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Abstract

A dynamic Cournot duopoly game, whose time evolution is modeled by the iteration of a map T : �x; y� ! �r1�y�; r2�x��, is con-

sidered. Results on the existence of cycles and more complex attractors are given, based on the study of the one-dimensional map

F �x� � �r1 � r2��x�. The property of multistability, i.e. the existence of many coexisting attractors (that may be cycles or cyclic chaotic

sets), is proved to be a characteristic property of such games. The problem of the delimitation of the attractors and of their basins is

studied. These general results are applied to the study of a particular duopoly game, proposed in M. Kopel [Chaos, Solitons & Fractals,

7 (12) (1996) 2031±2048] as a model of an economic system, in which the reaction functions r1 and r2 are logistic maps. Ó 2000

Elsevier Science Ltd. All rights reserved.

1. Introduction

An oligopoly is a market structure where a few producers, each of appreciable size, produce the same
good or homogeneous goods (i.e. goods which are perfect substitutes). The fewness of ®rms gives rise to
interdependence, that is, each ®rm must take into account the actions of the competitors in choosing its own
action. The ®rst treatment of oligopoly, proposed in 1838 by the French economist Augustine Cournot [3],
was devoted to the case of only two ®rms, which is called duopoly. A duopoly game can be obtained by
assuming that at each discrete time period t the two ®rms, which shall be denoted by indexes 1 and 2 in the
following, produce the quantities xt and yt respectively, and decide their productions for the next period,
xt�1 and yt�1, in order to maximize their expected pro®ts. The interdependence is given by the fact that each
pro®t depends on the price pt�1 at which the good will be sold in period t � 1, and such price depends on the
total supply Qt�1 � xt�1 � yt�1 according to a given demand function, pt�1 � D�Qt�1�. For example, if the
pro®t function of producer 1 is given by P1�x; y� � xD�x� y� ÿ C�x�, where C represents the cost function,
then its production for period t � 1 is decided by solving the optimization problem

xt�1 � arg max P1�x; y�e�t�1�; �1�
where y�e�t�1 represents the expectation of producer 1 about the production decision of producer 2. Under the
assumptions that (i) the problem (1) has a unique solution, usually expressed as xt�1 � r1�y�e�t�1�, and (ii)
y�e�t�1 � yt, that is, as assumed in the original Cournot paper [3], ®rm 1 expects that the production of ®rm 2
will remain the same as in the current period, the solution of the optimization problem of producer 1 can be
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expressed as xt�1 � r1�yt�, where r1 is called reaction function. Since the reasoning is symmetric, the solution
of the optimization problem of producer 2 can be obtained simply by changing index 1 into 2 and by
swapping x and y, so that the time evolution of the duopoly system is obtained by the iteration of the two-
dimensional map T : R2 ! R2 given by

T :
x0 � r1�y�;
y0 � r2�x�;

�
�2�

where 0 represents the one-period advancement operator and the functions r1 : Y ! X , r2 : X ! Y are the
two reaction functions, obtained from the two optimization problems

Max
x2X

P1 x; y� � � P1 r1 y� �; y� � 8y 2 Y ; Max
y2Y

P2 x; y� � � P2 x; r2 x� �� � 8x 2 X ; �3�

X � R and Y � R being the strategy sets from which the production choices x and y are taken.
Given an initial condition (i.c.)

x0; y0� � 2 X � Y ; �4�
a trajectory xt; ytf g � T t x0; y0� �, t P 0, where T t is the tth iterate of the map (2), represents a so-called
Cournot tâtonnement, obtained as follows: at time t � 0 producer 1 regards the output y0 as ®xed and,
accordingly, chooses its strategy for period 1 by solving the optimization problem (1), i.e. x1 � r1�y0�,
similarly producer 2 adjusts y0 to y1 � r2�x0� and so on. The ®xed points of map (2), located at the inter-
sections of the two reaction functions x � r1�y� and y � r2�x�, are called Cournot±Nash equilibria of the
two-players game.

In the original work of Cournot, as well as in many textbooks, r1 and r2 are decreasing functions that
intersect in a unique point of the positive quadrant, which is also the unique ®xed point of (2). In this case
(2) has a very simple behavior as its trajectories can either converge to the ®xed point or diverge. If more
general reaction functions, not necessarily monotone ones, are considered, then the Cournot tâtonnement
may display more complex behaviors. In the pioneering paper [17] it is shown that quite complex dynamics,
with periodic and chaotic trajectories, can emerge from the iteration of map (2) when unimodal reaction
functions are considered (like those in Fig. 1a), but no economic situations are presented that would lead to
non-monotonic reaction functions.

Fig. 1. (a) Graph of the reaction functions r1�y� and r2�x� of the double logistic Cournot map (5) with l1 � 3:4 and l2 � 3:6. At the

intersections between the two curves are the four ®xed points. Six cycles of period 2 (three have periodic points located on the co-

ordinate axes) are also present, denoted by Greek letters. (b). Graph of the function F �x� � r1�r2�x�� given in (9).
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Simple economic systems whose time evolution can be modeled by a discrete dynamical system of form
(2) with unimodal reaction functions have been proposed in [16,10]. In [16] unimodal reaction functions are
obtained by assuming a linear cost function and a hyperbolic demand function D�Q� � 1=Q. In [10] a
di�erent microeconomic foundation for the occurrence of unimodal reaction functions is proposed by
assuming a linear demand function and a nonlinear cost function, so that both the reaction functions
assume the form of standard logistic maps, and the Cournot map (2) becomes

T x; y� � � l1y 1�� ÿ y�; l2x 1� ÿ x�� �5�
with parameters l1 > 0; l2 > 0: In [10] the local stability of the ®xed points in the symmetric case of
identical producers, i.e. l1 � l2, has been studied.

The aim of the present paper is that of giving a fairly general study of the attracting sets of (2) and of the
structure of their basins of attraction, as well as a characterization of the bifurcations that change their
qualitative properties. We show that, in general, maps of form (2) are characterized by multistability, i.e.
coexistence of many distinct attractors, that may be stable periodic cycles or cyclic chaotic attractors, each
with its own basin of attraction. In particular, we shall see that all the coexisting attractors, as well as their
basins, can be determined by the study of a one dimensional map, given by the composition of the two
reaction functions.

The coexistence of many di�erent local attractors opens the important question of the role of the initial
condition on the long-run behavior of the Cournot adjustment process. This naturally leads to the problem
of the delimitation of the boundaries of the basins, whose solution requires a global study of the dynamical
properties of map (2).

The plan of the paper is the following. In Section 2 some general properties of map (2) are recalled from
[4,1], and new results on the attractors of (2) and their basins of attraction are proved. The general
propositions given in this section are applied to the particular Cournot game (5). Since the two-dimensional
dynamics of T are associated with the properties of a one-dimensional map, in Section 3 such one-di-
mensional function is studied in detail for the map (5). Although we shall focus our attention on some
exemplifying cases, the results, and the methods followed to obtain them, are general and can easily be used
to study the dynamical properties of maps of form (2) with arbitrary reaction functions, such as those
proposed in [16] or in [17].

2. General properties of maps T : �x; y�® r1 y� �; r2 x� �� �

A trajectory of the map T starting from an i.c. (4) represents the Cournot tâtonnement of a duopoly game
in which the producers simultaneously update their productions at each discrete time period. Moreover, as
already noticed in [4], among the possible dynamics of a Cournot tâtonnement there are also the so-called
Markov-Perfect-Equilibria (MPE henceforth) processes. In this case at each discrete time only one player
moves (i.e. the players move alternatingly, each choosing the best replay to the action of the other player).
This occurs if the phase point xt; yt� � belongs alternatingly to the graphs of the reaction curves y � r2�x� and
x � r1�y�. This condition is satis®ed if the i.c. (x0; y0) belongs to a reaction curve, i.e. y0 � r2�x0� (player 1
moves ®rst) or x0 � r1�y0� (player two moves ®rst). This follows from the fact that the set

R12 � R1 [ R2 with R1 � r1�y�; y� � j y 2 Yf g and R2 � x; r2�x�� � j x 2 Xf g; �6�
that represents the union of the graphs of the two reaction functions, is a trapping set for T, i.e.
T �R12� � R12. In fact, it is easy to realize that the image of a point belonging to a reaction curve belongs to
the other reaction curve, so any i.c. (x0; y0� 2 R12 generates a trajectory entirely belonging to R12,
T t�x0; y0� 2 R12 8t P 0. We shall call such a trajectory an MPE trajectory

A particular MPE trajectory is a ®xed point of the map T. In fact, �x�; y�� is a ®xed point of T i�
x� � r1 y�� � and y� � r2 x�� �, i.e. a point of intersection of the graphs R1 and R2 of the two reaction functions,

x�; y�� � 2 R12: �7�
While an i.c. �x0; y0� 2 R12 generates an MPE trajectory, a ``generic'' i.c. �x0; y0� 62 R12 shall give rise to a
Cournot tâtonnement, with (xt; yt) not belonging, in general, to R12. Note, however, that a trajectory
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starting with an i.c. �x0; y0� 62 R12 may enter the trapping set R12 after a ®nite number of steps, since a point
of the set R12 can have preimages out of R12. For example, for the duopoly game whose reaction curves are
represented in Fig. 1a each point of R12 has exactly four preimages of rank-1, two belonging to R12 and two
out of it, which, again, have other preimages of rank-1 outside R12 and so on.

