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Abstract
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1. Introduction

For many years the dynamics of economic systems have been studied by
focusing on stable equilibrium behavior. New results in the theory of nonlinear
dynamical systems make us aware, however, that #uctuations over time are
quite common and may be due to the nonlinear relationships between the
variables of the system and not to exogenous stochastic in#uences. More
recently, this viewpoint has been accepted by economists and operations re-
searchers, management scientists and organization theorists alike (see, e.g., Day,
1994; Hommes, 1991; Kopel 1996a; Parker and Stacey, 1994; Thietart and
Forgues, 1995).

The question usually addressed in the economics literature is that of the
creation of complex attractors through sequences of local bifurcations. The
study of the global bifurcations that cause qualitative changes of the attractors
and their basin of attraction has been rather neglected (for recent work on global
phenomena in economic models, see Gardini, 1992,1993; Brock and Hommes,
1997; Bischi et al., 1998). Our work moves a step towards this less explored
direction. In this paper we show how the global dynamics of an economic model
can be analyzed by the study of some global bifurcations that change the shape
of the chaotic attractors and the structure of their basins of attraction, as some
parameters of the model are varied. These bifurcations are analyzed by the use
of critical curves, a powerful method for the investigation of the global proper-
ties of noninvertible two-dimensional maps. To have a particular application at
hand we consider an attraction model which is widely used in marketing theory,
where marketing e!orts for the di!erent brands determine their market shares.
This economic model is interesting because of the global properties that have
not been yet su$ciently explored. It is also particularly apt for our purpose,
namely to introduce some concepts for the analysis of two-dimensional discrete
dynamical systems by analogies to the well-known one-dimensional quadratic
map.

The paper is organized as follows. In Section 2 we present the market share
attraction model with two competing brands, and in Section 3 we give some
general properties of the resulting two-dimensional noninvertible map. The
existence of a unique nontrivial steady state is proved and the creation of
complex attractors around the "xed point is numerically evidenced. The con-
cepts of critical curves and basin boundaries are introduced and applied to our
model. The main results are given in Section 4, where we analyze some global
bifurcations which cause qualitative changes in the structure of the attractors
and of their basins as some parameters are allowed to vary. The bifurcations
that change the structure of the basins are characterized as contact bifurcations
due to tangencies between the critical curves of the noninvertible map and the
basins' boundaries, and those changing the structure of the chaotic sets are
characterized as homoclinic bifurcations due to a contact between arcs of
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critical curves and the stable manifold of the saddle "xed point. We end the
paper with some conclusions in Section 5.

2. An attraction model with interbrand competition

It seems that in marketing theory the results on nonlinear dynamical systems
are of particular importance, as marketing variables are governed by nonlinear
relationships over time. Research in marketing theory has been focused on the
investigation of pulsing advertising strategies (see Simon, 1982; Mahajan and
Muller, 1986; Park and Hahn, 1991; Feinberg, 1992), and more recently on the
occurrence of cyclic and chaotic #uctuations in marketing models (see Luhta
and Virtanen, 1996; Feichtinger et al., 1994; Hibbert and Wilkinson, 1994). It
even has been shown that chaotic advertising policies might be optimal (Kopel
et al., 1998).

In what follows we will use a market share attraction model which is widely
used by both advertising practitioners and model builders. This family of
models is based on the assumption that the only determinant of market share is
the attraction which customers feel toward each alternative brand available.
More formally, the market share s

it
for brand i (i"1, 2,2, n) in period t is

its attraction A
it

relative to the total attraction of all brands (see Bell et al.,
1975):

s
it
"

A
it

+n
j/1

A
jt

. (1)

In a di!erential-e!ects version of the well-known multiplicative competitive
interaction model (see Cooper and Nakanishi, 1988), the attraction A

it
is

speci"ed as

A
it
"exp(a

i
)

K
<
k/1

Xbki

kit
, (2)

where X
kit

denotes the value of the kth explanatory variable for brand i (e.g.,
distribution, prices, expenditures for advertising), and K is the number of
explanatory variables. The parameter a

i
is the e!ectiveness coe$cient for "rm i's

marketing e!ort, or brand i's constant component of attraction. The parameter
b
ki

denotes brand i's market-response to the kth marketing-mix element. For
more #exible speci"cations of A

it
which allow, e.g., for temporal distinctiveness

of a brand's marketing actions and unusually strong competitive relationships,
see Cooper (1988) or Carpenter et al. (1988). It is important to note that a feature
of all these formulations is that the logically consistency requirements (i.e.
market shares are nonnegative and the sum is equal to one) is automatically
ful"lled.
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In what follows we consider a two-brand attraction model (n"2),
where there is only one explanatory variable (K"1), namely advertising
e!ort. For the derivation of the resulting two-dimensional model which we
will analyze in subsequent sections, we make two assumptions. First, we assume
that the sales revenue R

it
for a brand i (i"1, 2) is proportional to its market

share,

R
it
"Bs

it
, (3)

where B is the total customer market expenditure (see also Carpenter
et al., 1988). Second, the change in marketing e!ort is proportional to the pro"t
of the previous period, where pro"ts are the di!erence between sales revenues
and (marketing) costs (see Rossiter and Percy, 1987). We assume that
brand managers * in order to determine the marketing e!ort (advertising
budget) of the subsequent period * use a decision rule to adjust their advert-
ising e!orts adaptively. Denoting the marketing e!orts of the two brands
in period t with x

t
and y

t
respectively, the brand managers' decision rules

are

x
t`1

"x
t
#j

1
(Bs

1t
!x

t
)x

t
,

y
t`1

"y
t
#j

2
(Bs

2t
!y

t
)y

t
.

