected
basin ↔ multiply connected
basin

Consider (1) and the parameter set a = c = 1,
d = 0, −2.4 ≤ b < −2.6. The fixed point O is a
saddle (−1 < S1 < 0, S2 > 1), the points P and
Q are respectively a stable focus denoted by F in
Fig. 3, and an unstable node (S1 < −1, S2 > 1)
denoted by N1 in Fig. 3. For the set of parameters
considered here, the map T generates two cycles of
period two: a saddle Cj

2 and an unstable node N j
2 ,

j = 1, 2.
We start our numerical explorations from b =

−2.4, a parameter situation that gives a simply con-
nected basin D of the stable fixed point F , repre-
sented by the brown region in Fig. 3. For b = bf0 �
−2.4228 the basin D becomes multiply connected,
due to the creation of a bay H0 in the region Z3

after a contact bifurcation between L′ and the basin
boundary ∂D (see Fig. 4, obtained for b = −2.43).

1'−L L−1

'L

L
3Z

1Z

1Z

0D

1
2N

2
2N

2
2C

1
2C

1N
FO

a=c=1  d=0  b= − 2.4

Fig. 3. Map T with a = c = 1, b = −2.4, d = 0. The fixed
point C1 is a saddle (−1 < S1 < 0, S2 > 1). F is a stable
focus, denoted F , N1 an unstable node (S1 < −1, S2 > 1)
denoted N1. The map T generates two period two cycles: a
saddle Cj

2 and an unstable node Nj
2 , j = 1, 2. The basin D

of F is simply connected.
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a=c=1  d=0  b= − 2.43

Fig. 4. Map T with a = c = 1, b = −2.43, d = 0. Situation
after the bifurcation b = bf0 	 −2.4228, a contact bifurcation
between L′ and the basin boundary ∂D at a local maximum
of the ∂D ordinate. The basin D becomes multiply connected
by creation of a bay H0.

The rank-one lake is H1 = T−1(H0), made up of
the union of two preimages joining across L−1. The
third preimage of ∂H0 gives an arc of ∂D, according
to the qualitative situation described in Fig. 2(b).
The rank-(n + 1) lakes T−n(H1) = H i1···in

n+1 , n =
1, 2, . . . , form an incomplete arborescent sequences
when n → ∞, in the sense that only one rank-n
lake has a part belonging to Z3. Recall that every
point of Z3 has three rank-1, that may all belong
to Z3, or only two of them, the third one being in
Z1, or only one or zero, i.e. all the three preim-
ages may belong to Z1. In the situation represented
in Fig. 4 we have that one branch of the increas-
ing rank iteration tree has three preimages, the two
other branches have only one preimage. This results
in that the sequence of lakes cannot create a fractal
structure. The limit set of this sequence is an arc of
curve made up of the stable manifold of the period
two saddle Cj

2 , j = 1, 2, which includes the repelling
node N1, bounded by the period two unstable node
N j

2 , j = 1, 2, belonging to Z1, as shown in Fig. 4.
The contact bifurcation occurring at b = bf0

changes the simply connected basin D into a non-
fractal multiply connected one, pierced with holes
that have an arc of the stable manifold of a period
two saddle as limit set.
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4.2. Direct transition nonconnected
basin ↔ multiply connected
basin

For b = bf1 � −2.4317 a contact bifurcation
between L′ and the basin boundary ∂D occurs at
the point B shown in Fig. 5 (compare also with
the situation qualitatively represented in Fig. 2(d)).
Then for bf1 < b < 2.6, the basin D of the stable
focus F becomes nonconnected. Let D0 be its imme-
diate basin, D1 = T−1(D0) the rank-one island. It
is worth to note that the island D1, ∂D1 ∩ L′ 
= ∅,
is not created here from an headland, but accord-
ing to the situation described in Fig. 1(b). In this
example, at each iteration only one island has a part
inside Z3. As above for the lakes, the rank-(n + 1)
islands T−n(D1) = Di1···in

n+1 , n = 1, 2, . . . , form an
incomplete arborescent sequences when n → ∞, in
the sense that only one rank-n island has a part
belonging to Z3. The limit set of this sequence is the
arc of the stable manifold of the period two saddle
Cj

2 , j = 1, 2, bounded by the period two unstable
node N j

2 , j = 1, 2, as shown in Fig. 6 (b = −2.45).
This limit set is not fractal, hence the sequence of
islands cannot create a fractal structure.

The contact bifurcation occurring b = bf1

changes the multiply connected basin D into a
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a=c=1  d=0  b= − 2.4317

Fig. 5. Map T with a = c = 1, b = bf1 	 −2.4317, d = 0.
A contact bifurcation between L′ and the basin boundary
∂D occurs at the point b, i.e. at a local minimum of the ∂D
ordinate [situation of Fig. 2(d)].
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Fig. 6. Map T with a = c = 1, b = −2.45, d = 0. After the
bifurcation b = bf1 the basin D of the stable focus F becomes

nonconnected. The rank-one island is D1 = T−1(D0), D0

being the immediate basin of F . The contact bifurcation
b = bf1 changes the multiply connected basin D directly into
a nonconnected basin with the same limit set as in Fig. 2(e).
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Fig. 7. Map T with a = c = 1, b = −2.7, d = 0. For
b = bf2 	 −2.4956 a contact bifurcation, between L′ and the
island boundary ∂D1 at the maximum ordinate of ∂D1, has
occurred. Now for bf2 < b < 2.6, ∂D1 ∩ L′ = ∅, no island
belongs to Z3, all the rank-n islands belong to the regions
Z1. They form a nonarborescent sequence with the period
two unstable node Nj

2 , j = 1, 2, as limit set.