Let us turn now to the generic dynamics. We ®rst recall some properties of map (2), that will be used in
the following. Let

F �x� � r1 � r2 x� �; x 2 X and G�y� � r2 � r1 y� �; y 2 Y ; �8�
where we assume that the sets X and Y are such that the maps F and G are well de®ned. Then the following
three properties hold (see [4]).

Property 1. T 2k x; y� � � F k�x�;Gk�y�� � for each integer k P 1.

This property easily follows from the fact that the square map T 2 (the second iterate of T) is a decoupled
map, since T 2�x; y� � T �r1�y�; r2�x�� � �r1�r2�x��; r2�r1�y��� � �F �x�;G�y��.

Property 2. For each n P 1 the two one-dimensional maps F and G satisfy:

r1 � Gn�y� � r1 � r2 � r1 � � � � � r2 � r1�y� � F n � r1�y�;
r2 � F n x� � � r2 � r1 � r2 � � � � � r1 � r2 x� � � Gn � r2 x� �:

From Property 2 we deduce that the cycles of the maps F and G (and their stability properties), are
strictly related. In particular, a correspondence between the cycles of the two maps is de®ned by the fol-
lowing.

Property 3. If x1; . . . ; xnf g is an n-cycle of F then y1; . . . ; ynf g � r2�x1�; . . . ; r2�xn�f g is an n-cycle of G. If
y1; . . . ; ynf g is an n-cycle of G then x1; . . . ; xnf g � r1�y1�; . . . ; r1�yn�f g is an n-cycle of F.

Such kinds of cycles of F and G shall be called conjugate. That is, for each cycle of F (resp. G ), a
conjugate one of G (resp. F ) exists, and the two conjugate cycles have the same stability property (both are
stable or both are unstable). In fact, due to the chain-rule for the derivative of composite functions, the
cycle x1; . . . ; xnf g of F and the conjugate cycle y1 � r2�x1�; . . . ; yn � r2�xn�f g of G have the same eigenvalue
k �Qn

i�1 DF �xi� �
Qn

i�1 DG�yi� �
Qn

i�1 Dr1�yi�Dr2 xi� �.

2.1. Cycles of the Cournot map T

The cycles of the two-dimensional map T are related to those of the one-dimensional maps F and G,
according to the following result (see [1]).

Property 4. A point �xi; yi� is a periodic point of period n for T iff x � xi; and y � yi are periodic points of F
and G of period n (if n is odd) or a divisor of n (if n is even).

This is a consequence of the Properties 1 and 2. In fact, the ``power'' n � 2k of T, when n is even, is given
by T 2k�x; y� � F k x� �;Gk�y�� �, and this is a periodic point of T (i.e. T 2k�x; y� � �x; y�) i� x and y are periodic
points of F and G of period k or a divisor of k. Regarding the cycles of T of odd period n � 2k � 1 we have
that T 2k�1�x; y� � r1�Gk�y��; r2�F k�x��� � � �x; y� holds i� x and y are periodic points of F and G of the same
odd period n � 2k � 1 because the equality T 2�2k�1��x; y� � F 2k�1 x� �;G2k�1�y�� � � �x; y� must hold together
with the previous one.

In the case of the double logistic Cournot map (5) the functions F and G are given by the fourth degree
functions

F �x� � r1 � r2 x� � � l1l2x 1� ÿ x� 1
ÿ � l2x2 ÿ l2x

� �9�
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and

G�y� � r2 � r1�y� � l1l2y 1� ÿ y� 1
ÿ � l1y2 ÿ l1y

�
: �10�

Consider for example l1 � 3:4 and l2 � 3:6. Then the function F has four ®xed points (Fig. 1b): x�0 � 0,
x�1 � q�, x�2 � p�; x�3 � u�, all unstable. The same holds for G, whose ®xed points have coordinates
y�i � r2�x�i �, i � 0; . . . ; 3. The cartesian product x�i

� 	� y�i
� 	

is formed by 16 points of R2 and includes the
four ®xed points of the map T, located at the four intersections between the reaction curves (these are
homogenous 1-cycles belonging to R12) and six 2-cycles with periodic points out of R12 (i.e. not MPE cycles)
three of which are on the coordinate axes (see Fig. 1a).

From Property 4 it follows that cycles of odd period of T can only come from cycles of the same odd
period of F and G, while cycles of even period of T can come from several kinds of cycles of F and G, of
even or odd period, with equal or di�erent periods, conjugate or not. In fact, cycles of T may come from
conjugate ones of F and G, and are called homogeneous, but there may also be several cycles of T, coming
from the combination of cycles of F and G which are not conjugate, of the same period or having di�erent
periods. Such cycles of T shall be called (as in [1]) cycles of mixed type.

In order to understand how many cycles of T exist, we only consider the one-dimensional map F. In fact,
the cycles of G are obtained from those of F by Property 3. Let us consider a cycle of F of period n, say
x1; . . . ; xnf g, with eigenvalue k �Qn

i�1 DF �xi�, and search for the cycles of T associated with this cycle of F.
Certainly there exist also the conjugate cycle of G, given by y1; . . . ; ynf g � r2�x1�; . . . ; r2�xn�f g, with the same
eigenvalue k. Associated with these two conjugate cycles of F and G there exist several homogeneous cycles
of T obtained as follows:
· if n is odd, i.e. n � 2k � 1; then

(a) T has one cycle of the same odd period n given by

C � T i�x1; r2�xk�1��; if � 1; . . . ; ng �11�
with eigenvalues k1;2 � �

���
k
p

(b) T has k � �nÿ 1�=2 cycles of even period 2n given by

C1 � T i�x1; r2�x1��; i � 1; . . . ; 2nf g
..
.

Ck � T i�x1; r2�xk��; i � 1; . . . ; 2nf g
�12�

all with eigenvalues k1 � k2 � k;
· If n is even, i.e. n � 2k, then we have k � �n=2� homogeneous cycles of even period 2n, of the type given in

(b) above, with eigenvalues k1 � k2 � k.

Remark 1. Only the cycle C1 listed in (b) gives an MPE trajectory.

Notice that all the cycles of T listed above are stable if and only if the cycle of F that generates them is
stable, i.e. kj j < 1. This gives a characteristic property of the Cournot maps (2), as stated in the following
remark.

Remark 2. If F has a stable cycle of period n > 2 then the two-dimensional map T is characterized by mul-
tistability, i.e. it has several distinct coexisting attracting sets.

As an example, consider map (5) with l1 � 3:83 and l2 � 3:84 . At such values of the parameters the
map F has only one attracting cycle of period 3, say x1; x2; x3f g, with eigenvalue k � 0:39. Then from (11)
and (12) we get the following coexisting attracting cycles of map (5):
· a stable 3-cycle T i�x1; r2�x2��; i � 1; 2; 3f g 62 R12 (i.e. not MPE),
· a stable 6-cycle T i�x1; r2�x1��; i � 1; . . . ; 6f g 2 R12 (MPE cycle),
all of homogeneous type.

In Section 3 we shall see that the map F de®ned in (9) can have attracting cycles of any period. Suppose,
for example, that F has a cycle of period n� 2875, with eigenvalue k, j k j< 1. Then there exists an attracting
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cycle of map (5) of the same odd period (with eigenvalues k1;2 � �
���
k
p

), together with 1437 di�erent at-
tracting cycles all of period 5750 (all with eigenvalues k1 � k2 � k).