(4)

Observe that according to (4) the di!erence in marketing e!orts is propor-
tional to the pro"ts. Furthermore, the level of marketing e!ort of the previous
period also e!ects the degree of response (see Carpenter et al., 1988). The brand
managers use the level of marketing e!ort (advertising budget) of the previous
period as an anchor and adjust for the results of the previous period (see also
Tversky and Kahneman, 1975; Sterman, 1989a,b; Kopel, 1996a,b for applica-
tions of this type of heuristics). The parameters j

1
and j

2
denote the `adjustment

speedsa. Since we will assume that j
1

and j
2

are nonnegative, the decision rules
we postulate for capturing the managers' decisions are procyclic. Nonpositive
values for the adjustment speeds would capture some kind of compensatory
mechanism, see Cowling and Cubbin (1971).

Substituting (2) with x
t

and y
t

as explanatory variables into (1), and the
resulting expression for the market shares s

1t
and s

2t
into (4), we end up with the

following two di!erence equations:

x
t`1

"x
t
#j

1AB
xb1
t

xb1
t
#kyb2

t

!x
tBxt

,

y
t`1

"y
t
#j

2AB
kyb2

t
xb1
t
#kyb2

t

!y
tByt, (5)

where k :"exp(a
2
!a

1
).
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1A preimage of a point P"(x
p
, y

p
) is a point P

~1
"(x, y) such that ¹(x, y)"P. A point P may

have more than one preimages (or no preimages) which are obtained by solving system (6), with
respect to the unknowns x and y, with x@"x

p
and y@"y

p
.

3. Local and global analysis of the dynamical system

3.1. General properties of the map

The time evolution of the discrete dynamical system (5) is obtained by the
iteration of the two-dimensional map

¹: G
x@"x#j

1
xAB

xbÇ
xbÇ#kybÈ

!xB ,

y@"y#j
2
yAB

kybÈ
xbÇ#kybÈ

!yB,
(6)

where b
1
, b

2
, j

1
, j

2
, k and B are real and positive parameters and @ denotes the

unit-time advancement operator. In what follows we will consider only values of
the exponents b

1
and b

2
in the interval (0, 1) since empirical studies show that

realistic values are in this range (see, e.g., Bultez and Naert, 1975).
Map (6) is de"ned for nonnegative values of x and y because of the presence of

the real exponents b
1

and b
2
. Moreover, the map is not de"ned in the origin

O"(0, 0) since the denominator vanishes in this point. However, we will see that
the origin and its preimages1 play an important role in the description of the
global dynamic properties of the model.

Starting from a given initial condition

(x
0
,y

0
)3D"R2

`
C(0,0), (7)

where R2
`
"M(x,y)3R2 Dx50 and y50N denotes the set of nonnegative state

variables, the iteration of (6) generates an in"nite sequence of states, or a trajectory

M(x
t
, y

t
)"¹t(x

0
, y

0
), t"1,2,2N (8)

provided that (x
0
, y

0
), as well as all its images ¹t(x

0
, y

0
) of any rank t, belong to

the set D. It is important to notice that even if the initial condition (7) belongs to
the set D, the iteration of map (6) may produce negative values after a "nite
number of iterations and, consequently, it may happen that not the complete
trajectory is obtained. In the following we shall call a point (x

0
, y

0
)3D a feasible

point if its full trajectory is bounded and belongs to D. Such a trajectory will be
called a feasible trajectory.

Since only feasible trajectories of (6) can represent reasonable time evolutions
of the economic system modelled by (5), the "rst important problem to solve is
the delimitation of the set of initial conditions that generate feasible trajectories.
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2Following the terminology used in Mira (1987), and Mira et al. (1996), we denote by c
~1

"1
2

the
point of maximum, critical point of rank-0, and c

k
"f k`1(c

~1
) the critical point of rank k#1. The

critical point of rank-1 c
0
"f (c

~1
) is also denoted by c.

In Section 3.4 we will give an answer to this question, after we carried out
a study of the global properties of the map (6).

An important feature of map (6) is that the two coordinate axes are invariant
lines, since ¹(x,0)"(x@, 0) and ¹(0, y)"(0, y@). The dynamics of (6) along the
x-axis are governed by the one-dimensional map x@"f

1
(x), where f

1
is the

restriction of ¹ to the x-axis, given by

f
1
(x)"(1#j

1
B)x!j

1
x2. (9)

Since the situation is symmetric, the dynamics along the y axis are governed by
the one-dimensional map y@"f

2
(y), where f

2
is obtained from (9) simply by

swapping x and y, index 1 and index 2. The maps f
i
, i"1, 2, are conjugated to

the standard logistic maps z@"k
i
z(1!z), i"1, 2, where the parameters k

i
are

given by

k
i
"1#j

i
B, i"1, 2, (10)

the homeomorphisms being given by x"(1#j
1
B)z/j

1
and (1#j

2
B)z/j

2
,

respectively. Thus, the properties of the trajectories embedded in the invariant
axes can be easily deduced from the well-known properties of the standard
logistic map (see e.g. Mira, 1987; Devaney, 1989)

z@"f (z)"kz (1!z). (11)

Since we will often refer to the dynamical behavior of the standard logistic map,
we brie#y recall some properties of (11) that will be useful in the following. For
k3[2,4] every initial condition z

0
3(0, 1) generates bounded sequences, converg-

ing to a unique attractor included in the trapping interval [c
1
, c], where c"k/4

is the maximum value, critical point of rank 1,2 and c
1
"f (c)"(k2(4!k))/16 is

the critical point of rank 2, whereas an initial condition out of the interval [0, 1]
generates a sequence diverging to !R. For k3(1,3) the bounded trajectories
converge to the "xed point zH"(k!1)/k, whereas for k3(3, 4) the attractor can
be a cycle of period k or a cyclic chaotic attractor (apart from particular values
of k at which a Cantor set is an attractor in Milnor sense, see Milnor, 1985).
A k-cyclic chaotic attractor is formed by a set of k intervals MI