658 G.-I. Bischi et al.

nonconnected basin with the same limit set both for
the sequence of lakes and islands (see also the qual-
itative representation in Figs. 2(d) and 2(e)).

For b = bf2 � −2.4956 a contact bifurcation,
between L′ and the island boundary ∂D1, occurs.
For bf2 < b < 2.6, ∂D1 ∩ L′ = ∅, no island belongs
to Z3, all the rank-n islands belong to the regions
Z1. They form an infinite sequence with the period
two unstable node N j

2 , j = 1, 2, as limit set (see
Fig. 7, obtained for b = −2.7).

The contact bifurcation occurring at b = bf2

changes the nonconnected basin D with an arc of
saddle manifold as limit set for the islands into a
nonconnected basin with two points as limit set.

We remark that in all the situations considered
in this section no strange repeller exists.

5. Nonconnected and Multiply
Connected Basins with
a Fractal Structure

5.1. Bifurcations in the presence of
strange repellers. First situation

5.1.1. Origin of the strange repellers

We now consider a bifurcation path with a fixed set
of parameters a = 0.5, c = −1, d = 0, and increas-
ing values of b in the interval 0.5 ≤ b < 1. The fixed
point O is a saddle (−1 < S1 < 0, S2 > 1), the fixed
point P is a stable focus, and Q an unstable focus.
For b = 0.5, the map T has two attractors; the sta-
ble focus P , and a stable invariant closed curve Γ
resulting from a Neimark bifurcation after destabi-
lization of the focus Q (Fig. 8). T also generates
a period six saddle Cj with a “satellite” unstable
focus F j , j = 1, 6. The closure D of the basin D of
the attracting set Γ ∪ P is bounded by the stable
manifold of the period six saddle Cj, j = 1, . . . , 6,
that forms the external boundary ∂eD = ∂D. Let
D(P ) and D(Γ) be the basins of P and Γ, respec-
tively. These two basins have a common boundary
∂D(P ) = ∂D(Γ) which includes the stable manifold
W s(O) of the saddle O and the external bound-
ary ∂eD, that is ∂D(P ) = ∂D(Γ) = W s(O) ∪ ∂eD.
In the situation shown in Fig. 8 they are simply
connected. The stable manifold W s(O) spiralling
toward ∂De, and on ∂eD the period six saddle Cj

has turned into a period six unstable node and a
sequence of period-doubling cycles. From b = 0.5
to b = 0.65355, Γ undergoes a sequence of bifur-
cations described in [Mira et al., 1996a, pp. 515–
537] (cf. also [Frouzakis et al., 1997; Millérioux &
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Fig. 8. Map T with a = 0.5, b = 0.5, c = −1, d = 0. The
fixed point O is a saddle (−1 < S1 < 0, S2 > 1). The fixed
point P is a stable focus, and Q an unstable focus. The map
T has two attractors; the stable focus P , and a stable invari-
ant closed curve Γ. T also generates a period six saddle Cj

with a “satellite” unstable focus F j , j = 1, 6. The periods
of these cycles are given by colored points. The basin D of
the attracting set Γ ∪ P is bounded by the stable manifold
of the period six saddle Cj , j = 1, 6. Let D(P ) and D(Γ) be
respectively the basins of P and Γ, D = D(P )∪D(Γ). These
two basins have a common boundary ∂D(P ) = ∂D(Γ) which
is the stable manifold W s(O) of the saddle O, W s(O) =
∂D(P ) = ∂D(Γ). The basins D(P ) and D(Γ) are simply
connected because they intersect simultaneously L and L′.

Mira, 1997]), leading to an attractor Γ̃ denoted
as weakly chaotic ring (see Fig. 9, obtained with
b = 0.6535). For this parameter value a branch of
the unstable set W u(O) of the saddle O tends to Γ̃.
This branch of W u(O) presents self-intersections,
the other branch ends at the stable focus P . Now
the basin D(Γ̃) is multiply connected due to the
bay H0 and its increasing rank preimages H1 =
T−1(H0), H1 = T−1(H0), . . . , T−n(H1) = H i1···in

n+1 ,
n = 1, 2, . . . . This means that the basin D(P ) is
nonconnected. Then the bay H0 of D(Γ̃) is an head-
land for D(P ), and the lakes of D(Γ̃) are islands for
D(P ). The corresponding islands of D(P ), or lakes
of D(Γ̃), have for limit set the unstable focus Q
and its increasing rank preimages, plus the exter-
nal boundary ∂eD of D. Now the stable manifold
W s(O) is nonconnected (it includes the boundaries
of the lakes Hn). Figure 9 shows that W s(O) is very
close to Γ̃, and consequently to W u(O). Indeed, at
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Fig. 9. Map T with a = 0.5, b = 0.65355, c = −1, d = 0.
Γ has turned into an attractor Γ̃ of weakly chaotic ring type.
For this parameter value a branch of the unstable set W u(O)
of the saddle O follows Γ̃. This branch of W u(O) presents
self-intersections, the other branch ends at the stable focus
P . Now the basin D(Γ̃) is multiply connected due to the
bay H0 and its increasing rank preimages H1 = T−1(H0),
H1 = T−1(H0), . . . , T