Now let us suppose that F has two distinct cycles, say x1; . . . ; xnf g of period n with eigenvalue
kx �

Qn
i�1 DF �xi�, and z1; . . . ; zmf g of period m (with mQn ) with eigenvalue kz �

Qm
i�1 DF �zi�. According to

Property 3 the map G has the two conjugate cycles r2�x1�; . . . ; r2�xn�f g and r2�z1�; . . . ; r2�zm�f g. In this case,
several other cycles of T are obtained by combining the periodic points of the nonconjugated cycles of F
and G, the so-called cycles of mixed type. As it is shown in [1], let s be the least common multiple between n
and m and k1; k2 the two integers such that s � k1n � k2m. Then N� nm=s distinct cycles of T of mixed type
of period 2s exist, with the periodic points belonging to the cartesian products x1; . . . ; xnf g�

r2�z1�; . . . ; r2�zm�f g [ z1; . . . ; zmf g � r2�x1�; . . . ; r2�xn�f g, given by

M1 � T i�x1; r2�z1��; i � 1; . . . ; 2sf g
..
.

MN � T i�x1; r2�zN��; i � 1; . . . ; 2sf g
�13�

each of which has eigenvalues k1 � kk1

x and k2 � kk2

z .

Remark 3. The cycles in (13) do not belong to the trapping set R12, i.e. cycles of mixed type cannot be MPE.

The peculiar property of multistability of a Cournot map is even more evident when F has coexisting
attracting cycles, because in this case also all the cycles of mixed type in (13) are attracting for T.

For example, consider l1 � 3:53 and l2 � 3:55. In this case F has a stable 2-cycle x1; x2f g coexisting with
a stable 4-cycle z1; . . . ; z4f g, and the same occurs for the conjugate cycles of G. Then the map T in (5) has
®ve coexisting attracting cycles:
· one homogeneous cycle of period 4, with periodic points T i�x1; r2�x1��; i � 1; . . . ; 4f g 2 R12 (an MPE cy-

cle);
· two homogeneous cycles of period 8, given by C1 � T i�z1; r2�z1��; i � 1; . . . ; 8f g 2 R12 (another MPE cy-

cle) and C2 � T i �z1; r2�z2��; i � 1; . . . ; 8f g (which is not MPE);
· two cycles of mixed type of period 8, given by M1 � T i�x1; r2�z1��; i � 1; . . . ; 8f g and

M2 � T i�x1; r2�z2��; i � 1; . . . ; 8f g.
The periodic points of these cycles are represented in Fig. 2, where also their basins of attraction are shown,
each represented by a di�erent color.

The following proposition summarizes the results given above, both for the cycles of homogeneous type
and those of mixed type, whose stability is an immediate consequence of the eigenvalues reported above:

Proposition 1. Any cycle C of the two-dimensional map T is associated with one or two cycles of F, say Cx and
Cz�Cz � Cx or Cz 6� Cx�, and:

(i) the periodic points of C belong to the set P � �Cx [ Cz� � �r2�Cx [ Cz��;
(ii) C is attracting for T iff Cx and Cz are attracting for F.

Note that, due to Property 2, a cycle Cy of G is always the image by r2 of a cycle of F so that we can also use
the notation Cy � r2�Cz� or Cz � r1�Cy�. So the set P can be written as P � �Cx [ r1�Cy�� � �r2�Cx� [ Cy�.

In particular, the homogeneous cycles of T are got when Cz � Cx, so that the set P reduces to the
cartesian product: P � Cx � r2�Cx�. Cycles of mixed type are obtained with Cz 6� Cx and the periodic points
of C are strictly included in P.

Hence the study of only one of the maps de®ned in (8) is su�cient to give a complete understanding of all
the cycles of the two-dimensional map T and their stability properties.

In this section we have seen examples with reaction functions that depend on real parameters. Of course
the two composite functions (8) depend on all these parameters. For example, the functions (9) and (10)
depend on both the real parameters l1 and l2, whose variation can cause the occurrence of local bifur-
cations that create or destroy cycles of F (and consequently of G). Since the dynamical properties of the
Cournot map T are strictly linked to those of the one-dimensional maps F and G, these local and global
bifurcations are expected to extend also to the map T. In fact, as shown in [1], whenever a bifurcation
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occurs that creates (eliminates) cycles of the map F, and thus also of G, many cycles of the Cournot map are
simultaneously created (eliminated) at the same parameter's value. Such bifurcations of the map T are often
of a particular type, due to the presence of two eigenvalues that simultaneously cross the unit circle, in
which case we say that the cycles of T undergo a degenerate bifurcation, whose e�ects are generally di�erent
from those of a generic local bifurcation. In particular, a standard fold or ¯ip bifurcation for the one-di-
mensional map F (or equivalently for G), is always associated with a degenerate bifurcation of T of fold-
type (the eigenvalues cross the unit circle with k1 � k2 � 1�, or of flip-type �k1 � k2 � ÿ1�, or of saddle-type
�k1 � ÿ1 and k2 � 1�.

2.2. Basins of attraction of coexisting stable cycles of T

As we have seen, the coexistence of attracting sets is a characteristic property of the class of maps (2),
thus the structure of their basins of attraction becomes of particular interest in order to predict the as-
ymptotic behavior of the games starting from a given i.c. (x0; y0). The peculiar structure of the basins of
attraction, clearly visible in Fig. 2, is another characteristic property of the class of maps (2), as it will be
proved in this section.

From Proposition 1 we know that any n-cycle C of T, of odd or even period n, is necessarily associated
with a cycle of F and one of G say Cx and Cy respectively. Let us denote by B�C� the total basin of an
attractor C. It is given by B�C� � S1n�0 Tÿn�Bim�C�� , where Bim�C� is the immediate basin of C, made up of
the connected components of the basin containing C. Analogously, for the one-dimensional map F we have
B�Cx� �

S1
n�0 F ÿn�Bim�Cx�� , where Bim�Cx� is the immediate 1-dimensional basin of Cx along the x axis:

The following proposition holds:

Proposition 2. Let C be an attracting cycle of T associated with the cycles Cx and Cz of F, then
(i) B�C� � �B�Cx� [B�Cz�� � r2��B�Cx� [B�Cz���

Fig. 2. The black points represent the periodic points of the ®ve coexisting attracting cycles of the map (5) with l1 � 3:53 and

l2 � 3:55. Each basin of attraction, represented by a di�erent color, is formed by disjoint rectangles, given by the immediate basin

(containing the periodic points) and all its preimages.
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(ii) Bim�C� � �Bim�Cx� [Bim�Cz�� � r2��Bim�Cx� [Bim�Cz��� and Bim�C� is made up of rectangles which in-
clude the points of C.

Proof. Let �x; y� 2 B�C�, i.e. T n�x; y� ! C as n!1. For Proposition 1 C belongs to the set
P � �Cx [ Cz� � �r2�Cx [ Cz��. If k is the period of C, then T 2nk�x; y� tends to one periodic point of C as
n!1. By using Property 1 we have T 2nk�x; y� � �F nk�x�;Gnk�y�� ! �Cx [ Cz� � �r2�Cx [ Cz��, which means
that x 2 B�Cx [ Cz� � B�Cx� [B�Cz� and y 2 r2�B�Cx [ Cz�� � r2��B�Cx� [B�Cz���:

Also (ii) is an immediate consequence of Proposition 1, which states that the periodic points of C belong
to the cartesian product P � �Cx [ Cz� � �r2�Cx [ Cz��. �

Proposition 3. Let T be a map of form (2). Then:
(i) The image of a horizontal segment is a vertical segment and vice-versa.
(ii) The preimages of a horizontal segment, if any, are vertical segments and vice-versa.

Proof. (i) Let H be a horizontal segment, lying on the line of equation y � h, h constant. Then T H� � belongs
to the vertical line of equation x � f �h�. Analogously, if V is a vertical segment belonging to the line x � k
then the image T V� � belongs to the horizontal line y � r2 k� �. (ii) The preimages of the horizontal segment H
are obtained by solving the system of equations r2 x� � � x0; r1�y� � h , where x0 belongs to a given range
according to the segment's length. These are two independent equations, and preimages of a point x0; h� �
exist if and only if both the equations have real solutions. If such solutions exist, they necessarily belong to
the vertical lines y � rÿ1

1 h� �, where rÿ1
1 formally indicates the set of all the real solutions of the equation

r1�y� � h. Analogously the preimages, if any, of V, belong to the set of horizontal lines x � rÿ1
2 k� �. �

Proposition 4. For any periodic point P � �x1; y1� of the map T of period n P 1, the horizontal and vertical
lines y � y1 and x � x1, issuing from P, are trapping sets for the map T n.