1
,2, I

k
N such that

f (I
j
)"I

j`1
, for j"1,2, k!1, and f (I

k
)"I

1
. Such intervals are bounded by

the critical point c"f (c
~1

) and some of its images c
j
"f j (c). For example, at

k"3.5925722 the logistic map (11) has a 2-cyclic chaotic attractor A formed
by two chaotic intervals (see Fig. 1a): A"[c

1
, c

3
]X[c

2
, c], where c, c

1
, c

2
and

c
3

are critical points of rank 1, 2, 3, and 4, respectively. Notice that the chaotic
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Fig. 1. (a) Standard logistic map with parameter k"3.592572. The attractor is given by a 2-cyclic
chaotic interval A"[c

1
, c

3
]X[c

2
, c], where c

i
"f i`1(c

~1
)"f i(c) and c"f (c

~1
). The generic traject-

ory Mz
n
N starting in (0, 1) enters A after a "nite number of iterations, and then never escape from it. (b)

Standard logistic map with k'4. The points of the interval I
0
, as well as those belonging to the

in"nitely many preimages of any rank of I
0
, generate diverging sequences. Only the preimages of

I
0

up to rank 2 are represented in the "gure.

3An absorbing interval I is called trapping if the trajectories starting from a point in I never leave
the interval, and a neighborhood of I exists whose points enter I after a "nite number of steps.

attractor A, as any attractor of the logistic map for k3(2, 4), is included in the
absorbing interval [c

1
, c].3

For k"4 the image c
1

of the critical point c is mapped by (11) into the
repelling "xed point in z"0. This represents the xnal bifurcation, after which
a generic initial condition z

0
3R generates a divergent sequence. In fact, for

k'4, just after the "nal bifurcation, a neighborhood I
0

of the critical point
c
~1

"1
2

exists, bounded by the two preimages of rank-2 of the origin, whose
points exit interval (0, 1) after one iteration, thus giving an unbounded sequence.
All the preimages of the points of such a &main hole' I

0
generate diverging

sequences. In Fig. 1b two smaller intervals I(1)
~1

and I(2)
~1

, rank-1 preimages of I
0

(i.e. whose points are mapped into I
0
) are represented, located symmetrically

with respect to c
~1

"1
2
. Their points exit the interval (0, 1) after two iterations of

(11). De"ned iteratively, in"nitely many preimages of I
0

exist in [0, 1], a few of
them are shown in Fig. 1b. The union of all these preimages, whose points
generate unbounded sequences, is an open set whose closure is [0, 1]. Its
complement in [0,1] has zero Lebesgue measure and is a Cantor set (see
Guckenheimer and Holmes, 1983; Devaney, 1989).
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3.2. Fixed points

The "xed points of map (6) are the solutions of the system

xAB
xb1

xb1#kyb2
!xB"0,

yAB
kyb2

xb1#kyb2
!yB"0. (12)

There are three evident &boundary solutions':

O"(0, 0), E
1
"(B, 0), E

2
"(0,B), (13)

but O is not a "xed point because the map is not de"ned in it. The "xed points
E
1

and E
2

are related to the "xed points of the one-dimensional quadratic maps
f
1

and f
2

governing the dynamics restricted to the invariant axes. There is also
another "xed point, interior to the positive quadrant R2

`
, given by the solution

of the system

B
xb1

xb1#kyb2
!x"0,

B
kyb2

xb1#kyb2
!y"0.

After some algebraic manipulations it is possible to see that one and only one
solution exists, determined by the equation

F(x)"k1@(1~b2)x(1~b1)@(1~b2)#x!B"0.

In fact, F is a continuous function with F(0)(0, F(B)'0 and F@(x)'0 for each
x'0, hence a unique positive solution exists, xH3(0,B), and the corresponding
"xed point is

E
H
"(xH,B!xH). (14)

A particularly simple solution is obtained in the case b
1
"b

2
:

xH"B/1#k1@(1~b2).
With a given set of parameters B, b

1
and b

2
, the positive "xed point E

H
is

locally asymptotically stable for su$ciently small values of the adjustment
speeds j

1
and j

2
. As usual in dynamic models with adaptive adjustment, the

"xed point E
H

loses stability as one or both of the adjustment speeds are
increased, and more complex attractors are created around the unstable "xed
point. These results are obtained through a standard study of the local stability
of the positive "xed point, obtained by a numerical solution of the characteristic
equation for the localization, in the complex plane, of the eigenvalues of the
Jacobian matrix.

862 G.I. Bischi et al. / Journal of Economic Dynamics & Control 24 (2000) 855}879



Our attention, however, will be mainly focused on the global properties of the
map (6), in particular the boundaries of the chaotic attractors and the bound-
aries of the set of points that generate feasible trajectories, inside of which the
basins of the attractors are included. Since, as we will see in the next subsection,
map (6) is noninvertible, its global properties can be characterized by the study
of its critical sets (see Gumowski and Mira, 1980; Mira et al., 1996; Abraham
et al., 1997).

3.3. Critical curves

The fact that the map ¹ is single-valued does not imply the existence and the
uniqueness of its inverse ¹~1. Indeed, for a given (x@, y@) the rank-1 preimage (or
backward iterate) may not exist or may be multivalued. In such cases ¹ is said to
be a noninvertible map. Map (6) belongs to this class, because computing the
points (x, y) in terms of a given (x@, y@) in (6), by solving the system

xA1#j
1
B

xb1

xb1#kyb2
!j

1
xB"x@,

yA1#j
2
B

kyb2

xb1#kyb2
!j

2
yB"y@, (15)

we can have no solution or more than one solution.
In fact, if x@'(1#j

1
B)2/4j

1
or y@'(1#j

2
B)2/4j

2
then system (15) has no

real solution. This can be easily seen, because from the inequality
xb1/(xb1#kyb2)(1 it follows that x(1#j

1
Bxb1/(xb1#kyb2)!j

1
x)(

x(1#j
1
(B!x)). This is a concave quadratic function with maximum value

(1#j
1
B)2/4j

1
. Hence the left-hand side of the "rst line of (15) is always less than

or equal to (1#j
1
B)2/4j

1
. Analogously from kyb2/(xb1#kyb2)(1 it follows

that y(1#j
2
Bkyb2/(xb1#kyb2)!j

2
y)(y(1#j

2
(B!y))4(1#j

2
B)2/4j

2
.