−n(H1) = Hi1···in
n+1 , n = 1, 2, . . . . This

means that the basin D(P ) is nonconnected.

the value of b given by bf3 � 0.65355 . . . a tangential
contact occurs between W s(O) and W u(O). This is
a homoclinic bifurcation, leading to the destruction
of Γ̃ as an attractor.

This bifurcation is associated with infinitely
many unstable cycles of increasing period, that
exist both for b < bf3 (and belong to Γ̃) and
for b > bf3, the homoclinic points being asso-
ciated with cycles of period k → ∞. These
cycles, their stable manifolds (when they are sad-
dles) as well as their increasing rank preimages
and their limit sets, belong to a strange repeller
SR1 that includes the saddle O, its stable mani-
fold W s(O) and its preimages. At a “macroscopic
scale” (cf. Sec. 2.4) only one attractor P exists
now, with basin D(P ) = D, and ∂D ⊃ SR1.
The repulsive set SR1 is located inside the domain
bounded by the repulsive invariant closed curve
∂eD = ∂D\SR1, external boundary of the basin
D. A small neighborhood of SR1 is a region whose
points generate chaotic transients before converging
towards P .

Important Remark. The numerical observation of
the chaotic attractor Γ̃, called “weakly chaotic
ring”, does not imply that there are no other attrac-
tors (“microscopic” ones) out of P and Γ̃, as argued
in Sec. 2.4. So, a lot of unstable cycles, among
them saddles, exist in a small neighborhood of
Γ̃ (see Fig. 10) giving rise to a chaotic transient
toward Γ̃ (they have been numerically detected
up to period 50). We consider that the strange
repeller SR1 also includes the unstable cycles such
as those in Fig. 10, and their preimages of increas-
ing rank. When we say that only one attractor
P , with a basin D, exists for b > bf3, this asser-
tion is made in the framework of a “macroscopic”
study. Indeed, this situation leads us to guess the
existence of stable cycles, at least from a small
parameter variation, both when an attractor Γ̃
exists and when it has disappeared leaving SR1.
Large period stable cycles with very narrow basins,
tangled with similar basins of other stable cycles
may exist, but they cannot be seen by numerical
simulations.

a= 0.5   c= − 1   d=0    b= 0.653551

Q

O

P

Fig. 10. Map T with a = 0.5, b = 0.653551, c = −1, d = 0. A
lot of unstable cycles, among them saddles, appear in a small
neighborhood of Γ̃. The periods of these cycles are given by
colored points. A bifurcation value, bf3 	 0.653552 . . . , gives
a tangential contact between the stable set W s(O) and the
unstable set W u(O) of the saddle O. This corresponds to
a first homoclinic bifurcation, leading to the destruction of
the attractor Γ̃ for b > bf3, giving rise to a strange repeller
SR1.
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5.1.2. Basin fractalization

Let us consider the one-dimensional map Tr, defined
as the restriction of T to the repulsive invariant
closed curve ∂eD, Tr = T |∂eD. When b is increased
from b = bf3, a sequence of period 6.2i saddles (sta-
ble cycles of Tr on ∂eD), i = 0, 1, 2, . . . , turning
into unstable nodes, creates a sequence of period-
doubling bifurcations. For b > b∞, all these cycles
turned into unstable nodes (unstable cycles of Tr

on ∂eD), and period 6k.2i cycles, k = 3, 4, 5, . . . ,
are created. This leads to a fractal structure of the
cycles and their increasing rank preimages belong-
ing to ∂eD, constituting a new strange repeller
SRe ∈ ∂eD. For b = bf4 � 0.76574 a bay H0

is generated via a tangential contact of ∂eD with
the critical line L, at a local minimum of the ordi-
nate of the external boundary ∂eD. So the basin D
becomes multiply connected (see Fig. 11, obtained
for b = 0.778). The rank-one lake H1 = T−1(H0)
is the union of two preimages of H0. The third
inverse of the boundary ∂H0 gives an arc of the
external boundary ∂eD of D. The rank-(n + 1)
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Fig. 11. Map T with a = 0.5, b = 0.778, c = −1, d = 0.
The basin D is multiply connected. This results from a tan-
gential contact of ∂D with the critical line L, at a local
minimum of the ordinate of the external boundary ∂D, occur-
ring for b = bf4 	 0.76574. This bifurcation creates a
bay H0, a rank-one lake H1 = T−1(H0). The rank-(n + 1)
lakes T−n(H1) = Hi1···in

n+1 , n = 1, 2, . . . , form an incomplete
arborescent sequences when n → ∞. The limit set of the lakes
Hi1···in

n+1 is essentially made up of the external boundary ∂eD,
on which the cycles have a fractal structure.

lakes T−n(H1) = H i1···in
n+1 , n = 1, 2, . . . , form an

infinite arborescent sequences when n → ∞. The
limit set of the lakes H i1···in

n+1 is essentially made up
of the boundary ∂eD, on which the restriction of
the map has a fractal structure, and a set of cycles
which may be associated with homoclinic points of
W s(O)∩W u(O) (a branch of W s(O) tends toward
the external boundary ∂eD spiraling). This results
in the sequence of lakes having a fractal structure,
but at a relatively low “degree”, which cannot be
seen in Fig. 11. We shall say that the lakes have a
“light” fractal structure.