Proof. We shall ®rst prove the statement for n even and then for n odd. Let �x1; y1� be a periodic point of
even period n � 2k. Then, from Property 1, T 2k�x1; y1� � F k x1� �;Gk�y1�� � � �x1; y1�. This means that
considering a point �x1; y� 2 x � x1f g, we have T 2k�x1; y� � x1;Gk�y�� � 2 x � x1f g, i.e. the line x � x1f g
is trapping for T n. Analogously, considering a point �x; y1� 2 y � y1f g we get T 2k�x; y1� �
F k�x�; y1�� � 2 y � y1f g, that is to say the line y � y1f g is trapping for T n.

Now consider a periodic point �x1; y1� of odd period n for T. Then x1 is a periodic point of period n of
F and y1 is a periodic point of period n of G. Hence T 2n x1; y1� � � F n�x1�;Gn�y1�� � � x1; y1� �, i.e. it is also
a periodic point of odd period n for the map T 2, and for T 2 the cycle is always a star node. Thus, reasoning
as above, we have T 2n�x1; y� � F n x1� �;Gn�y�� � � x1;Gn�y�� � 2 x � x1f g and T 2n�x; y1� � F n x� �;Gn�y1�� � �
F n�x�; y1� � 2 y � y1f g, proving the assertion for T 2n and thus for T n. �

Corollary 1. Any saddle cycle of T has stable and unstable sets formed by the union of segments which are
parallel to the coordinate axes.

Proof. Saddle cycles of the map T can only be of mixed type, since all the cycles whose periodic points
belong to the cartesian product of conjugate cycles of F and G have equal eigenvalues. Cycles of mixed type
always have even period, hence their eigenvalues are eigenvalues of a diagonal matrix, which implies that
the corresponding eigenvectors are parallel to the coordinate axes. The local stable (unstable) manifold, say
W s

loc (W u
loc), of a saddle cycle is tangent to the eigenvector relative to the eigenvalue with modulus less than 1

(greater than 1). However, from Proposition 4 we know that horizontal and vertical lines through n-pe-
riodic points are trapping for T n, and this implies that W s

loc and W u
loc belong to such lines. As

W u � S1n�0 T n W u
loc

ÿ �
and W s � S1n�0 Tÿn W s

loc

ÿ �
, and since both W u

loc and W s
loc are parallel to the coordinate

axes, from Proposition 3 it follows that both W s and W u are formed by the union of segments parallel to the
axes. �
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2.3. Chaotic attractors and their basins

We can extend our propositions to attractors which are more complex than point cycles. The existence of
such attractors occurs when the reaction functions are non-monotonic functions. In fact, if the reaction
functions r1�y� and r2�x� are invertible, i.e. increasing or decreasing functions, then the dynamical behavior
of the Cournot map T is very simple, because in this case also the maps F and G are monotone. If r1 and r2

are both increasing or both decreasing then the composite functions F and G are monotone increasing,
hence they can only have ®xed points and no cycles of period k > 1. This implies that T can only have ®xed
points or cycles of period 2. If r1 and r2 are one increasing and one decreasing then F and G are both
monotone decreasing functions, hence they can have only one ®xed point and cycles of period 2. This
implies that the map T can only have one ®xed point, cycles of period 4 (of mixed or homogeneous type),
and of period 2 (of mixed type). Instead, when r1 and/or r2 are noninvertible maps also the functions F and
G are noninvertible maps. The attractors of F can be, besides k-cycles, also k-cyclic chaotic intervals or
Cantor sets (a Cantor set is an attractor in Milnor's sense [13], that can occur at particular bifurcation
values, as the Feigenbaum points). Let us call by Ax(resp. Ay) any one of the possible attractors of F (resp.
G). Then results similar to those given in Propositions 1 and 2 still hold:

Proposition 5. Let A be an attracting set of T different from a cycle. Then attracting sets of F exist, say Ax

and Az �Az � Ax or Az 6� Ax), such that:
(i) A � �Ax [ Az� � �r2�Ax [ Az��,
(ii) B�A� � �B�Ax� [B�Az�� � r2��B�Ax� [B�Az���,
(iii) Bim�A� � �Bim�Ax� [Bim�Az�� � r2��Bim�Ax� [Bim�Az��� and Bim�A� is made up of the rectangles which
include the elements of A.

More generally, the structure related to the cartesian products for the attracting sets of T holds for any
invariant set of T, also repelling, that is:

Proposition 6. Let S be any invariant set of T (i.e. T(S)�S), then there exist invariant sets of F, say Sx and Sz

�Sz � Sx or Sz 6� Sx�, such that S � �Sx [ Sz� � �r2�Sx [ Sz��.

As we have seen, when the attracting sets of F include something more complex than a cycle, for example
a chaotic set made up of k-cyclic chaotic intervals, then also the attracting sets of T are more complex.
However, also in this case the asymptotic sets of T must belong to cartesian products of attracting sets of F
and G, and such two-dimensional sets may include segments and rectangles. For example, if the map F has
cyclic chaotic intervals then, following the procedure indicated in Proposition 5, cyclic chaotic attractors of
the Cournot map T can be obtained by the cartesian product of the cyclic chaotic intervals of F and the
conjugate ones of G, so that chaotic rectangles are obtained in the phase plane of T.

We again consider the particular Cournot game (5) to give an example. Consider l1 � 2:8131 and
l2 � 3:85. The map F has 3-cyclic chaotic intervals I1; I2; I3f g inside which the generic dynamics are
aperiodic. Then J1; J2; J3f g � r2�I1�; r2�I2�; r2�I3�f g are the conjugate chaotic intervals of G. In this case the
nine rectangles of the cartesian product I1; I2; I3f g � J1; J2; J3f g � Ii � Jj; i; j � 1; 2; 3

� 	
include an at-

tracting set of T made up of 3-cyclic rectangles (see Fig. 3a) coexisting with an attracting set made up of 6-
cyclic rectangles (see Fig.3b), inside which the dynamics are chaotic. The two distinct basins of attraction
are shown in Fig. 3c.

If the parameters' values are such that the cyclic chaotic intervals of the map F are chaotic ``in strict
sense'' 1 [14] then it is also proved that for the two-dimensional map T the cyclic rectangles are chaotic in
the strict sense, which means, also in the two-dimensional case, that almost all the trajectories in such

1 This means that there exists chaos in the sense of Li and Yorke [11]: almost all the trajectories in such intervals are aperiodic, the

periodic points are dense in the intervals, no attracting cycle exists, as occurs at some homoclinic bifurcations of F, as we shall see in

Section 3, and an absolutely continuous invariant measure exists (see also [2,5]).
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intervals are aperiodic, the periodic points are dense in the rectangles, no attracting cycles exists, and an
absolutely continuous invariant (two-dimensional) measure exists.

As the cyclic chaotic intervals of the map F are bounded by the critical points of F, say c�F � � F c�F �ÿ1

� �
,

and their images c�F �k � F k�c�F �� (see e.g. [14,15]), the sides of the chaotic rectangles of the two-dimensional
map T are formed by segments of lines through these critical points and parallel to the coordinate axes.
Hence the boundaries of these cyclic chaotic rectangles are completely known on the basis of the knowledge
of the critical points c�F �k of the one-dimensional map F and those of G; given by c�G�k�1 � r2 c�F �k

� �� �
.