On the other hand, if we compute the preimages of the origin, by solving
system (15) with x@"0 and y@"0, we obtain: 0(1)

~1
"((1#j

1
B)/j

1
,0);

0(2)
~1

"(0,(1#j
2
B)/j

2
) and 0(3)

~1
located at the intersection of the two curves

u~1
1

and u~1
2

, which we will introduce later (see Fig. 4b).
As the point (x@, y@) varies in the plane R2 the number of solutions of the

system (15), i.e., the number of the rank-one preimages of (x@, y@), changes. Pairs
of real preimages appear or disappear as the point (x@, y@) crosses the boundary
separating regions whose points have a di!erent number of preimages. Such
boundaries are generally characterized by the presence of two coincident
(merging) preimages. This leads to the de"nition of the critical curves, one of the
distinguishing features of noninvertible maps. The critical curve of rank-1,
denoted by ¸C, is de"ned as the locus of points having two, or more, coincident
rank-1 preimages, located on a set called ¸C

~1
. ¸C is the two-dimensional

generalization of the notion of critical value (local minimum or maximum value)
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Fig. 2. (a) Critical curves of rank-0, obtained as the locus of points such that det(D¹(x,y))"0. (b)
Critical curves of rank-1, obtained as ¸C"¹(¸C

~1
). These curves separate the plane into three

regions, denoted by Z
4
, Z

2
and Z

0
whose points have four, two or no rank-1 preimages respectively.

of a one-dimensional map, ¸C
~1

is the generalization of the notion of critical
point (local extremum point). Arcs of ¸C separate the plane into regions
characterized by a di!erent number of real preimages.

To understand the analogy to one-dimensional maps, recall that for the
standard logistic map (11) the critical value is z@"c"k/4 and the critical
point is z"c

~1
"1

2
. A point z@(c has two preimages, given by

z
1
"1

2
!Jk2!4kz@/(2k) and z

2
"1

2
#Jk2!4kz@/(2k), and no preimages if

z@'c. Thus for logistic map (11) the region Z
2

is the set of points below c, the
region Z

0
the set of points above c, and the critical value c is the boundary that

separates the two regions. Such a point can be de"ned as the point with two
merging preimages z

1
"z

2
"c

~1
"1

2
. Clearly, c

~1
is a point of noninvertibility

for f and this implies, being f continuously di!erentiable, that c
~1

is the point in
which the "rst derivative vanishes, and c is its image.

Also for the two-dimensional map ¹ the set of critical points of rank 0,
denoted by ¸C

~1
, is the locus of coincident rank-1 preimages of the points of

¸C. Hence in any neighborhood of a point of ¸C
~1

there are at least two
distinct points mapped by ¹ in the same point near ¸C. This means that the
map ¹ is not locally invertible in the points of ¸C

~1
and, since the map (6) is

continuously di!erentiable, we have that ¸C
~1

belongs to the set of points
where the Jacobian of ¹ vanishes, i.e.

¸C
~1

-M(x@, y@)3R2DdetD¹"0N

and ¸C is the rank-1 image of ¸C
~1

under ¹, i.e. ¸C"¹(¸C
~1

).
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Fig. 3. Riemann foliation for the representation of the inverses of the map ¹. With each point of the
region Z

4
four distinct inverses are associated, each de"ned on a di!erent sheet of the foliation,

whereas points of Z
2

are associated with two sheets. The projection on the phase plane of the folds
connecting di!erent sheets are the critical curves ¸C.

For map (6) the locus of points for which detD¹"0 is given by the union
of two branches, denoted by ¸C(a)

~1
and ¸C(b)

~1
in Fig. 2a. Also ¸C is the union

of two branches, denoted by ¸C(a)"¹(¸C(a)
~1

) and ¸C(b)"¹(¸C(b)
~1

) (Fig. 2b):
¸C(b) separates the region Z

0
, whose points have no preimages, from the

region Z
2
, whose points have two distinct rank-1 preimages, and ¸C(a) separates

the region Z
2

from Z
4
, whose points have four distinct preimages. In order

to study the action of the multivalued inverse relation ¹~1 it is useful
to consider a region Z

k
of the phase plane as the superposition of k sheets,

each associated with a di!erent inverse. Such a representation is known
as Riemann foliation of the plane (see, e.g., Mira et al., 1996, Chapter 3).
Di!erent sheets are connected by folds joining two sheets, and the projections
of such folds on the phase plane are arcs of ¸C. The foliation associated with
the map (6) is qualitatively represented in Fig. 3. It can be noticed that the
cusp point of ¸C is characterized by three merging preimages at the junction
of two folds.

Note that the branches of critical curves ¸C(b)
~1

and ¸C(b) intersect the
coordinate axes x and y in the critical points of rank 0 and 1 of the restrictions
f
1

and f
2
, given by the points of coordinates

ci
~1

"

1#j
i
B

2j
i

and ci"f
i
(ci

~1
)"

(1#j
i
B)2

4j
i

i"1, 2, (16)

respectively.
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c

Fig. 4. In these "gures the white regions represent the set B whose points generate feasible (i.e.
positive and bounded) trajectories, the grey ones represent the set of points that generate non-
feasible trajectories. (a) The boundary of B is smooth, and all the feasible trajectories converge to the
"xed point E

H
. (b) For the same set of parameters as in (a), the segments u

1
"OO(1)

~1
and u

2
"OO(2)

~1
of the invariant axes, and their rank-1 preimages u~1

1
and u~1

2
given by the equations (20) and (21)

respectively, are evidenced. (c) For j
2
'3/B the boundary of B is fractal. (d) B is a multiply

connected set, due to the presence of holes inside it. (e) All the feasible trajectories numerically
generated converge to an apparently chaotic attractor.