The bifurcation b = bf4 changes the simply con-
nected basin D into a “light ” fractal multiply con-
nected one.

For b = bf5 � 0.789 a contact between L and
the external boundary ∂eD occurs in a small neigh-
borhood of the unstable focus F 6. This contact
bifurcation represents the destruction of the bay
H0, as for b > bf5 the sea “penetrates” the lakes
which become roadsteads [Mira et al., 1996a] Ri1···in

n+1 ,
n = 1, 2, . . . , (Fig. 12, b = 0.8).

The bifurcation occurring at b = bf5 changes
the multiply connected basin D into a simply con-
nected one, the cycles of the external boundary ∂eD
having a fractal structure.

For b = bf6 � 0.8065 another bifurcation occurs
due to a contact between L and the boundary ∂eD,
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Fig. 12. Map T with a = 0.5, b = 0.8, c = −1, d = 0. For
b = bf5 	 0.789 a contact bifurcation between L and the
external boundary ∂eD occurs at a local maximum S of the
∂eD ordinate. For b = 0.8 > bf5 the bay H0 no longer exists,
and the lakes that become roadsteads Rn, n = 1, 2, 3, . . . .
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Fig. 13. Map T with a = 0.5, b = 0.81, c = −1, d = 0. For
b = bf6 	 0.8065 a contact bifurcation between L and the
boundary ∂eD occurs at a local minimum of the ∂eD ordi-
nate, inside the rank-one roadstead R1. So a bay Ĥ0 ⊂ R1

is created for b > bf6, giving rise now to an arborescent

sequence of lakes T−n(Ĥ1) = Ĥi1···in
n+1 , n = 0, 1, 2 . . . . The

limit set of the lakes Ĥi1···in
n+1 , when n → ∞, is made up of

the strange repeller SR1, and ∂eD. So a hard change of the
basin fractalization has occurred. The lakes have a “strong”
fractal structure.

inside the rank-one roadstead R1 (coming from the
opening of the lake H1). So a bay Ĥ0 ⊂ R1 is cre-
ated for b > bf6, giving rise now to an arborescent
sequence of lakes T−n(Ĥ1) = Ĥ i1...in

n+1 , n = 0, 1,
2, . . . . The lake Ĥ1, union of two rank-1 preim-
ages of Ĥ0, belongs to Z3 (see Fig. 13, obtained
for b = 0.81), whereas the third inverse of Ĥ0 is
an arc belonging to ∂eD. The limit set of the lakes
Ĥ i1···in

n+1 , when n → ∞, is made up of the union of
the strange repeller SR1, and SRe ∈ ∂eD. So a hard
change of the basin fractalization occurs. We shall
say that the lakes have a “strong” fractal structure.

The bifurcation occurring at b = bf6 changes
the simply connected basin D, with a “light ” frac-
tal external boundary ∂eD, into a “strong ” fractal
multiply connected basin.

When b increases from b = bf6 the size of the
lakes increases more and more inside the “conti-
nent” limited by ∂eD, and more and more lakes of
the same rank join after contact of some portions of
the boundary of D with L or L′. Figure 14(a) (where
b = 0.82) shows such a situation. With respect to
Fig. 13, we can see that the (brown) area out of
the (white) lakes reproduces the form of the former
P basin, when the two attractors P and Γ̃ exist
before the destabilization of the latter. Moreover
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0Ĥ
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Fig. 14. (a) Map T with a = 0.5, b = 0.82, c = −1, d = 0. With respect to the Fig. 13 situation, the area out of the lakes set
reproduces the form of the former P basin, when the two attractors P and Γ̃ existed. (b) a = 0.5, b = 0.8235, c = −1, d = 0.
Enlargement showing the bifurcation leading to a contact of the basin boundaries ∂DS and ∂DS1 at a point N−1 ∈ L−1 when
∂DS is tangent to L at the point N . This bifurcation separates the Figs. 14(a) and 15 situations.



662 G.-I. Bischi et al.

the boundary of the brown region appears as limit
set of increasing rank lakes with a laminated struc-
ture, the whole external boundary ∂eD being also
a limit set of increasing rank lakes, but “spiraling”
toward ∂eD. This situation can be described as a
“continent” a large part of which is occupied by
an area with of higher and higher density of lakes
when b increases. Such a typical situation will be
called “marshes” area (the lakes set). For a better
understanding we shall use the vague vocabulary
“firm soil ” for the brown region when it is not too
narrow giving rise to a “laminated” structure. So
the “firm soil” is first a connected domain DS ≡ D
(Fig. 13).