This fact can be also seen from the more general point of view of the delimitation of the absorbing and
the chaotic areas of the noninvertible maps of the plane (see [15], ch. 4). It is well known that the main
properties of these maps can be studied by the use of critical manifolds, introduced by the pioneering works
of Mira (see [9] and references therein) and now widely used as the main tool for the understanding of
noninvertible maps of the plane (see e.g. [15]). 2

The critical manifold of rank-0, denoted by LCÿ1, belongs to the locus of points at which the Jacobian
determinant jDT j � Dr2�x� � Dr1�y� vanishes. Hence LCÿ1 is given by the union of vertical lines and hori-
zontal lines related to Dr2�x� and Dr1�y�, respectively. Among these lines only those passing through points
of the local extremum points of the reaction functions are branches of LCÿ1. In other words, let xj

ÿ1,
j � 1; . . . ;N , be the points of local maxima or minima of r2�x� and yk

ÿ1, k � 1; . . . ;M , be the points of local
maxima or minima of r1�y�; then

LCÿ1 � x; y� � : x
� � xj

ÿ1; j � 1; . . . ;N
	 [ x; y� � : y

� � yk
ÿ1; k � 1; . . . ;M

	
: �14�

The critical set of rank-1, denoted by LC, is obtained as LC � T �LCÿ1�. From Proposition 3 we deduce that
LC is formed by segments belonging to horizontal and vertical lines. In particular, the images by T of the
lines x � xj

ÿ1 belong to the lines of equation y � yj � r2 xj
ÿ1

ÿ �
i.e. the horizontal lines through the maximum

and minimum values of the reaction function r2�x�, and the images of the lines y � yk belong to the lines of
equation x � xk � r1 yk

ÿ1

ÿ �
which are the vertical lines through the maximum and minimum values of the

reaction function r1�y�.
The branches of the critical set LC separate the phase plane into regions whose points have di�erent

number of preimages. For example, for the Cournot map (5) the critical curve of rank-0 is formed by the

two branches LCÿ1 � LC�a�ÿ1 [ LC�b�ÿ1 , where

LC�a�ÿ1 � x; y� � j y
�

� 1

2

�
and LC�b�ÿ1 � x; y� � j x

�
� 1

2

�
: �15�

2 In the following we shall use the notations used in this reference.

Fig. 3. Coexisting attractors of the map (5) with l1 � 2:8131 and l2 � 3:85, given by cyclic chaotic rectangles of period 3 (a) and of

period 6 (b). In (c) the two basins of attraction are represented by di�erent colors.
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Also LC is formed by two branches, LC � LC�a� [ LC�b�, where LC�a� � T x; 1
2

ÿ �
is the half-line de®ned by

x � 1

4
l1 with y6 1

4
l2 �16�

and LC�b� � T 1
2
; y

ÿ �
is the half-line de®ned by

y � 1

4
l2 with x6 1

4
l1 �17�

(see Fig. 4b). In this case the two branches of LC separate a region, denoted by Z0 in Fig. 4b, whose points
have no real preimages, from a region, denoted by Z4, whose points x; y� � have four real preimages, given by
x 1;2� �
ÿ1 � y 1;2� �

ÿ1 , where

x 1;2� �
ÿ1 �

1

2l2

l2

�
�

��������������������
l2

2 ÿ 4l2y
q �

; y 1;2� �
ÿ1 �

1

2l1

l1

�
�

��������������������
l2

1 ÿ 4l1x
q �

:

Critical sets of higher rank i, i P 1, de®ned as LCi � T i�1 LCÿ1� �, are important because generally the ab-
sorbing areas and the chaotic areas of a noninvertible map are bounded by segments of critical curves (see
[15]). This is true also for the absorbing and chaotic rectangles and segments of the map (2). For example, in
the situation shown in Fig. 4a we have a chaotic attractor whose boundary is given by segments of LC, LC1

and LC2. It can be noticed that segments of critical curves of higher rank bound zones inside the chaotic
area where the points are more dense, i.e. are more frequently visited by the phase point of a generic
trajectory.

More general situations can be obtained when the map F (and hence also G) has attracting cycles co-
existing with cyclic chaotic attractors. In this case the attractors of the map T, obtained by the cartesian
product of the attractors of F and those of G, can be k-cycles (i.e. periodic points, as in Fig. 2), k-cyclic
chaotic rectangles (as in Fig. 3) or k-cyclic chaotic segments. For example, in the case of l1 � 3:53 and
l2 � 3:58 the map F has 2-cyclic absorbing intervals I1; I2f g inside which the dynamics are chaotic, and a
coexisting attracting cycle of period 2, say x1; x2f g. Then the cartesian product of the two conjugate at-
tracting sets I1; I2; x1; x2f g � J1; J2; y1; y2f g includes:
· (a) an attracting 4-cycle (MPE) made up of all the points belonging to x1; x2f g � y1; y2f g,
· (b) a set of 4-cyclic attracting rectangles, made up of all the points belonging to I1; I2f g � J1; J2f g,

Fig. 4. (a) Chaotic attractor of the map (5) with l1 � 2:8197 and l2 � 3:85. (b) Some critical curves of the map (5) obtained with the

same parameters' values as in (a).
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· (c) two distinct 4-cyclic attracting segments belonging to I1; I2f g � y1; y2f g [ x1; x2f g � J1; J2f g (see
Fig. 5a)

each with its own basin of attraction (not represented in Fig. 5a).
When the parameter values are precisely those of the homoclinic bifurcation of the chaotic 2-cyclic

intervals (closure of the box of the second kind associated with the repelling 2-cycle included into the in-
tervals, see Appendix B), then we are again in a case of ``strict chaos'' with ergodic invariant measure. It
follows that the 4-cyclic chaotic rectangles given in (b) are chaotic in the strict sense also for the two-di-
mensional map T (with an absolutely invariant two-dimensional measure), and we also have one-dimen-
sional chaotic dynamics for the two-dimensional map T, in the two 4-cyclic chaotic segments given in (c)
above (for which an absolutely invariant one-dimensional measure exists). Besides the 4-cycle, which is an
MPE trajectory, we also have regular or chaotic MPE dynamics. In fact, we have already noticed that the
set R12 in (6) is trapping, thus the intersection of the 4-cyclic rectangles with the trapping set R12 gives an
invariant set which is made up of four cyclic arcs of the reaction curves. This constitutes an invariant set
with regular or chaotic MPE dynamics.

Since from Proposition 3 a Cournot map (2) maps horizontal lines into vertical ones and vice-versa we
have that:

Proposition 7. All the absorbing and the chaotic areas of a Cournot map are rectangles bounded by segments
of critical curves parallel to the coordinate axes.

Moreover, from the structure of stable and unstable sets of repelling nodes and saddles and from the
structure of the basins of attraction, together with the fact that the boundaries of the absorbing areas are
given by critical curve segments, we have that also the global bifurcations of the one-dimensional map F
correspond to global bifurcations of the two-dimensional map T.

Proposition 8. The global bifurcations of the one-dimensional map F correspond to global bifurcations for the
two-dimensional map T.

Inside an absorbing area smaller absorbing areas may be present, like the chaotic areas shown in Figs. 3a
and 3b. Sometimes, a small variation of a parameter may cause a sudden change in the size of the absorbing

Fig. 5. (a) Four coexisting attractors of the map (5) with l1 � 3:53 and l2 � 3:58. (b) Graph of the function F �x� obtained with the

same parameters' values as in (a).
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sets (such events have been called crisis in [8] or contact bifurcations in [15], and are generally related to
some homoclinic bifurcation). This can be seen in Fig. 4a, obtained at the value of the parameters just
beyond a homoclinic bifurcation, associated with a repelling 3-cycle of F, which causes a sudden increase of
the absorbing interval, from 3-cyclic to a unique one which includes the previous three (we shall discuss this
bifurcation in Section 3). Inside this new wide absorbing interval I of F the dynamics seems to be aperiodic
but we are probably in the case in which some attracting cycle of F of high period exists. A similar dynamics
occurs in the square I � I , absorbing for the map T. It can be noticed that the zones of the phase plane
where the two ``old'' coexisting chaotic attractors were located are more frequently visited by the phase
point. In other words, even in the case of a unique large absorbing area the critical curves bound ``darker''
zones characterized by a higher probability of ®nding the phase point of the dynamical system.

We have seen that the chaotic rectangles of the two-dimensional map T are obtained as cartesian
products of chaotic intervals of the one-dimensional maps F and G. In general all the attractors of T, cycles
and cyclic chaotic sets, and their local and global bifurcations, can be obtained from the knowledge of the
dynamics of the map F. As an example, in the next section we shall consider the local and global bifur-
cations of the map F de®ned in (9), from which all the dynamical properties of the Cournot game (5)
proposed in [10] can be deduced.

3. The Cournot game modeled by a double logistic map

In this section we study the main properties of the map F x� � de®ned in (9). However the methods we use
are rather general and can easily be extended to other Cournot duopoly games of the form (2).