3.4. Boundaries of the feasible set

In the following we denote by B the feasible set, de"ned as the set of points
which generate feasible trajectories. A feasible trajectory may converge to the
positive steady state E

H
, to other more complex attractors inside B or to

a one-dimensional invariant set embedded inside a coordinate axis (the last
occurrence means that one of the two brands disappears). Trajectories starting
outside of the set B represent exploding (or collapsing) evolutions of the
economic system. This can be interpreted by saying that the adjustment mecha-
nism expressed by (5) is not suitable to model the time evolution of a system
starting outside of the set B.

With values of the parameters b
i
in the range (0.2, 0.3), which is a reasonable

range according to empirical market investigations (see, e.g., Bultez and Naert,
1975), the invariant coordinate axes appear to be transversely repelling, i.e., they
act as repelling sets with respect to trajectories approaching them from the
interior of the nonnegative orthant. Moreover, for the parameters used in our
simulations, we have observed only one attractor inside B (although more than
one coexisting attractors may exist, each with its own basin of attraction). On
the basis of such numerical evidence, in what follows we will often speak of
a unique, bounded and positive attracting set, denoted by A, which attracts the
generic feasible trajectory, even if its existence and uniqueness are not rigorously
proved.

Let LB be the boundary of B. Such a boundary can have a simple shape, as in
the situation shown in Fig. 4a, where the attractor A is the "xed point E

H
and

B is represented by the white region, or a very complex structure, as in Fig. 4e,
where, again, B is given by the white points and A is a chaotic attractor
represented by the black points inside B.

An exact determination of LB is the main goal of the remainder of this
subsection. Let us "rst consider the dynamics of ¹ restricted to the invariant
axes. From the one-dimensional restriction f

1
de"ned in (9), conjugated to the

logistic map (11), we can deduce that bounded trajectories along the invariant
x axis are obtained when j

1
B43 (corresponding to k

1
44 in (10)), provided

that the initial conditions are taken inside the segment u
1
"OO(1)

~1
, where
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O(1)
~1

is the rank-1 preimage of the origin O computed according to the restric-
tion f

1
(see Fig. 4b), i.e.

O(1)
~1

"A
1#j

1
B

j
1

, 0B. (17)

Divergent trajectories along the x axis are obtained starting from an initial
condition out of the segment u

1
. Analogously, when j

2
B43, bounded trajecto-

ries along the invariant y axis are obtained provided that the initial conditions
are taken inside the segment u

2
"00(2)

~1
, where 0(2)

~1
is the rank-1 preimage of the

origin computed according to the restriction f
2
, i.e.

O(2)
~1

"A0,
1#j

2
B

j
2
B. (18)

Also in this case, divergent trajectories along the y-axis are obtained starting
from an initial condition out of the segment u

2
.

Consider now the region bounded by the segments u
1

and u
2

and their
rank-1 preimages u~1

1
"¹~1(u

1
) and u~1

2
"¹~1(u

2
). Such preimages can be

analytically computed as follows. Let X"(p, 0) be a point of u
1
, i.e.

0(p((1#j
1
B)/j

1
. Its preimages are the real solutions of the algebraic system

obtained from (6) with (x@, y@)"(p, 0):

xA1#j
1
B

xb1

xb1#kyb2
!j

1
xB"p,

yA1#j
2
B

kyb2

xb1#kyb2
!j

2
yB"0. (19)

It is easy to see that the preimages of the point X are either located on the same
invariant axis y"0 (in the points whose coordinates are the solutions of the
equation f

1
(x)"p) or on the curve of equation

x"Ckyb2A
j
2
B!j

2
y#1

j
2
y!1 BD

1@b1

. (20)

Analogously, the preimages of a point>"(0, q) of u
2
, i.e. 0(q((1#j

2
B)/j

2
,

belong to the same invariant axis x"0, in the points whose coordinates are the
solutions of the equation f

2
(y)"q, or lie on the curve of equation

y"C
xb1

k A
j
1
B!j

1
x#1

j
1
x!1 BD

1@b2

. (21)

It is straightforward to see that curve (20) intersects the y-axis in point O(2)
~1

given
in (18), curve (21) intersects the x-axis in point O(1)

~1
given in (17), and the two

curves (20) and (21) intersect at a point O(3)
~1

interior to the positive orthant (see
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Fig. 4b). As noted before, O(3)
~1

is another rank-1 preimage of the origin. These
preimages of the origin are the vertexes of a &quadrilateral' OO(1)

~1
O(3)

~1
O(2)

~1
,

whose sides are u
1
, u

2
and their rank-1 preimages located on the curves of Eqs.

(20) and (21), denoted by u~1
1

and u~1
2

in Fig. 4b. All the points outside this
quadrilateral cannot generate feasible trajectories. In fact the points located on
the right of u~1

2
are mapped into points with negative x coordinate after one

iteration, as can be easily deduced from the "rst line of (6), and the points located
above u~1

1
are mapped into points with negative y coordinate after one iter-

ation, as can be deduced from the second line of (6).
The boundary of B is given, in general, by the union of all the preimages, of

any rank, of the segments u
1

and u
2
:

LB(R)"A
=
Z
n/0

¹~n(u
1
)BXA

=
Z
n/0

¹~n(u
2
)B. (22)

As long as j
1
B43 and j

2
B43 the boundary of B has the simple shape shown

in Fig. 4b. In this situation (obtained with the same parameter values as in Fig.
4a) the quadrilateral OO(1)

~1
O(3)

~1
O(2)