When b increases DS splits into nonconnected
parts DS (containing the point P ), DSn (islands),
n = 1, 2, . . . , inside the “marshes” area, after con-
tact between its boundary ∂DS and L or L′. An
example is given by the bifurcation situation repre-
sented by the enlargement of Fig. 14(b) (b � 0.8235)
leading to a contact of the basin boundaries ∂DS

and ∂DS1 at a point N−1 ∈ L−1 when ∂DS is tan-
gent to L at the point N . This bifurcation sepa-
rates the situations shown in Figs. 14(a) and 15.
Note that in Fig. 15, DS1 is the result of the aggre-
gation of nonconnected areas denoted D3,i

4 , D3,i
5 ,

D1−2
3 , D1−2

6 in Figs. 1(b) and 1(c) as DS is the result
of aggregation of nonconnected areas denoted D0,
D1, D3

n, n = 2, 3, 4, . . . . At the bifurcation situation
shown in Fig. 14(b), the contact of ∂DS and ∂DS1

at N−1 occurs at the boundaries of D3,1
4 (see also

the qualitative picture in Fig. 1(b)), considered as
aggregated to DS1, and of D3

5, considered as aggre-
gated to DS . The last splitting of DS occurs for
b = bf7 � 0.853, with a contact between ∂DS and
L at the point M of Fig. 16 (b = 0.853), the qual-
itative representation being given in Fig. 1(c). For
b = bf7 − ε, ε > 0 sufficiently small (Fig. 15), the
qualitative conditions of Fig. 1(d) exist, the case
of Fig. 1(b) corresponding to b = bf7 + ε, ε > 0
(Fig. 17, with b = 0.86). The enlargement of Fig. 18,
shows islands as I made up of “marshes” surround-
ing a large part of “firm soil”.

Remark. The transition from the situation shown
in Fig. 13 to that shown in Fig. 17 has been
described, for practical reasons, by using the image
of a “marshes area” creation. In fact, infinitely
many bifurcations by contact of one of the lakes
boundary with L, or L′, and also formation of small
new bays, or headlands, occur without the possi-
bility to have a precise view of the organization
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Fig. 15. Map T with a = 0.5, b = 0.85, c = −1, d = 0. From
b = 0.82 progressively the immediate basin DS splits into
more and more islands, after contact between its boundary
∂DS and L or L′ according to the representation of Fig. 1(d).
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Fig. 16. Map T with a = 0.5, b = bf7 	 0.853, c = −1,
d = 0. The last splitting of DS occurs for b = bf7 with a
contact between ∂DS and L at the point M , the qualitative
representation being given by Fig. 1(c).

of these bifurcations. A possible conjecture would
be that one of these bifurcations would give a direct
transition multiply connected basin → nonconnected
basin in the presence of strange repellers SR1 and
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Fig. 17. Map T with a = 0.5, b = 0.86, c = −1, d = 0.
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Fig. 18. Map T with a = 0.5, b = 0.86, c = −1, d = 0.
Enlargement of Fig. 18.

SRe as limit set, so differently from the description
given in Sec. 4.2.

5.2. Bifurcations in the presence of
strange repellers. Second situation

5.2.1. Origin of the strange repellers

We consider now the set of parameters a = 0.25,
c = −0.5, d = −1.08, and b increasing in the range

1.08 ≤ b ≤ 1.25. The fixed point O is an unstable
node. The fixed point P is a stable node, and Q an
unstable focus. The boundary ∂D of the domain D
of bounded orbits contains cycles of period 4k · 2i,
i = 0, 1, 2, . . . , k = 1, 3, . . . , (k = 1 for b sufficiently
close to 1.08). In particular, we consider the case of
cycles of period 4k · 2i with k = 3. Let us consider,
again, the one-dimensional map Tr, restriction of T
to the repelling invariant closed curve ∂D. On this
closed curve the dynamics is chaotic, and the set
of cycles of period 4k · 2i, as well as their increas-
ing rank preimages, have a fractal structure. For
b = 1.08 (Fig. 19), the map T has three attrac-
tors: the stable node P , a chaotic area (d), and a
two-cyclic chaotic attractor (d) = (d′1)∪ (d′2). Their
basins are respectively D(P ) (red) D(d) (green) and
D(d) (yellow). The basin D is the union of these
three basins, i.e. D = D(P ) ∪ D(d) ∪ D(d). The
common boundary ∂D(P ) ∩ ∂D(d) is made up of
the stable manifold W s(Cj

2), j = 1, 2, of a period
two saddle C1

2 , C2
2 . The two attractors (d) and (d)

are bounded by arcs of critical curves up to a certain
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Fig. 19. Map T with a = 0.25, b = 1.08, c = −0.5,
d = −1.08. The fixed point O is an unstable node. The fixed
point P is a stable node, and Q an unstable focus. The map
T has three attractors: the stable node P , a chaotic area (d),
and a period two chaotic attractor (d) = (d

′
1) ∪ (d

′
2). Their

basins are respectively D(P ) (red colored) D(d) (green) and
D(d) (yellow). The basin D is the union of these three basins
D = D(P ) ∪ D(d) ∪ D(d).
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rank [Mira et al., 1996a]. A large segment of the
critical curve L belongs to the boundary of (d). The
common boundaries ∂D(d)∩∂D(d) are made up of
arcs, two of which have O as extremity and contain
period 2k · 2i cycles, i = 1, 2, . . . , k = 1, 3, . . . . The
dynamics are chaotic on these two arcs. The exter-
nal boundary of the basins D(P ), D(d), and D(d)
(limit set of the n-rank preimages of their immedi-
ate basins, when n → ∞) is ∂eD, when the dynam-
ics are chaotic as well. The structure of these basins
is simple, even if the restriction of the map to their
boundaries may have complex dynamics.