The properties of the fourth degree map (9) depend on the two real parameters l1 and l2. For each value
of the parameters F �0� � F �1� � 0 and x�0 � 0 is a ®xed point. For l2 < 2 it has only one critical point of
rank-0 in x � 1

2
, which is a local maximum, whereas for l2 > 2 there are three critical points of rank-0

ca
ÿ1 �

1

2
; cb1

ÿ1 �
1

2
1

 
ÿ

�������������
l2 ÿ 2

l2

s !
; cb2

ÿ1 �
1

2
1

 
�

�������������
l2 ÿ 2

l2

s !
; �18�

where the ®rst one is a local minimum point and the other two are maximum points. However the critical
points of rank-1, which are the relevant ones in order to classify the dynamic properties and the bifurcations
of a noninvertible map, are only two:

ca � F ca
ÿ1

ÿ � � l1l2

16
4� ÿ l2� and cb � F cb1

ÿ1

� �
� F cb2

ÿ1

� �
� l1

4
: �19�

It is easy to see that ca � cb for l2 � 2 and ca < cb for l2 > 2. The two critical points (19) separate the real
axis into three intervals, denoted by Z0, Z4, Z2 in Fig. 1b, such that a point belonging to Zk has k distinct
rank-1 preimages under the noninvertible map F. Since F is given by the composition of two functions with
negative Schwarzian derivative (the two quadratic reaction functions) also F has negative Schwarzian
derivative (see [19]), hence the map F can have at most two coexisting attractors, each with one critical
point (19) in its basin of attraction [19]. If l1l2 > 1 then the ®xed point x�0 � 0 is repelling and at least
another ®xed point exists inside the interval 0; 1� �. Two further ®xed points can exist in the same interval,
which can be created or destroyed by fold bifurcations. In the following we shall focus our attention on the
region of the parameters' plane l1; l2� � with l1 > 2 and l2 > 2, where the more interesting dynamics and
bifurcations of the map F occur (see the bifurcation diagram of Fig. 6).

As it is well known, the x-limit sets of a one-dimensional noninvertible map f can be either a k-cycle, or a
set of k-cyclic chaotic intervals or a Cantor set belonging to absorbing intervals bounded by critical points
ci � f i�c�, i P 0, being c a critical point or rank-1 (see [15, ch. 1]). For the map (9) a necessary condition for
the existence of two coexisting distinct attractors is that F has four ®xed points. In this case, let p� denote
the ®xed point between ca

ÿ1 and cb2

ÿ1 (see Fig. 1b): then a su�cient condition for the existence of two distinct
attractors is

F ca� � < p� < F cb
ÿ �

: �20�
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In fact, in this case the two closed intervals

J a � ca; ca
1

� �
and Jb � cb

1 ; c
b

� �
; �21�

where ca
1 � F ca� � and cb

1 � F cb� �, are disjoint absorbing intervals, each of which includes an attracting set
(we recall that an absorbing interval is de®ned as an interval J bounded by critical points for which a
neighborhood U � J exists such that every trajectory starting in U enters J after a ®nite number of iter-
ations and then never escapes, being T �J� � J ). As far as l1 < 4 and l2 < 4 we have F � 0; 1� �� � 0; 1� �, and
any trajectory starting from a generic point x 2 0; 1� � (with the only exception of the ®xed points and their
preimages) enters the absorbing interval ca; cb� � after a ®nite number of steps. In this case the set of points
that generate divergent trajectories (i.e. the basin of in®nity) is given by

B1 � � ÿ1; 0� [ 1;� �1�; �22�
whereas the situation is much more complex when l1 > 4 or l2 > 4. In fact at l1 � 4 or l2 � 4 a homoclinic
bifurcation of the repelling ®xed point x�0 � 0 occurs which causes the appearance of in®nite non-connected
components of B1 inside the interval 0; 1� � (a brief summary on the meaning and the importance of the
homoclinic points is reported in Appendix A). At these homoclinic bifurcations, known as SBR (snap-back-
repeller) bifurcation, a critical point merges with the repelling ®xed point x�0. In fact
· if l2 � 4 then ca � 0;
· if l1 � 4 then cb � 1 and cb

1 � F �cb� � 0.
We remark that even if the condition li � 4, i � 1; 2, corresponds to the ``®nal bifurcation'' for the reaction
function ri (after which the generic trajectory of the map ri is divergent), the composite function F can
continue to have a bounded attractor even when li > 4, provided that the other parameter lj, j 6� i, is small
enough. Suppose, for example, that l2 > 4, so that ca < 0 (Fig. 7a). In this case, if cb

1 � F �l1=4� > p� then
the bounded interval Jb de®ned in (21) is still absorbing, and its immediate basin is p�; p�ÿ1;1

� �
(where p�ÿ1;1 is

one of the distinct rank-1 preimages of p�, the one on the rightmost, see Fig. 7a), and the whole basin is
made up of in®nitely many disjoint intervals that accumulate on the in®nitely many repelling periodic
points existing in 0; 1� � n Jb. In this case the ®nal bifurcation for the map F, after which the generic tra-
jectory starting in 0; 1� � is divergent, occurs when cb

1 � p�. Analogously, in the case l1 > 4 the interval J a

Fig. 6. Bifurcation diagrams of the map F �x� de®ned in (9) in the plane of the parameters l1, l2. For each point l1;l2� � a trajectory of

(5) is generated starting from the minimum ca, in (a), or from the maximum cb, in (b). The corresponding color is chosen according to

the asymptotic behavior of the trajectory.
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continues to be absorbing provided that ca
1 < p�, whereas the set of initial conditions generating bounded

trajectories reduces to zero measure after the ®nal bifurcation which takes place when ca
1 � p�.

The existence of bounded attractors when one of the li is greater than 4 is clearly visible in the bifur-
cation diagram, in the parameters' plane l1; l2� �, shown in Fig. 6. Fig. 6a is obtained by generating, for
each l1; l2� � 2 2; 5� � � 2; 5� �, a trajectory starting from ca, whereas Fig. 6b is obtained with trajectories
starting from cb. The black regions represent divergence, whereas the other colors represent convergence to
cycles or bounded aperiodic trajectories. To enter in more detail into the structure of the bifurcations of the
map F we can consider the bifurcation diagrams obtained for a ®xed value of a parameter, say l2, and by
varying the value of the other parameter. Some examples are shown in Fig. 8. In Fig. 8a two bifurcation
diagrams are shown, both obtained for l2 � 3:58. The upper diagram has been obtained with trajectories

Fig. 8. (a) Two bifurcation diagrams of the map F �x� de®ned in (9), both obtained with l2 � 3:58 and l1 as a bifurcation parameter in

the range 2:2; 5:2� �. The upper diagram is obtained with i.c. taken in the minimum ca, the lower one with i.c. in the maximum cb.

(b) Bifurcation diagram of the map F �x� l2 � 3:85 and l1 in the range 2:77; 3:04� �.

Fig. 7. Graph of the function F �x� with l2 > 4. The main hole and its preimages of rank-1 are denoted by thicker portions of the

diagonal. In®nitely many other holes exist, given by the preimages of any rank of the main hole. (b) Graph of the function F �x� with

l1 > 4.
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starting from ca, whereas the lower one is obtained with trajectories starting from cb. From a comparison
between these two bifurcation diagrams it is evident that a range of values of l1 exists such that two distinct
attractors of F are present. For example, for the parameters' values l1; l2� � � 3:53; 3:58� �, used to obtain
Fig. 5a, there are an attracting cycle of period 2 (reached from cb) and an attracting 2-cyclic chaotic interval
(reached from ca). For the determination of the basins of attraction of the two coexisting attractors the
following procedure can be followed. If the attractor is a cycle of period k of F we ®rst consider its im-
mediate basin Bim; made up of k-cyclic intervals including the periodic points and bounded by a repelling
cycle and some of its preimages. Then the total basin is given by the union of all the preimages of any rank
of the immediate basin

B �
[

n P 0

Tÿn Bim� �: �23�

The same procedure can be followed to determine the basin of attraction of a set of k-cyclic absorbing
intervals. In our example of Fig. 5b, at l1; l2� � � 3:53; 3:58� �; the immediate basin of I1 is given by q�ÿ2; q

�ÿ �
,

where q� is a repelling ®xed point (see Fig. 5b), and the immediate basin of I2 is q�; q�ÿ1

ÿ �
. Regarding the

attracting two-cycle, whose periodic points are denoted by x1 and x2 in Fig. 5b, the immediate basin is given
by u�ÿ1; u

�ÿ � [ u�; u�ÿ2

ÿ �
, where u� is another repelling ®xed point.