~1
constitutes the whole boundary LB, because

no preimages of higher rank of u
1

and u
2

exist. This is due to the fact that
u~1

1
and u~1

2
are entirely included inside the region Z

0
of the plane whose

points have no preimages.
The situation is di!erent when the values of the parameters are such that

some portions of these curves belong to the regions Z
2

or Z
4

whose points
have two or four preimages respectively. In this case preimages of higher order
of u

1
and u

2
exist, say u~k

1
and u~k

2
, which form new portions of LB. Such

preimages of u
1

and u
2

of rank k'1 bound regions whose points are
mapped out of the region D after k iterations, just as we have shown for
the standard logistic map (11) with parameter k'4 (see Fig. 1b), i.e. after
the contact between the critical point c"k/4 and the boundary of the basin
of in"nity at O

~1
"1. This causes the shape of the boundary of B to

become more complex. In the next section we shall see that, in analogy with the
one-dimensional case, also in the two-dimensional case the bifurcations of
the basin are characterized by contacts between the basin boundaries and the
critical curve ¸C.

4. Global bifurcations

If j
1
or j

2
is increased, so that the bifurcation value j

b
"3/B (which coincides

with k"4 in (11)) is crossed by at least one of them, then LB is changed from
smooth to fractal. This transition between qualitatively di!erent structures of
the boundaries of the region B, as some parameters are varied, constitute
a global (or non-classical) bifurcation (see Mira et al., 1996). The global
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bifurcation occurring at j
i
"j

b
, i"1, 2, can be characterized by a contact

between LB and arcs of the critical curves, as described below.
We "x the parameters B, k, b

1
, b

2
and j

1
and vary the speed of adjustment j

2
.

As j
2

is increased, the branch ¸C(b) of the critical curve that separates Z
0

from
Z

2
moves upwards, and at j

2
"3/B it has a contact with u~1

1
at the point O(2)

~1
.

After this contact the sides u
2

and u~1
2

of LB are transformed from smooth to
fractal. In fact, for j

2
'3/B, just after the bifurcation, a segment of u~1

1
enters

the region Z
2
, so that a portion S

1
of the complement of B, bounded by ¸C(b)

and u~1
1

(see Fig. 4c), now has two preimages. These two preimages, say S(1)
0

and
S(2)
0

, merge in points of ¸C(b)
~1

(as the points of ¸C(b) have two merging preimages
belonging to ¸C(b)

~1
) and form a &gray tongue' issuing from the y axis (denoted by

S
0

in Fig. 4c, being S
0
"S(1)

0
XS(2)

0
). S

0
belongs to the &gray set' of points that

generate non-feasible trajectories because the points of S
0

are mapped into S
1
,

so that negative values are obtained after two iterations. The intersection of this
&main tongue' S

0
with the y-axis is given by the neighborhood I

0
of the critical

point c2, de"ned in (16), of the restriction f
2
, i.e. the &main hole' of the logistic

with k'4 (see Fig. 1b).
This is only the "rst of in"nitely many preimages of S

1
. Preimages of S

1
of

higher rank form a sequence of smaller and smaller gray tongues issuing from
the y-axis, whose intersection with the y-axis correspond to the in"nitely many
preimages I

~k
of the main hole I

0
(see again Fig. 1b). Only some of them are

visible in Fig. 4c, but smaller tongues become numerically visible by enlarge-
ments, as it usually happens with fractal sets. The fractal structure of the
boundary of B is a consequence of the fact that the tongues are distributed along
the segment u

2
of the y-axis according to the structure of the intervals

I
~k

described at the end of Section 3.1, whose complementary set is a Cantor set.
In the situation shown in Fig. 4c the main tongue S

0
has a wide portion in the

region Z
4
. Hence, besides the two preimages along the y-axis (denoted by

S(1)
~1

and S(2)
~1

in Fig. 4c) issuing from the intervals I(1)
~1

and I(2)
~1

, two more
preimages exist (denoted by S(3)

~1
and S(4)

~1
in Fig. 4c) issuing from u~1

2
and

located at opposite sides with respect to ¸C(a)
~1

. The tongues S(3)
~1

and S(4)
~1

belong
to Z

0
, hence they do not give rise to new sequences of tongues, whereas S(1)

~1
and

S(2)
~1

have further preimages, being located inside Z
4

and Z
2

respectively. If the
preimages are two, as in the case of S(2)

~1
, they form two tongues issuing from the

y-axis, whereas in the case of four preimages, as in the case of S(1)
~1

, two of them
are tongues issuing from the y-axis and two are tongues issuing from the
opposite side, i.e. u~1

2
.

As j
2

is further increased, ¸C(b) moves upwards, the portion S
1

enlarges and,
consequently, all its preimages (i.e. the in"nitely many tongues) enlarge and
become more pronounced. This causes the occurrence of another global bifurca-
tion, that changes the set B from simply connected to multiply connected (or
connected with holes), by a mechanism similar to that described in Mira et al.
(1994), Mira et al. (1996, Chapter 5) and Abraham et al. (1997, Chapter 5). This
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4Not all the points of B generate trajectories converging to the 4-cycle because we must exclude
the invariant sets, like the repelling "xed point E

H
as well as the points of the repelling 2-cycle

whose #ip bifurcation generated the attracting 4-cycle, and their stable sets. However, the subset of
points in B which do not converge to the 4-cycle is a set of measure zero, and this justi"es the term
&generic'.

bifurcation occurs whenever a tongue, belonging to Z
2
, has a contact with ¸C(a)

and enters the region Z
4
. If the contact occurs out of the y-axis, it causes the

creation of a pair of new preimages, merging along ¸C(a)
~1

, whose union is a hole
(or lake, following the terminology introduced in Mira et al., 1994) inside B, i.e.,
a set of points that generate non-feasible trajectories surrounded by points of B.
This can be seen in Fig. 4d, where the hole H

0
is the preimage of the portion H

1
,

inside Z
4
, of a tongue that crossed ¸C(a).