For b = bf8 � 1.09172 a contact bifurca-
tion between the chaotic attractor (d) and the sta-
ble manifold W s(Cj

2) occurs. This is a homoclinic
bifurcation, due to a tangency of W s(Cj

2) with the
branch of the unstable manifold W u(Cj

2) tending
toward (d). Then (d) is destroyed for b = bf8 + ε,
ε > 0 small, and gives rise to a strange repeller
SR1. Figure 20 (b = 1.092) shows the basins D(P )
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Fig. 20. Map T with a = 0.25, b = 1.092, c = −0.5,
d = −1.08. Basins D(P ) and D(d). For b = bf8 	 1.09172
a contact bifurcation between the chaotic attractor (d)
and the stable manifold W s(Cj

2) has occurred. Then this
bifurcation is destroyed (d), giving rise to a strange repeller
SR1. The “granular” region inside D(P ) reproduces the
ancient basin D(d). It is an area of chaotic transient toward
P , which corresponds to the presence SR1. Note that the
chaotic area (d) is very close to its basin boundary ∂D(d),
which means that we are near the contact bifurcation which
will destroy (d).

and D(d). The “granular” region (obtained with a
small number of iterations for each pixel) inside
D(P ) reproduces the former basin D(d). It is an
area of chaotic transient toward P , due to the pres-
ence of the chaotic repeller SR1. It can be noticed
that the chaotic area (d) is very close to its basin
boundary ∂D(d), so we are close to a contact bifur-
cation which will destroy (d). This bifurcation, also
an homoclinic one, occurs for b = bf9 � 1.0935.
Figure 21 (b = 1.0945) shows the basin of the
only attractor (the fixed point P ) which survives
after the bifurcation. The “granular” region inside
D(P ) = D (which is simply connected) reproduces
the shape of the former basin D(d). It is an area
of chaotic transient toward P , due to the presence
of a new strange repeller SR2, that constitutes the
skeleton of the just disappeared attractor (d). The
boundary ∂D of the basin D of P , ∂D = ∂eD ∪
SR1 ∪ SR2, is strongly fractal, but the basin is not
fractal.
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Fig. 21. Map T with a = 0.25, b = 1.0945, c = −0.5,
d = −1.08. The bifurcation destroying (d), occurs for b =
bf9 	 1.0935. Only one attractor, the fixed point P , remains,

the simply connected basin D(P ) = D of which is represented
by the figure. The “granular” region reproduces the aspect of
ancient basin D(d). It is an area of chaotic transient toward
P . This region corresponds to a new strange repeller SR2,
born from the destabilization of (d). The boundary ∂D of the
basin D of P , ∂D = ∂eD∪SR1 ∪SR2, is strongly fractal, but
the basin is not fractal.
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Fig. 22. Map T with a = 0.25, b = 1.1427, c = −0.5, d = −1.08. (a) The basin D is now multiply connected. A bay h0

has been generated via a tangential contact of ∂eD with the critical line L, at a local minimum of the ∂eD ordinate, when
b = bf10 	 1.138. The bay h0 belongs to Z3, and the rank-n + 1 lakes T−n(h1) = hi1···in

n+1 , n = 1, 2, . . . , form an incomplete

arborescent sequences when n → ∞. (b) and (c) Enlargements showing the presence of two period three cycles Cj
3 , C′j

3 ,
j = 1, 2, 3, belonging to the lakes limit set.
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The bifurcations occurring at b = bf8 and b =
bf9 respectively destroy the chaotic attractors (d)
and (d) with their basins. The final result is a simply
connected nonfractal basin of the unique attractor
P , the boundary of which ∂D is strongly fractal due
to the presence of the two strange repellers SR1 and
SR2 belonging to ∂D.

5.2.2. Basin fractalization

For b = 1.1427, a bay h0 has been generated via
a tangential contact of ∂eD with the critical line
L when b = bf10 � 1.138. So the basin D is
now multiply connected (see Fig. 22(a), and the
enlargements in Figs. 22(b) and 22(c)). The rank-
one lake is h1 = T−1(h0), made up of the union
of two preimages related to two different inverses
of T . The third preimage of ∂h0 gives an arc of
∂eD. The bay h0 belongs to Z3, and the rank-
(n + 1) lakes, T−n(h1) = hi1···in

n+1 , n = 1, 2, . . . ,
form an infinite sequence when n → ∞. These
lakes have essentially ∂eD as limit set, plus period
3k2i unstable cycles, i = 0, 1, 2, . . . , k = 1, 3, . . . ,
inside the domain bounded by ∂eD. The point E of
Fig. 22(b) belongs to Z1. Figures 22(a)–22(c) show
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Fig. 23. Map T with a = 0.25, b = 1.16, c = −0.5,
d = −1.08. For b = bf11 	 1.1429, a contact bifurcation
between L and the boundary ∂eD has occurred, the point
E of ∂eD belonging to L (existence limit for the bay h0).