In the bifurcation diagram of Fig. 8b, obtained with l2 � 3:85 and l1 2 2:77; 3:04� �, some noticeable
sequences of local and global bifurcations can be identi®ed. Sequences of fold and ¯ip bifurcations, similar to
those occurring in unimodal maps, can be classi®ed in terms of a ``box-within-a-box '' structure, as described
in Appendix B (see also [6,7,14]). As long as F has two distinct attractors we can consider two parallel se-
quences of boxes, one related to the asymptotic behavior of the critical point ca and the other related to that of
cb. In fact, in this case the map behaves as a unimodal map inside each of the two disjoint absorbing intervals
(21). Instead, when the union of J a and Jb gives a unique absorbing interval ca; cb� �, containing the two critical
points of rank-0 given by (18), then the sequence of bifurcations inside the boxes may change, and backward
bifurcations, typical of bimodal maps, can be observed. By the term backward fold bifurcation we mean that a
pair of cycles, existing before the bifurcation, merge and then disappear, and by the term backward flip bi-
furcation we mean that an attracting cycle disappears merging into a repelling cycle of half period and giving,
after the bifurcation, an attracting cycle of half period. Sequences of backward ¯ip bifurcations are clearly
visible in Fig. 8b in the range l1 2 3:00; 3:02� �, and a backward fold bifurcation, at which a pair of 3-cycles
merge and disappear, occur at l1 ' 3:035. Also homoclinic bifurcations can be identi®ed from the analysis of
the bifurcation diagram of Fig. 8b. For example, at l1 ' 2:8131, the value used in Fig. 3, a homoclinic bi-
furcation occurs at which 6-cyclic absorbing intervals pairwise merge to give, at the homoclinic bifurcation, a
3-cyclic chaotic attractor. At l1 ' 2:8196, the value used in Fig. 4, another homoclinic bifurcation occurs at
which the critical points bounding the 3-cyclic absorbing intervals reach the points of the unstable 3-cycle
created by the fold bifurcation together with the stable 3-cycle. After this bifurcation an explosion of the size
of the attractor can be noticed at which a unique absorbing interval appears (see Appendix A). This explains
the particular distribution of points inside the chaotic area shown in Fig. 4a.

4. The symmetric case r1 � r2

In this section we consider the case of identical players, i.e. players with identical reaction functions. This
is the particular case considered in [10], where the model (5) is studied with l1 � l2. In this case the map (2)
is symmetric, since T � S � S � T , where S : x; y� � ! y; x� � is the operator that represents a re¯ection with
respect to the diagonal x � y. As we shall see below, in this symmetric case the map (2) has non-generic
properties related to the presence of new trapping sets.

4.1. General properties

In Section 2 we have shown that the set R12, given by the union of the graphs of the reaction functions, is
a trapping set for the Cournot map T. In this section we shall consider the case of a symmetric game, with
r1 � r2 � r, i.e.
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T x; y� � � r y� �; r x� �� � �24�
for which not only R12, but in®nitely many other trapping sets, exist.

The symmetry property T � S � S � T , stated above, implies that if the two players start with the same
initial conditions x0 � y0, then they will behave identically forever. In fact the diagonal D � x; x� �; x 2 Rf g is
trapping for T, i.e. x0; y0� � 2 D; implies xt; yt� � 2 D 8t > 0: However this is not the only trapping set of T, as
in fact there exist in®nitely many similar trapping sets, all belonging to the union of the graphs of the
powers of the two reaction functions, as stated by the following proposition

Proposition 9. Each set

Rk
12 � x; rk x� �ÿ �� 	 [ rk y� �; yÿ �� 	

; k � 0; 1; 2; . . . �25�
is a trapping set for the map T defined in (24).

Proof. If the phase point belongs to the graph of the function y � rk x� � then its image
T x; rk x� �� � � rk�1 x� �; r x� �� � belongs to the graph of the function x � rk�y�. If the phase point belongs to the
graph of the function x � rk y� � then its image T rk y� �; y� � � r y� �; rk�1 y� �� � belongs to the graph of the
function y � rk�x�. �

The set R0
12 is the diagonal D. For k > 0 , whenever a symmetric Cournot duopoly game reaches a point

belonging to the graph of some ``power'' k of a reaction function, the trajectory is ``trapped'' into the union
of the two graphs given by (25) and continues to move, alternatingly, from one graph to the other. In both
cases the x-limit set of the trajectory, ``trapped'' into the trapping set, belongs to the portion of Rk

12 inside
the suitable absorbing rectangles existing for the given set of parameters, and may give rise to quite sug-
gestive x-limit sets in the phase plane, as it will be shown in the next section.

4.2. The double logistic game with l1 � l2

We consider here the Cournot tâtonnement modeled by (5) with l1 � l2 � l. In this case the one-di-
mensional map F �x� � r2�x� is the well-known square function of the standard logistic map. Thus for
2 < l < 3 F has the ®xed point in x � 0 which is unstable and x� � �1ÿ 1=l�which is attracting. This implies
that T has the ®xed point O� � �0; 0� unstable, the ®xed point P � � �x�; x�� attracting node, and the 2-cycle
E2 � �0; x��; �x�; 0�f g which is a saddle cycle. At l � 3 the ®xed point x� of F undergoes a pitchfork bifur-
cation and two new ®xed points are created, say x�1 and x�2: Also for T these give rise to a pair of new ®xed
points, P �1 � �x�1; x�1� and P �2 � �x�2; x�2�; but more, the degenerate fold-bifurcation of the node P � also gives rise
to the attracting 2-cycle C2 � �x�1; x�2�; �x�2; x�1�

� 	
: All the other 2-cycles (exactly six 2-cycles,created at this

degenerate fold-bifurcation of P �, except for the two cycle E2) are saddles or repelling nodes, obtained by
combining the coordinates of each pair of ®xed points, one stable and one unstable or both unstable.

As the parameter l increases, well-known sequences of bifurcations occur in the map F (see e.g. [2,5,14]).
The asymptotic dynamics take place in two absorbing intervals, J a and Jb given in (21), giving rise to two
disjoint attracting sets for F as long as l < l�1 (this bifurcation value shall be commented on below). This is
evident in the bifurcation diagrams of Fig. 9 (which are obtained taking as i.c. the point of minimum ca in
Fig. 9a and the point of maximum cb in Fig. 9b). Correspondingly, for the two-dimensional map T we shall
have three disjoint absorbing regions (inside which at least three disjoint attracting sets exist), given by the
cartesian products J a � J a and Jb � Jb and cyclic attractors in J a � Jb [ Jb � J a. We note, however, that
from the properties shown in Section 2 we can state that in the generic situation the attracting sets of T
(coexisting in such absorbing rectangles) are much more in number.

The bifurcation value l�1 is the parameter value at which the ®rst homoclinic bifurcation of the ®xed
point x� occurs, i.e. l�1 � 3:6785735 . . . At l � l�1 the two critical points ca and cb merge in the repelling ®xed
point P � (see Fig. 9), and F is chaotic (in strict sense) in the whole interval J � J a [ Jb � �ca; cb�: This
implies that the Cournot map T is chaotic in the whole square J � J : Beyond this value F has a unique
attracting set, 8l > l�1; in the absorbing interval J � �ca; cb�, while the two-dimensional map T has generally
many coexisting attractors in the absorbing square J � J :
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Let us turn now to the particular structure of the in®nitely many trapping sets which exist in this symmetric
case: the graphs of the functions rk�x� and rk�y� in the phase plane. Indeed, the asymptotic dynamics only
involves the portions of such graphs belonging to the absorbing rectangles of T. Consider for example
l � 3:8567 at which only 3-cyclic chaotic intervals exist for F. In this case T has two coexisting attractors: a 3-
cyclic chaotic rectangle and a 6-cyclic chaotic rectangle, in the absorbing square J � J : Invariant (and
chaotic) one-dimensional sets belonging to these trapping regions are shown in Figs. 10 and 11.