As j
2
is increased, other tongues cross ¸C(a) and, hence, new holes are created,

giving a structure of B like the one shown in Fig. 4e, where many holes inside
B are clearly visible.

To sum up, the transformation of the set B from a simply connected region
with smooth boundaries into a multiply connected set with fractal boundaries
occurs through two types of global bifurcations, both due to contacts between
LB and branches of the critical set ¸C.

As it can be noticed from Figs. 4a and e, also the attractor A existing inside
B changes its structure for increasing values of the parameter j

2
. For low values

of j
2
, as in Fig. 4a, the attractor is the "xed point E

H
, to which all the trajectories

starting inside the set B converge. As j
2

increases, E
H

loses stability through
a #ip (or period doubling) bifurcation at which E

H
becomes a saddle point, and

an attracting cycle of period 2 is created near it. As j
2

is further increased, also
the cycle of period two undergoes a #ip bifurcation at which an attracting cycle
of period 4 is created, which becomes the unique attractor inside B. In this case
the generic4 trajectory starting inside B converges to the 4-cycle, so that B can
be identi"ed with its basin of attraction for any practical purpose. These #ip
bifurcations are followed by a sequence of period doublings (similar to the well
known Myrberg or Feigenbaum cascade for one-dimensional maps), which
creates a sequence of attracting cycles of period 2n followed by the creation of
chaotic attractors, which may be cyclic chaotic sets or a connected chaotic
set. The numerical simulations show that the size of the chaotic attractor
increases as j

2
increases, and with the parameter values used in Fig. 4e

the chaotic set has a contact with the boundary of its basin. This contact
bifurcation is known as xnal bifurcation (Mira et al., 1996; Abraham et al., 1997),
and causes the destruction of the attractor A. After this contact bifurcation the
generic initial strategy generates non-feasible trajectory, that is, the adjustment
mechanism (5) does not generate a stable feasible evolution of the economic
system.
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Of course, the same sequence of local and global bifurcations occurs if the
other speed of adjustment, j

1
, is increased. The only di!erence is that at the

bifurcation value j
1
"j

"
"3/B the contact between LB and ¸C occurs at the

point O(1)
~1

and consequently the in"nitely many tongues with fractal structure
are created along the segment u

1
of the x-axis. Preimages of some of these

tongues, those belonging to Z
4
, appear along the opposite side u~1

1
of the

quadrilateral.
If both the speeds of adjustment j

1
and j

2
are greater than the bifurcation

value j
"
"3/B, tongues appear along all the four sides of the quadrilateral

OO(1)
~1

O(3)
~1

O(2)
~1

, as it can be seen in the numerical simulations shown in Fig. 5.
For the set of parameters used in these "gures, the bifurcation value is j

"
"0.06,

and both j
1

and j
2

are always greater than j
"
, so that the boundary of B has

a fractal shape. It can be noticed that the tongues appearing along the x-axis are
more pronounced than those appearing along the y-axis. This is due to the fact
that k(1, i.e. the relation a

1
'a

2
holds between the constant components of

attraction. The opposite e!ect occurs if k'1.
In Figs. 5 we show di!erent types of attractors that can be obtained by

varying the parameters j
i
and b

i
. In Fig. 5a the attractor A inside the set B is

a cycle of period 4, represented by the four small dots. As both the speeds of
adjustment are increased, a sequence of period-doubling bifurcations gives rise
to cycles of period 2k and then to cyclic chaotic attractors, like the 2-cyclic
chaotic attractor shown in Fig. 5b. In this situation the long-run behavior of the
system is characterized by cyclical behavior of order two, but in each period the
exact state cannot be predicted. If the speeds of adjustment j

i
are further

increased, the two-piece chaotic area has a contact with LB (in Fig. 5c we are just
before such a bifurcation) and then it disappears being this the "nal bifurcation.
With a di!erent change in the parameters, for example by using slightly lower
values of the parameters b

i
the two-cyclic chaotic attractor gives rise to a con-

nected chaotic attractor, as in Fig. 5d, after a contact of the two chaotic areas.
This is due to the "rst homoclinic bifurcation of the saddle "xed point E

H
, as we

shall see in greater detail below, and this leads to a further loss of information
about the long-run behavior of the system: a cyclic (although chaotic) behavior
is replaced by a totally erratic evolution that covers a wide area of the phase
space of the dynamic system.

Critical curves are also quite helpful in the analysis of the boundaries of the
chaotic attractors. In fact, in analogy to the critical points of the one-dimen-
sional maps, that together with their images determine the boundaries of the
chaotic intervals (as recalled at the end of Section 3.1, see Fig. 1a) the critical
curve ¸C and its images can be used to bound invariant absorbing areas, which
include the two-dimensional chaotic attractors of noninvertible maps. In two-
dimensional maps the notion of chaotic area generalizes that of chaotic inter-
vals, and the critical curves, that constitute the generalization of the concept of
critical points, are expected to play a similar role in determining the boundaries
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Fig. 5. Some attractors to which the generic feasible trajectory converges.

of the chaotic areas (see Mira et al., 1996, for a de"nition of the concept of
chaotic area and for the proofs that critical arcs bound such areas). We recall
that the critical sets of rank k are the images of rank k of ¸C

~1
denoted by

¸C
k~1

"¹k(¸C
~1

)"¹k~1(¸C), ¸C
0

being ¸C.
A chaotic area A of the map ¹ is an invariant set of ¹, i.e. ¹(A),A, which

includes a chaotic set, and numerically computed trajectories seem to cover the
area. Often its boundary can be obtained by following the procedure, described
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Fig. 6. Boundary of the attractor shown in Fig. 5b obtained by arcs of critical curves
¸C,¸C

1
,2,¸C

6
, according to (23) with m"7.

in Mira et al. (1996, Chapter 4). Let c"AW¸C
~1

be the portion of critical
curve of rank-0 inside A. Then, for a suitable integer m

LA-

m
Z
k/1

¹k(c). (23)

An example is shown in Fig. 6, where the boundary of the 2-cyclic chaotic area of
Fig. 5b is obtained by the images, up to rank 7, of the portion c of ¸C

~1
. In other

words, the exact boundary of the chaotic attractor of Fig. 5b can be obtained by
(23) with m"7. It is worth noticing that the critical curves of increasing rank
not only give the boundary of a chaotic attractor, but also the regions of greater
density of points, i.e., the regions that are more frequently visited by the points of
the generic trajectory in the invariant area A.