For b = 1.16 > bf11 the lakes, which become roadsteads

Bi1···in
n+1 , n = 0, 2, . . . . Moreover for b = 1.16 the point F of

Fig. 22(b) belongs to Z3, and the roadsteads have “crossed”
through the “ancient” lakes.

the presence of two period three cycles Cj
3 , C ′j

3 ,
j = 1, 2, 3, belonging to the limit set. This results
in the sequence of lakes having a fractal structure,
because a fractal structure of repelling cycles exists
on the boundary, that form the limit set of lakes,
but at a relatively low “degree”, which cannot be
seen in Fig. 22. The lakes have a “light” fractal
structure.

The bifurcation occurring at b = bf10 changes
the simply connected nonfractal basin D into a
“light ” fractal multiply connected one.

For b = bf11 � 1.1429, the point E of ∂eD
belongs to L. A contact bifurcation between L and
the boundary ∂eD occurs. This contact bifurcation
marks the destruction of the bay h0. When b > bf11

the sea “penetrates” the lakes, which become road-
steads [Mira et al., 1996a] Bi1···in

n+1 , n = 0, 2, . . . .
When the point F of Fig. 22(b), belongs to Z3,
the roadsteads have “crossed” through the “former
lakes”, and we have the situation shown in Fig. 23,
obtained for b = 1.16.

1'−L

'L

L

3Z

1Z

1Z

'L

Q

1−L

0H

1H 2B

1B

0B

P

1
2C

2
2C

a= 0.25   c= − 0.5   d=− 1.08    b= 1.18

Fig. 24. Map T with a = 0.25, b = 1.18, c = −0.5,
d = −1.08. A contact of a local minimum of roadstead bound-
ary ∂B3 with L, has occurred for b = bf12 	 1.1754. So for
b = 1.18 > bf12 the simply connected basin D turns into
a multiply connected one. A bay H0 ⊂ B3 has been gen-
erated. The rank-one lake is H1 = T−1(H0), made up of
the union of two inverses of T . It belongs to Z3, and the
rank-n + 1 lakes T−n(H1) = Hi1···in

n+1 , n = 1, 2, . . . , form
now a complete arborescent sequence when n → ∞. These
lakes have SR2∪∂eD as limit set. They “reproduce” the form
of the ancient basin D(d), now they have a “strong” fractal
structure.
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The bifurcation occurring at b = bf11 changes
the multiply connected “light ” fractal basin D into
a simply connected one, the external boundary ∂eD
being “light ” fractal.

It can be noticed that the roadstead B3 ⊂
T−3(B0) is near the critical line L, a situation
leading to the creation of a bay. This occurs after
a contact of ∂B3 with L, occurring for b = bf12 �
1.1754. The simply connected basin D turns into
a multiply connected one. Figure 24 shows the
dynamic situation obtained for b = 1.18. A bay
H0 ⊂ B3 has been generated. The rank-one lake
is H1 = T−1(H0), made up of the union of two
preimages of H0. The third preimage of ∂H0 gives
an arc of ∂eD. The lake H1 belongs to Z3, and the
rank-n + 1 lakes T−n(H1) = H i1···in

n+1 , n = 1, 2, . . . ,
form an infinite sequence when n → ∞, with many
preimages in Z3. As Fig. 24 shows, these lakes have
SR2 ∪ ∂eD as limit set, i.e. the external bound-
ary ∂eD of D, and the strange repeller born from
the destabilization of the chaotic area (d). They
“reproduce” the form of the ancient basin D(d).
These lakes now have a “strong” fractal structure.

The boundary ∂eD undergoes a qualitative change
because now cycles of period different from 4k2i

cycles, i = 0, 1, 2, . . . , k = 1, 3, . . . , belong to this
boundary, in particular, it contains a pair of period
three, six and nine cycles coming from the limit
set of the lakes hn after their opening in the sea.
These cycles are located on arcs of roadstead Bn,
n = 1, 2, 3.

The bifurcation occurring at b = bf12 changes
the simply connected basin D, with a “light ” frac-
tal external boundary ∂eD, into a “strong ” fractal
multiply connected basin.