In Fig. 10a the asymptotic behavior of the trajectory starting from the initial condition x0; y0� � �
0:8; r3 0:8� �� � 2 R3

12 is shown. The x-limit set of this trajectory is a 3-cyclic chaotic attractor formed by the
portion of R3

12 included inside the 3-cyclic absorbing area bounded by segments of critical curves. The
trajectory shown in Fig. 10b is obtained from the initial condition x0; y0� � � 0:8; r7 0:8� �� � 2 R7

12. In this case
the x-limit set is a 6-cyclic chaotic attractor formed by the portion of R7

12 included inside a 6-cyclic ab-
sorbing area. The Fig. 10c is obtained with an initial condition x0; y0� � � 0:8; r6 0:8� �� � 2 R6

12, whereas Fig.
10d is obtained with initial condition x0; y0� � � 0:3; 0:3� � 2 R0

12, i.e. on the line D. Also in the latter case the
x-limit set is given by the portion of the invariant diagonal belonging to the 3-cyclic absorbing area. It is
evident that a countable in®nity of di�erent x-limit sets can be obtained by properly changing the initial
conditions on di�erent trapping sets (25). Furthermore, with the parameters' values used in Fig. 10, a
generic i.c. x0; y0� � 2 0; 1� � � 0; 1� � generates a trajectory whose x-limit set is either a 3-cyclic chaotic area,
formed by dense rectangles (similar to those shown in Fig. 3a) or a 6-cyclic chaotic area, formed by dense
rectangles (similar to those shown in Fig. 3b), according to the basin to which the initial condition belongs.

The cases shown in Fig. 11 are obtained with l � 3:87. In this case the generic i.c. x0; y0� � 2 0; 1� � � 0; 1� �
generates a trajectory that ®lls up a large rectangular chaotic area, as shown in Fig. 11a. Instead, starting
from identical initial productions x0 � y0, i.e. with x0; y0� � 2 R0

12, the x-limit set, shown in Fig. 11b, is given
by the portion of the diagonal included inside the chaotic rectangle of Fig. 11a. The asymptotic dynamic
behavior is chaotic on a one-dimensional invariant subset of the phase plane, and is characterized by a
perfect synchronization of the two players.

In Fig 11c the x-limit set of the trajectory generated by the i.e. x0; y0� � � 0:5; r3 0:5� �� � 2 R3
12 is shown,

given by the portion of R3
12 included inside the chaotic rectangle of Fig. 11a. Analogously Fig. 11d shows

the x-limit set of the trajectory generated by the i.c. x0; y0� � � 0:5; r6 0:5� �� � 2 R6
12.

5. Conclusions

As stated by Shubik in [18] ``Models of duopoly have always held a fascination for mathematically
inclined economists''. The study given in this paper is a clear con®rmation of the above statement, since the

Fig. 9. Bifurcation diagrams of the map r�r�x��, with r�x� � lx�1ÿ x�, as the parameter l varies in the range 3; 4� �. (a) The initial

condition is taken in the minimum ca. (b) The initial condition is taken in the maximum cb.
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complex dynamical behaviors of the Cournot duopoly game (2), together with the particular structures of
its attractors and basins shown in this paper, are certainly appealing also for a mathematical reader. From
this point of view this paper may be seen as a continuation of the pioneering paper of Rand [17], in which
for the ®rst time the existence of chaotic dynamics for a map (2) with non monotone reaction functions has
been proved. However, the study of the properties of the Cournot maps (2) has not only a theoretical
interest. In fact many authors have shown that such maps may be used to model many economically in-
teresting situations, as clearly stated in [4]. In particular Puu [16] has shown that a very simple duopoly
system, with linear costs functions and a hyperbolic demand function, gives rise to a Cournot map with
unimodal reaction functions, for which complex behaviors are easily obtained. It is an easy exercise to show
that our general results can be usefully applied to the model of Puu, as well as to other economically in-
teresting Cournot maps, like those proposed in [4].

The results on the coexistence of attracting sets and on the particular structure of their basins are a
consequence of the property that the second iterate T 2�x; y� of (2) is a decoupled map. Hence the results

Fig. 10. Di�erent x-limit sets of trajectories of (5) with l1 � l2 � 3:8567. (a) Initial condition x0; y0� � � 0:8; r3�0:8�� �. (b) Initial

condition x0; y0� � � 0:8; r7�0:8�� �. (c) Initial condition x0; y0� � � 0:8; r6�0:8�� �: (d) Initial condition x0; y0� � � 0:3; 0:3� �.
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given in this paper can be applied to other plane maps, not necessarily in the form (2), having this property.
For example, maps with this property have been recently found in the study of oscillating electrical circuits,
see [12].
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Fig. 11. Di�erent x-limit sets of trajectories of (5) with l1 � l2 � 3:87. (a) Trajectory starting from a generic initial condition in

0; 1� � � 0; 1� �. (b) Initial condition x0; y0� � � 0:5; 0:5� �. (c) Initial condition x0; y0� � � 0:5; r3�0:5�� �. (d) Initial condition

x0; y0� � � 0:5; r6�0:5�� �.
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Appendix A. SBR and homoclinic bifurcations in 1-d maps

Let p� be a repelling ®xed point of a one-dimensional map x0 � f �x� (if p� is a periodic point of a repelling
cycle we just consider the map f k�x�, for which it is a repelling ®xed point). A point q is called homoclinic to
p� if q 2 W u�p�� \ W s�p��, i.e. a sequence of preimages of q exists tending to p� (as q 2 W u�p��) and a ®nite
integer m exists such that f m�q� � x� (as q 2 W s�p��). A homoclinic orbit is obtained by the reunion of an
in®nite sequence of preimages of q convergent to p� and the ®nite sequence of its images. The homoclinic
theorem states that in any neighborhood of a homoclinic point there exists a Cantor set K that is invariant
for f N , i.e. f N �K� � K, for a suitable N, and f N is conjugate to the shift map on two symbols, which means
that chaos in the sense of Li and Yorke exists on K.

With each homoclinic orbit in®nitely many Cantor sets Kj are associated on which f j is invariant and
conjugate to the shift map, for any integer j > N . Moreover, if a homoclinic orbit of p� exists then there are
in®nitely many distinct homoclinic orbits of p�. In order to distinguish between a repelling ®xed point
without homoclinic orbits and a repelling one with homoclinic orbits we call snap-back-repeller (SBR) a
®xed point that is repelling and such that there is an orbit homoclinic to it. When p� is a SBR, the in®nitely
many Cantor sets Kj on which the dynamics are chaotic are, although repelling, responsible for the ``ob-
served'' chaotic behavior when they belong to an absorbing set I, that may be an interval or cyclic intervals.
In these cyclic intervals we have either ``strict chaos'' (or chaos in the sense of Li and York), or ``non-strict
chaos'', due to a chaotic transient when the convergence to a cycle of very high period is not numerically
detectable. Otherwise the Cantor sets Kj constitute a ``strange repellor'' belonging to some basin boundary,
and are responsible for the chaotic transients before the convergence of a generic trajectory to some other
attractor.

Let l� be the value of a parameter at which the ®rst homoclinic orbit of p� appears. At such parameter's
value a homoclinic (or SBR) bifurcation occurs. As already noticed in [5] and proved in [6] a necessary and
su�cient condition for l� to be a homoclinic bifurcation value is that at l � l� all the homoclinic orbits of
p� are critical, which requires that p� is a critical point (of some rank) of the map.

Appendix B. The box-within-a-box structure

A box of ®rst kind of a k-cycle is opened by a fold bifurcation that creates a pair of k-cycles, one at-
tracting and one repelling. A box of the second kind is opened by a ¯ip bifurcation of a k-cycle that creates
an attracting 2k-cycle. A more detailed description can be found in [9,14,15].

The closure of a box of second kind corresponds to the ®rst homoclinic (or SBR) bifurcation of the k-
cycle whose ¯ip bifurcation opened the box. Just before such bifurcation, 2k cyclic attracting intervals exist,
inside which the dynamics are chaotic. At the bifurcation value and after, k- cyclic invariant intervals are
attracting, i.e. the closure of a box of second kind causes the transition from 2k to k-cyclic intervals (inside
which ``strict'' or ``nonstrict'' chaos occurs) and the new immediate basins are given by the reunion, by
pairs, of the old immediate basins.

The closure of a box of ®rst kind occurs at an homoclinic bifurcation of the k-cycle that was born re-
pelling at the fold bifurcation that opened the box. Just before the bifurcation k-cyclic attracting intervals
exist, whose immediate basin is bounded by the points of the repelling cycle. After the bifurcation the k-
intervals are no longer invariant, and a wider invariant absorbing interval is created, with complex dy-
namics inside, which includes not only the old k-intervals, but also components of their old basins. Such
bifurcation apparently causes a sudden increase of the size of the chaotic (in non-strict sense) attractor,
from k disjoint intervals into a unique interval that includes the previous ones.
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