The qualitative change that transforms the two-cyclic chaotic set shown in
Fig. 5c into the &one-piece' chaotic attractor of Fig. 5d can be described by
a global bifurcation too. Such a bifurcation is characterized by a contact
between critical curves and the stable manifold of the saddle "xed point E

H
. We

now show that this bifurcation is a homoclinic bifurcation, due to the creation of
a transverse intersection between the stable and the unstable manifolds of the
saddle "xed point E

H
(for recent work on homoclinic bifurcations in economic

models see, e.g., Gardini, 1993; de Vilder, 1996; Brock and Hommes, 1997). In
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Fig. 7. Homoclinic bifurcation that marks the transformation of a 2-cyclic chaotic set into a one-
piece chaotic set.=6 and =4 are the local unstable manifold and the local stable manifold of the
saddle "xed point E

H
, respectively. (a) Before the homoclinic tangency. (b) After the homoclinic

tangency.

fact, decreasing b
2
, starting from the value used in Fig. 5c, we see that the two

portions of the 2-cyclic chaotic set approach each other, and are separated by
the stable manifold=4(E

H
) of the saddle point (see Fig. 7a). We recall that the

two pieces of the cyclic chaotic area of ¹ are two disjoint attractors for ¹2,
whose basins are separated by=4(E

H
). This means that before the merging of

the two pieces we have =4(E
H
)WA"0. Moreover, the chaotic area A of

¹ includes the closure of =6(E
H
). We numerically see, by iterating a small
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segment made up of points of =6(E
H
), that the critical arcs of the boundary

of A involved in the contact with =4(E
H
), are made up of points of =6(E

H
)

or limit points of =6(E
H
). At b

2
"b(h)

2
, the boundary LA has a contact

with =4(E
H
), which is, consequently, also a contact between =6(E

H
) and

=4(E
H
). It is clear that while no homoclinic orbit of E

H
exists for b

2
'b(h)

2
(because=6(E

H
) and=4(E

H
) are disjoint) after the transversal crossing between

LA and =4(E
H
), occurring for b

2
(b(h)

2
, we have in"nitely many intersections

between =6(E
H
) and =4(E

H
). This clearly appears in the enlargement shown

in Fig. 7b.

5. Conclusions

In this paper we investigated the global properties of a market share attrac-
tion model of interbrand competition by the method of critical curves. In
contrast to existing studies of economic models, which primarily focus on the
local dynamics and demonstrate the possibility of cyclic and erratic #uctuations
by means of computer simulation, our work gives a fairly general investigation
of the global dynamical behavior by a study of the properties of the attractors
and of their basins. For the model analyzed in this paper the main qualitative
changes of the global structure of the basins can be obtained by using the
concept of critical curves. This allows us to learn more about the dynamical
behavior of the system under study than by just focusing on local dynamics,
since we obtain useful information on the size of the chaotic attractors and the
structure of their basins of attraction. Both of the sequences of bifurcations
described in this paper, either a change in the structure of B or a change in the
structure of the attracting set caused by increasing one or both of the speeds of
adjustment j

i
, result in a loss of predictability of the asymptotic behavior of the

economic system. On the one hand, the global bifurcations of the boundaries of
B cause an increasing uncertainty with respect to the destiny of an economic
system starting from a given initial state. A small change in the initial condition,
i.e., a small change in initial marketing e!orts, or a small exogenous shock
during the adjustment process, may cause a great modi"cation of the long-run
behavior of the system, since it can be transformed from a bounded process into
a non-feasible one. On the other hand, the local and global bifurcations that
change the structure of the attractor A give rise to an increasing loss of
information about the asymptotic evolution of the system. The convergence to
the well-known steady state is replaced* for increasing values of the speeds of
adjustment* by an asymptotic convergence to a periodic cycle, with predict-
able cyclic values of the state variables, and then by a cyclic behavior with
output levels which are not well predictable since they fall inside cyclic chaotic
areas. Finally, a situation of erratic behavior inside a large area of the strategy
space with no apparent periodicity may occur.
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For the marketing theorist these results may be interesting, since the delimita-
tion of the basin of attraction of a locally stable set permits one to understand if
a given exogenous shock can be recovered by the endogenous dynamics of the
economic system, or if it will cause an irreversible departure from the attractor.
In terms of marketing theory our analysis might o!er an explanation for the
existence of various types of marketing institutions as some kind of &disequilib-
rium mechanisms' designed to bu!er or reduce the e!ects of complex dynamics
(see Hibbert and Wilkinson, 1994). In any event, this type of analysis reveals
which values of the parameters lead to erratic, random-looking patterns often
found in marketing time series (see Bishop et al., 1984; Priesmeyer, 1992). Our
analysis also shows that the parameters j

1
and j

2
, which are under the decision

makers' control, are critical in the sense that their values determine the dynamics
of the system.

Although economists mainly focused on one-dimensional systems, more
recent publications indicate an increasing interest in higher-dimensional eco-
nomic models (see Gardini, 1992, 1993; Delli Gatti et al., 1993; Hommes, 1998;
Gardini, 1994; de Vilder, 1996; Brock and Hommes, 1997; for the study of
homoclinic bifurcations). Consequently, it seems that mathematical methods
developed to study higher-dimensional (particularly, two-dimensional) systems
will play a considerable role in economics.
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