Again, the fact that the roadstead B1 is close to
the critical line L′ announces the possible creation
of a new bay. This occurs for b = bf13 � 1.18385.
Figures 25(a) and 25(b) show the new situation
obtained for b = 1.19. A bay Ĥ0 ⊂ B1 has been
generated and a new sequence of lakes exists, many
of which belong to Z3. The first one Ĥ1 = T−1(Ĥ0)
is made up of the union of two preimages of Ĥ0.
The third preimage of ∂Ĥ0 gives an arc of ∂eD.
The lake Ĥ1 belongs to Z3. As shown in Fig. 25(a),
these new lakes have SR1 ∪ ∂eD as limit set, i.e.
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Fig. 25. Map T with a = 0.25, b = 1.19, c = −0.5, d = −1.08. (a) A new bay Ĥ0 ⊂ B1 has been created from the bifurcation
b = bf13 	 1.18385, corresponding to the contact between the critical line L′ and the roadstead boundary ∂B1 at a local

maximum of ∂B1. A new complete arborescent sequence of lakes exists, the first one being Ĥ1 = T−1(Ĥ0) made up of the
union of two inverses of T , and belonging to Z3. These new lakes have SR1 ∪ ∂eD as limit set, i.e. the strange repeller born
from the destabilization of the chaotic area (d) and the external boundary of D. They “reproduce” the form of the ancient
basin D(d). The association of the two lakes sequences, with the limit set SR1 ∪SR2 ∪∂eD, gives rise to a new “strong” fractal
structure of the D basin with a higher degree of “strength”. (b) Enlargement of a part of Fig. 25(a).
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Fig. 26. Map T with a = 0.25, b = 1.19, c = −0.5, d = −1.08. (a) For b = bf14 	 1.219 a contact bifurcation between L and
the boundary ∂eD has occurred at the point M ′ ∈ L, with N ′ ∈ Z1. For b = 1.19 > bf14, the lake H1 communicates with B1,
forming a new roadstead R′

1. Then all the lakes of the arborescent sequence, having SR2 ∪∂eD as limit set, communicate with

the sea. (b) Enlargement of a part of Fig. 26(a). H0 is no longer a bay (exH0 in the figure), and the lake H1,1
3 has turned in

a roadstead R′1,1
3 .

the strange repeller born from the destabilization of
the chaotic area (d) and the external boundary of
D. They “reproduce” the form of the former basin
D(d). The association of the two lake sequences,
with the limit set SR1 ∪ SR2 ∪ ∂eD, gives rise to a
new “strong” fractal structure of the D basin with
a higher degree of “strength”. As in Sec. 5.1.2, this
situation can be described as a “continent” a large
part of which is occupied by a “marshes” area (the
lakes set).

The bifurcation occurring at b = bf13

changes the “strong ” fractal multiply connected
basin D into a “stronger ” fractal multiply con-
nected one.

For b = bf14 � 1.219 a contact bifurcation
between L and the boundary ∂eD occurs at a point
M ′ one of the two “extremities” of the roadstead
B3, M ′ ∈ L, the other “extremity” N ′ ∈ Z1. For
b = bf14 + ε, ε > 0 small, the lake H1 com-
municates with B1, forming a new roadstead R′

1.
Then all the lakes of the arborescent sequence, hav-
ing SR2 ∪ ∂eD as limit set, communicate with the
sea (see Figs. 26(a) and 26(b). In Fig. 26(b) we
see that M ′ ∈ Z3, N ′ ∈ Z1. H0 is no longer

a bay, and the lake H1,1
3 has turned in a road-

stead R′1,1
3 .

Crossing through the bifurcation value b = bf14,
the “strong ” fractal multiply connected basin D
loses all the lakes having the strange repeller SR2 as
limit set. Now SR2 belongs to the external boundary
∂eD. So ∂eD now has a “higher degree ” of fractal-
ization with respect to the one existing before the
bifurcation.

The same remark as that at the end of Sec. 5.1.2
can be made. The transition from the situation
shown in Fig. 24 to the one shown in Fig. 25 can
be explained by the conjecture of a bifurcation that
gives a direct transition multiply connected basin →
nonconnected basin in the presence of strange
repellers SR, SR2, SRe as limit sets.

6. Conclusion

This paper has shown that, depending on the posi-
tion of a basin boundary with respect to the critical
set LC, a lot of different situations are possible,
the contact of these two sets giving rise to several
kinds of bifurcations. The remarkable diversity of
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these situations is related to a very large variety
of structures of basin boundaries when they are
fractal. The publications quoted in the references
have already evidenced these circumstances in rela-
tively simple cases. With respect to them, this paper
shows that such contact bifurcations can change the
nature of a fractal basin, i.e. its “degree” of frac-
talization. Such a degree results from the proper-
ties of a strange repeller, limit set of elements of
nonconnected basins, or multiply connected ones.
When a strange repeller appears, in particular as
a limit set of a nonconnected basin, or a multiply
connected one, we are in the situation described in
Sec. 2.4, and homoclinic tangencies are dense by
varying a parameter after a first homoclinic tan-
gency. This means that the parameter space of
(1) contains Newhouse regions. Indeed the strange
repellers generated by (1) contains saddle cycles,
the basin boundaries include stable manifold of sad-
dle cycles. At the actual stage, we are far from a
complete study of all the dynamic situations and
bifurcations.

The results of this paper allow us to get an
insight into some properties of the family of three-
dimensional diffeomorphisms obtained by imbed-
ding the two-dimensional noninvertible map (1) into
this diffeomorphism, for example in the form:

x′ = x + y

y′ = ax + bx2 + cx3 + dy + z

z′ = µ(x + y)

according to the process described in [Mira &
Gracio, 2004].
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